defs.h 20.9 KB
Newer Older
1
/*******************************************************************************
ghaddab's avatar
ghaddab committed
2
3
    OpenAirInterface 
    Copyright(c) 1999 - 2014 Eurecom
4

ghaddab's avatar
ghaddab committed
5
6
7
8
    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
9
10


ghaddab's avatar
ghaddab committed
11
12
13
14
    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
15

ghaddab's avatar
ghaddab committed
16
17
18
19
    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is 
   included in this distribution in the file called "COPYING". If not, 
   see <http://www.gnu.org/licenses/>.
20
21

  Contact Information
ghaddab's avatar
ghaddab committed
22
23
24
25
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
  OpenAirInterface Dev  : openair4g-devel@eurecom.fr
  
ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
27

ghaddab's avatar
ghaddab committed
28
 *******************************************************************************/
29
30
31
32
33
34
35
36
37
38
39
40
41
/* file: PHY/CODING/defs.h
   purpose: Top-level definitions, data types and function prototypes for openairinterface coding blocks
   author: raymond.knopp@eurecom.fr
   date: 21.10.2009 
*/
#ifndef __CODING_DEFS__H__
#define __CODING_DEFS__H__

#include <stdint.h>

#ifndef NO_OPENAIR1
#include "PHY/defs.h"
#else
knopp's avatar
   
knopp committed
42
#include "PHY/TOOLS/time_meas.h"
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#endif 

#define CRC24_A 0
#define CRC24_B 1
#define CRC16 2
#define CRC8 3

#define MAX_TURBO_ITERATIONS_MBSFN 8
#define MAX_TURBO_ITERATIONS 4

#define LTE_NULL 2

/** @addtogroup _PHY_CODING_BLOCKS_
 * @{
*/

/** \fn lte_segmentation(uint8_t *input_buffer,
	  	        uint8_t **output_buffers,
		        uint32_t B,
		        uint32_t *C,
		        uint32_t *Cplus,
		        uint32_t *Cminus,
		        uint32_t *Kplus,
		        uint32_t *Kminus,
		        uint32_t *F)
\brief This function implements the LTE transport block segmentation algorithm from 36-212, V8.6 2009-03.
@param input_buffer
@param output_buffers
@param B
@param C
@param Cplus
@param Cminus
@param Kplus
@param Kminus
@param F
*/
int32_t lte_segmentation(uint8_t *input_buffer,
		      uint8_t **output_buffers,
		      uint32_t B,
		      uint32_t *C,
		      uint32_t *Cplus,
		      uint32_t *Cminus,
		      uint32_t *Kplus,
		      uint32_t *Kminus,
		      uint32_t *F);

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
/** \fn int16_t estimate_ue_tx_power(uint32_t tbs, uint32_t nb_rb, uint8_t control_only, lte_prefix_type_t ncp, uint8_t use_srs)
    \brief this functions calculates the delta MCS in dB based on the lte_segmentation function
\param tbs transport block size
\param nb_rb number of required rb
\param control_only a flag for the type of data
\param ncp cyclic prefix
\param use_srs a flag indicating the use of srs in the current SF
\returns ue_tx_power estimated ue tx power = delat_ mcs + bw_factor
*/
int16_t estimate_ue_tx_power(uint32_t tbs, 
			   uint32_t nb_rb, 
			   uint8_t control_only, 
			   lte_prefix_type_t ncp, 
			   uint8_t use_srs);

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/** \fn uint32_t sub_block_interleaving_turbo(uint32_t D, uint8_t *d,uint8_t *w)
\brief This is the subblock interleaving algorithm from 36-212 (Release 8, 8.6 2009-03), pages 15-16. 
This function takes the d-sequence and generates the w-sequence.  The nu-sequence from 36-212 is implicit.
\param D Number of systematic bits plus 4 (plus 4 for termination)
\param d Pointer to input (d-sequence, turbo code output)
\param w Pointer to output (w-sequence, interleaver output)
\returns Interleaving matrix cardinality (\f$K_{\pi}\f$  from 36-212)
*/
uint32_t sub_block_interleaving_turbo(uint32_t D, uint8_t *d,uint8_t *w);

/** \fn uint32_t sub_block_interleaving_cc(uint32_t D, uint8_t *d,uint8_t *w)
\brief This is the subblock interleaving algorithm for convolutionally coded blocks from 36-212 (Release 8, 8.6 2009-03), pages 15-16. 
This function takes the d-sequence and generates the w-sequence.  The nu-sequence from 36-212 is implicit.
\param D Number of input bits 
\param d Pointer to input (d-sequence, convolutional code output)
\param w Pointer to output (w-sequence, interleaver output)
\returns Interleaving matrix cardinality (\f$K_{\pi}\f$  from 36-212)
*/
uint32_t sub_block_interleaving_cc(uint32_t D, uint8_t *d,uint8_t *w);


