lte_ue_measurements.c 31.2 KB
Newer Older
ghaddab's avatar
ghaddab committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*******************************************************************************
    OpenAirInterface 
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is 
   included in this distribution in the file called "COPYING". If not, 
   see <http://www.gnu.org/licenses/>.

  Contact Information
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
  OpenAirInterface Dev  : openair4g-devel@eurecom.fr
  
ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
ghaddab's avatar
ghaddab committed
27 28

 *******************************************************************************/
29 30 31 32 33 34
// this function fills the PHY_vars->PHY_measurement structure

#include "PHY/defs.h"
#include "PHY/extern.h"
#include "SCHED/defs.h"
#include "SCHED/extern.h"
35
#include "log.h"
36
#include "PHY/sse_intrin.h"
37 38 39 40 41

//#define k1 1000
#define k1 ((long long int) 1000)
#define k2 ((long long int) (1024-k1))

knopp's avatar
 
knopp committed
42
//#define DEBUG_MEAS
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

#ifdef USER_MODE
void print_shorts(char *s,__m128i *x) {

  short *tempb = (short *)x;

  printf("%s  : %d,%d,%d,%d,%d,%d,%d,%d\n",s,
         tempb[0],tempb[1],tempb[2],tempb[3],tempb[4],tempb[5],tempb[6],tempb[7]
         );

}
void print_ints(char *s,__m128i *x) {

  int *tempb = (int *)x;

  printf("%s  : %d,%d,%d,%d\n",s,
         tempb[0],tempb[1],tempb[2],tempb[3]
         );

}
#endif

__m128i pmi128_re __attribute__ ((aligned(16)));
__m128i pmi128_im __attribute__ ((aligned(16)));
__m128i mmtmpPMI0 __attribute__ ((aligned(16)));
__m128i mmtmpPMI1 __attribute__ ((aligned(16)));
__m128i mmtmpPMI2 __attribute__ ((aligned(16)));
__m128i mmtmpPMI3 __attribute__ ((aligned(16)));

knopp's avatar
 
knopp committed
72
int16_t get_PL(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index) {
73

knopp's avatar
 
knopp committed
74
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
75 76 77 78 79 80 81
  int RSoffset;
    
  
  if (phy_vars_ue->lte_frame_parms.mode1_flag == 1)
    RSoffset = 6;
  else
    RSoffset = 3;
knopp's avatar
 
knopp committed
82
  
83

knopp's avatar
 
knopp committed
84
  LOG_D(PHY,"get_PL : Frame %d : rssi %f dBm, eNB power %d dBm/RE\n", phy_vars_ue->frame_rx,
knopp's avatar
 
knopp committed
85 86 87 88 89 90 91
	(1.0*dB_fixed_times10(phy_vars_ue->PHY_measurements.rssi/RSoffset)-(10.0*phy_vars_ue->rx_total_gain_dB))/10.0,
	phy_vars_ue->lte_frame_parms.pdsch_config_common.referenceSignalPower);
  	
  return((int16_t)(((10*phy_vars_ue->rx_total_gain_dB) - 
		    dB_fixed_times10(phy_vars_ue->PHY_measurements.rssi)+
		    dB_fixed_times10(RSoffset*12*PHY_vars_UE_g[Mod_id][CC_id]->lte_frame_parms.N_RB_DL) + 
		    (phy_vars_ue->lte_frame_parms.pdsch_config_common.referenceSignalPower*10))/10));
92 93
}

94

knopp's avatar
 
knopp committed
95
uint8_t get_n_adj_cells (uint8_t Mod_id,uint8_t CC_id){
96

knopp's avatar
 
knopp committed
97
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
98 99 100 101 102 103
  if (phy_vars_ue)  
    return phy_vars_ue->PHY_measurements.n_adj_cells;
  else 
    return 0;
}

104
uint32_t get_rx_total_gain_dB (uint8_t Mod_id,uint8_t CC_id){
105

knopp's avatar
 
knopp committed
106
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
107 108
  if (phy_vars_ue)  
    return phy_vars_ue->rx_total_gain_dB;
109
  return 0xFFFFFFFF;
110
}
111
uint32_t get_RSSI (uint8_t Mod_id,uint8_t CC_id){
112

knopp's avatar
 
knopp committed
113
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
114 115
  if (phy_vars_ue)  
    return phy_vars_ue->PHY_measurements.rssi;
116
  return 0xFFFFFFFF;
117
}
118
uint32_t get_RSRP(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index) {
119
  
knopp's avatar
 
knopp committed
120
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
121 122
  if (phy_vars_ue)
    return phy_vars_ue->PHY_measurements.rsrp[eNB_index];
123
  return 0xFFFFFFFF;
124 125
}