/** \fn void sub_block_deinterleaving_turbo(uint32_t D, int16_t *d,int16_t *w)
\brief This is the subblock deinterleaving algorithm from 36-212 (Release 8, 8.6 2009-03), pages 15-16. 
This function takes the w-sequence and generates the d-sequence.  The nu-sequence from 36-212 is implicit.
\param D Number of systematic bits plus 4 (plus 4 for termination)
\param d Pointer to output (d-sequence, turbo code output)
\param w Pointer to input (w-sequence, interleaver output)
*/
void sub_block_deinterleaving_turbo(uint32_t D, int16_t *d,int16_t *w);

/** \fn void sub_block_deinterleaving_cc(uint32_t D, int8_t *d,int8_t *w)
\brief This is the subblock deinterleaving algorithm for convolutionally-coded data from 36-212 (Release 8, 8.6 2009-03), pages 15-16. 
This function takes the w-sequence and generates the d-sequence.  The nu-sequence from 36-212 is implicit.
\param D Number of input bits
\param d Pointer to output (d-sequence, turbo code output)
\param w Pointer to input (w-sequence, interleaver output)
*/
void sub_block_deinterleaving_cc(uint32_t D,int8_t *d,int8_t *w);

/** \fn generate_dummy_w(uint32_t D, uint8_t *w,uint8_t F)
\brief This function generates a dummy interleaved sequence (first row) for receiver, in order to identify
the NULL positions used to make the matrix complete.
\param D Number of systematic bits plus 4 (plus 4 for termination)
\param w This is the dummy sequence (first row), it will contain zeros and at most 31 "LTE_NULL" values
\param F Number of filler bits due added during segmentation
\returns Interleaving matrix cardinality (\f$K_{\pi}\f$ from 36-212)
*/

uint32_t generate_dummy_w(uint32_t D, uint8_t *w, uint8_t F);

/** \fn generate_dummy_w_cc(uint32_t D, uint8_t *w)
\brief This function generates a dummy interleaved sequence (first row) for receiver (convolutionally-coded data), in order to identify the NULL positions used to make the matrix complete.
\param D Number of systematic bits plus 4 (plus 4 for termination)
\param w This is the dummy sequence (first row), it will contain zeros and at most 31 "LTE_NULL" values
\returns Interleaving matrix cardinality (\f$K_{\pi}\f$ from 36-212)
*/
uint32_t generate_dummy_w_cc(uint32_t D, uint8_t *w);

/** \fn uint32_t lte_rate_matching_turbo(uint32_t RTC,
			     uint32_t G, 
			     uint8_t *w,
			     uint8_t *e, 
			     uint8_t C, 
			     uint32_t Nsoft, 
			     uint8_t Mdlharq,
			     uint8_t Kmimo,
			     uint8_t rvidx,
			     uint8_t Qm, 
			     uint8_t Nl, 
			     uint8_t r)

\brief This is the LTE rate matching algorithm for Turbo-coded channels (e.g. DLSCH,ULSCH).  It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RTC R^TC_subblock from subblock interleaver (number of rows in interleaving matrix) for up to 8 segments
\param G This the number of coded transport bits allocated in sub-frame
\param w This is a pointer to the w-sequence (second interleaver output)
\param e This is a pointer to the e-sequence (rate matching output, channel input/output bits)
\param C Number of segments (codewords) in the sub-frame
\param Nsoft Total number of soft bits (from UE capabilities in 36-306)
\param Mdlharq Number of HARQ rounds 
\param Kmimo MIMO capability for this DLSCH (0 = no MIMO)
\param rvidx round index (0-3)
\param Qm modulation order (2,4,6)
\param Nl number of layers (1,2)
\param r segment number
\returns \f$E\f$, the number of coded bits per segment */


uint32_t lte_rate_matching_turbo(uint32_t RTC,
			    uint32_t G, 
			    uint8_t *w,
			    uint8_t *e, 
			    uint8_t C, 
			    uint32_t Nsoft, 
			    uint8_t Mdlharq,
			    uint8_t Kmimo,
			    uint8_t rvidx,
			    uint8_t Qm, 
			    uint8_t Nl, 
			    uint8_t r,
			    uint8_t nb_rb,
			    uint8_t m);

/** 
\brief This is the LTE rate matching algorithm for Convolutionally-coded channels (e.g. BCH,DCI,UCI).  It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RCC R^CC_subblock from subblock interleaver (number of rows in interleaving matrix) for up to 8 segments
\param E Number of coded channel bits
\param w This is a pointer to the w-sequence (second interleaver output)
\param e This is a pointer to the e-sequence (rate matching output, channel input/output bits)
\returns \f$E\f$, the number of coded bits per segment */

uint32_t lte_rate_matching_cc(uint32_t RCC,
				  uint16_t E,
				  uint8_t *w,
				  uint8_t *e);

/**     
\brief This is the LTE rate matching algorithm for Turbo-coded channels (e.g. DLSCH,ULSCH).  It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RTC R^TC_subblock from subblock interleaver (number of rows in interleaving matrix)
\param G This the number of coded transport bits allocated in sub-frame
\param w This is a pointer to the soft w-sequence (second interleaver output) with soft-combined outputs from successive HARQ rounds 
\param dummy_w This is the first row of the interleaver matrix for identifying/discarding the "LTE-NULL" positions
\param soft_input This is a pointer to the soft channel output 
\param C Number of segments (codewords) in the sub-frame
\param Nsoft Total number of soft bits (from UE capabilities in 36-306)
\param Mdlharq Number of HARQ rounds 
\param Kmimo MIMO capability for this DLSCH (0 = no MIMO)
\param rvidx round index (0-3)
\param clear 1 means clear soft buffer (start of HARQ round)
\param Qm modulation order (2,4,6)
\param Nl number of layers (1,2)
\param r segment number
\param E_out the number of coded bits per segment 
\returns 0 on success, -1 on failure
*/

int lte_rate_matching_turbo_rx(uint32_t RTC,
			      uint32_t G, 
			      int16_t *w,
			      uint8_t *dummy_w,
			      int16_t *soft_input, 
			      uint8_t C, 
			      uint32_t Nsoft, 
			      uint8_t Mdlharq,
			      uint8_t Kmimo,
			      uint8_t rvidx,
			      uint8_t clear,
			      uint8_t Qm, 
			      uint8_t Nl, 
			      uint8_t r,
			      uint32_t *E_out);

uint32_t lte_rate_matching_turbo_rx_abs(uint32_t RTC,
			      uint32_t G, 
			      double *w,
			      uint8_t *dummy_w,
			      double *soft_input, 
			      uint8_t C, 
			      uint32_t Nsoft, 
			      uint8_t Mdlharq,
			      uint8_t Kmimo,
			      uint8_t rvidx,
			      uint8_t clear,
			      uint8_t Qm, 
			      uint8_t Nl, 
			      uint8_t r,
			      uint32_t *E_out);
/**     

\brief This is the LTE rate matching algorithm for Convolutionally-coded channels (e.g. BCH,DCI,UCI).  It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RCC R^CC_subblock from subblock interleaver (number of rows in interleaving matrix)
\param E This the number of coded bits allocated for channel
\param w This is a pointer to the soft w-sequence (second interleaver output) with soft-combined outputs from successive HARQ rounds 
\param dummy_w This is the first row of the interleaver matrix for identifying/discarding the "LTE-NULL" positions
\param soft_input This is a pointer to the soft channel output 
\returns \f$E\f$, the number of coded bits per segment 
*/
void lte_rate_matching_cc_rx(uint32_t RCC,
			     uint16_t E, 
			     int8_t *w,
			     uint8_t *dummy_w,
			     int8_t *soft_input);

/** \fn void ccodedot11_encode(uint32_t numbytes,uint8_t *inPtr,uint8_t *outPtr,uint8_t puncturing)
\brief This function implements a rate 1/2 constraint length 7 convolutional code.
@param numbytes Number of bytes to encode
@param inPtr Pointer to input buffer
@param outPtr Pointer to output buffer
@param puncturing Puncturing pattern (Not used at present, to be removed)
*/
void ccodedot11_encode (uint32_t numbytes, 
			uint8_t *inPtr, 
			uint8_t *outPtr, 
			uint8_t puncturing);

/*!\fn void ccodedot11_init(void)
\brief This function initializes the generator polynomials for an 802.11 convolutional code.*/
void ccodedot11_init(void);		   

/*!\fn void ccodedot11_init_inv(void)
\brief This function initializes the trellis structure for decoding an 802.11 convolutional code.*/
void ccodedot11_init_inv(void);		   

/*\fn void threegpplte_turbo_encoder(uint8_t *input,uint16_t input_length_bytes,uint8_t *output,uint8_t F,uint16_t interleaver_f1,uint16_t interleaver_f2)
\brief This function implements a rate 1/3 8-state parralel concatenated turbo code (3GPP-LTE).
@param input Pointer to input buffer
@param input_length_bytes Number of bytes to encode
@param output Pointer to output buffer
@param F Number of filler bits at input
@param interleaver_f1 F1 generator
@param interleaver_f2 F2 generator
*/
void threegpplte_turbo_encoder(uint8_t *input,
			       uint16_t input_length_bytes,
			       uint8_t *output,
			       uint8_t F,
			       uint16_t interleaver_f1,
			       uint16_t interleaver_f2);


/** \fn void ccodelte_encode(uint32_t numbits,uint8_t add_crc, uint8_t *inPtr,uint8_t *outPtr,uint16_t rnti)
\brief This function implements the LTE convolutional code of rate 1/3
  with a constraint length of 7 bits. The inputs are bit packed in octets 
(from MSB to LSB). Trellis tail-biting is included here.
@param numbits Number of bits to encode
@param add_crc crc to be appended (8 bits) if add_crc = 1
@param inPtr Pointer to input buffer
@param outPtr Pointer to output buffer
@param rnti RNTI for CRC scrambling
*/
void
ccodelte_encode (uint32_t numbits, 
		 uint8_t add_crc,
		 uint8_t *inPtr, 
		 uint8_t *outPtr,
		 uint16_t rnti);

/*!\fn void ccodelte_init(void)
\brief This function initializes the generator polynomials for an LTE convolutional code.*/
void ccodelte_init(void);

/*!\fn void ccodelte_init_inv(void)
\brief This function initializes the trellis structure for decoding an LTE convolutional code.*/
void ccodelte_init_inv(void);

/*!\fn void ccodelte_init(void)
\brief This function initializes the generator polynomials for an DAB convolutional code (first 3 bits).*/
void ccodedab_init(void);

/*!\fn void ccodelte_init_inv(void)
\brief This function initializes the trellis structure for decoding an DAB convolutional code (first 3 bits).*/
void ccodedab_init_inv(void);

/*!\fn void crcTableInit(void)
\brief This function initializes the different crc tables.*/
void crcTableInit (void);

/*!\fn void init_td8(void)
\brief This function initializes the tables for 8-bit LLR Turbo decoder.*/
void init_td8 (void);


/*!\fn void init_td16(void)
\brief This function initializes the tables for 16-bit LLR Turbo decoder.*/
void init_td16 (void);

/*!\fn uint32_t crc24a(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 24-bit crc ('a' variant for overall transport block) 
based on 3GPP UMTS/LTE specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits
*/
uint32_t crc24a (uint8_t *inPtr, int32_t bitlen);

/*!\fn uint32_t crc24b(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 24-bit crc ('b' variant for transport-block segments) 
based on 3GPP UMTS/LTE specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits
*/
uint32_t crc24b (uint8_t *inPtr, int32_t bitlen);

/*!\fn uint32_t crc16(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 16-bit crc based on 3GPP UMTS specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits*/
uint32_t crc16 (uint8_t *inPtr, int32_t bitlen);

/*!\fn uint32_t crc12(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 12-bit crc based on 3GPP UMTS specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits*/
uint32_t crc12 (uint8_t *inPtr, int32_t bitlen);

/*!\fn uint32_t crc8(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 8-bit crc based on 3GPP UMTS specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits*/
uint32_t crc8  (uint8_t *inPtr, int32_t bitlen);

/*!\fn void phy_viterbi_dot11_sse2(int8_t *y, uint8_t *decoded_bytes, uint16_t n,int offset,int traceback)
\brief This routine performs a SIMD optmized Viterbi decoder for the 802.11 64-state convolutional code. It can be
run in segments with final trace back after last segment.
@param y Pointer to soft input (coded on 8-bits but should be limited to 4-bit precision to avoid overflow)
@param decoded_bytes Pointer to decoded output
@param n Length of input/trellis depth in bits for this run
@param offset offset in receive buffer for segment on which to operate
@param traceback flag to indicate that traceback should be performed*/
void phy_viterbi_dot11_sse2(int8_t *y,uint8_t *decoded_bytes,uint16_t n);

413
/*!\fn void phy_viterbi_lte_sse2(int8_t *y, uint8_t *decoded_bytes, uint16_t n)
414
415
416
417
\brief This routine performs a SIMD optmized Viterbi decoder for the LTE 64-state tail-biting convolutional code.
@param y Pointer to soft input (coded on 8-bits but should be limited to 4-bit precision to avoid overflow)
@param decoded_bytes Pointer to decoded output
@param n Length of input/trellis depth in bits*/
418
//void phy_viterbi_lte_sse2(int8_t *y,uint8_t *decoded_bytes,uint16_t n);
gauthier's avatar
gauthier committed
419
void phy_viterbi_lte_sse2(int8_t *y,uint8_t *decoded_bytes,uint16_t n);
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

/*!\fn void phy_generate_viterbi_tables(void)
\brief This routine initializes metric tables for the optimized Viterbi decoder.
*/
void phy_generate_viterbi_tables( void );

/*!\fn void phy_generate_viterbi_tables_lte(void)
\brief This routine initializes metric tables for the optimized LTE Viterbi decoder.
*/
void phy_generate_viterbi_tables_lte( void );


/*!\fn int32_t rate_matching(uint32_t N_coded, 
		         uint32_t N_input,
		         uint8_t *inPtr, 
		         uint8_t N_bps,
		         uint32_t off)
\brief This routine performs random puncturing of a coded sequence.
@param N_coded Number of coding bits to be output
@param N_input Number of input bits
@param *inPtr Pointer to coded input
@param N_bps Number of modulation bits per symbol (1,2,4)
@param off Offset for seed

*/
int32_t rate_matching(uint32_t N_coded, 
		   uint32_t N_input,
		   uint8_t *inPtr, 
		   uint8_t N_bps,
		   uint32_t off);

int32_t rate_matching_lte(uint32_t N_coded, 
		      uint32_t N_input, 
		      uint8_t *inPtr,
		      uint32_t off);


/*!
\brief This routine performs max-logmap detection for the 3GPP turbo code (with termination).  It is optimized for SIMD processing and 16-bit
LLR arithmetic, and requires SSE2,SSSE3 and SSE4.1 (gcc >=4.3 and appropriate CPU)
@param y LLR input (16-bit precision)
@param decoded_bytes Pointer to decoded output
@param n number of coded bits (including tail bits)
@param max_iterations The maximum number of iterations to perform
@param interleaver_f1 F1 generator
@param interleaver_f2 F2 generator
@param crc_type Length of 3GPPLTE crc (CRC24a,CRC24b,CRC16,CRC8)
@param F Number of filler bits at start of packet 
@returns number of iterations used (this is 1+max if incorrect crc or if crc_len=0)
*/
uint8_t phy_threegpplte_turbo_decoder16(int16_t *y,
					uint8_t *decoded_bytes,
					uint16_t n,			       
					uint16_t interleaver_f1,
					uint16_t interleaver_f2,
					uint8_t max_iterations,
					uint8_t crc_type,
					uint8_t F,
					time_stats_t *init_stats,
					time_stats_t *alpha_stats,
					time_stats_t *beta_stats,
					time_stats_t *gamma_stats,
					time_stats_t *ext_stats,
					time_stats_t *intl1_stats,
					time_stats_t *intl2_stats);

/*!
\brief This routine performs max-logmap detection for the 3GPP turbo code (with termination).  It is optimized for SIMD processing and 8-bit
LLR arithmetic, and requires SSE2,SSSE3 and SSE4.1 (gcc >=4.3 and appropriate CPU)
@param y LLR input (16-bit precision)
@param decoded_bytes Pointer to decoded output
@param n number of coded bits (including tail bits)
@param max_iterations The maximum number of iterations to perform
@param interleaver_f1 F1 generator
@param interleaver_f2 F2 generator
@param crc_type Length of 3GPPLTE crc (CRC24a,CRC24b,CRC16,CRC8)
@param F Number of filler bits at start of packet 
@returns number of iterations used (this is 1+max if incorrect crc or if crc_len=0)
*/
uint8_t phy_threegpplte_turbo_decoder8(int16_t *y,
				       uint8_t *decoded_bytes,
				       uint16_t n,			       
				       uint16_t interleaver_f1,
				       uint16_t interleaver_f2,
				       uint8_t max_iterations,
				       uint8_t crc_type,
				       uint8_t F,
				       time_stats_t *init_stats,
				       time_stats_t *alpha_stats,
				       time_stats_t *beta_stats,
				       time_stats_t *gamma_stats,
				       time_stats_t *ext_stats,
				       time_stats_t *intl1_stats,
				       time_stats_t *intl2_stats);

uint8_t phy_threegpplte_turbo_decoder_scalar(int16_t *y,
					uint8_t *decoded_bytes,
					uint16_t n,
					uint16_t interleaver_f1,
					uint16_t interleaver_f2,
					uint8_t max_iterations,
					uint8_t crc_type,
					uint8_t F,
					uint8_t inst);



/** @} */

uint32_t crcbit (uint8_t * , 
	    int32_t, 
	    uint32_t);

int16_t reverseBits(int32_t ,int32_t);
void phy_viterbi_dot11(int8_t *,uint8_t *,uint16_t);

#endif