126
uint32_t get_RSRQ(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index) {
127

knopp's avatar
 
knopp committed
128
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
129 130
  if (phy_vars_ue)
    return phy_vars_ue->PHY_measurements.rsrq[eNB_index];
131
  return 0xFFFFFFFF;
132 133
}

knopp's avatar
 
knopp committed
134
int8_t set_RSRP_filtered(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index,float rsrp) {
135
  
knopp's avatar
 
knopp committed
136
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
137 138 139 140 141 142 143 144
  if (phy_vars_ue){
    phy_vars_ue->PHY_measurements.rsrp_filtered[eNB_index]=rsrp;
    return 0;
  }
  LOG_W(PHY,"[UE%d] could not set the rsrp\n",Mod_id);
  return -1;
}

knopp's avatar
 
knopp committed
145
int8_t set_RSRQ_filtered(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index,float rsrq) {
146

knopp's avatar
 
knopp committed
147
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
148 149 150 151 152 153 154 155
  if (phy_vars_ue){
    phy_vars_ue->PHY_measurements.rsrq_filtered[eNB_index]=rsrq;
    return 0;
  }
  LOG_W(PHY,"[UE%d] could not set the rsrq\n",Mod_id);
  return -1;
  
}
156 157
 
void ue_rrc_measurements(PHY_VARS_UE *phy_vars_ue,
gauthier's avatar
gauthier committed
158 159
			 uint8_t slot,
			 uint8_t abstraction_flag) {
160

161
  int aarx,rb;
162
  int16_t *rxF,*rxF_pss,*rxF_sss;
163

gauthier's avatar
gauthier committed
164 165 166
  uint16_t Nid_cell = phy_vars_ue->lte_frame_parms.Nid_cell;
  uint8_t eNB_offset,nu,l,nushift,k;
  uint16_t off;
167 168 169 170


  for (eNB_offset = 0;eNB_offset<1+phy_vars_ue->PHY_measurements.n_adj_cells;eNB_offset++) {

171
    if (eNB_offset==0) {
172
      phy_vars_ue->PHY_measurements.rssi = 0;
173 174
      phy_vars_ue->PHY_measurements.n0_power_tot = 0;

knopp's avatar
 
knopp committed
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
      if (abstraction_flag == 0) {
	if ((phy_vars_ue->lte_frame_parms.frame_type == FDD) && 
	    ((slot == 0) || (slot == 10))) {  // FDD PSS/SSS, compute noise in DTX REs
	  if (phy_vars_ue->lte_frame_parms.Ncp==NORMAL) {
	    for (aarx=0;aarx<phy_vars_ue->lte_frame_parms.nb_antennas_rx;aarx++) {
	      
	      rxF_sss = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(5*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)];
	      rxF_pss = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(6*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)];
	      
	      
	      //-ve spectrum from SSS
	      phy_vars_ue->PHY_measurements.n0_power[aarx] = ((rxF_pss[-72]*rxF_pss[-72])+(rxF_pss[-71]*rxF_pss[-71]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += ((rxF_pss[-70]*rxF_pss[-70])+(rxF_pss[-69]*rxF_pss[-69]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += ((rxF_pss[-68]*rxF_pss[-68])+(rxF_pss[-67]*rxF_pss[-67]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += ((rxF_pss[-66]*rxF_pss[-66])+(rxF_pss[-65]*rxF_pss[-65]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += ((rxF_pss[-64]*rxF_pss[-64])+(rxF_pss[-63]*rxF_pss[-63]));
	      //+ve spectrum from SSS
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += ((rxF_sss[2+72]*rxF_sss[2+72])+(rxF_sss[2+71]*rxF_sss[2+71]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += ((rxF_sss[2+70]*rxF_sss[2+70])+(rxF_sss[2+69]*rxF_sss[2+69]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += ((rxF_sss[2+68]*rxF_sss[2+68])+(rxF_sss[2+67]*rxF_sss[2+67]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += ((rxF_sss[2+66]*rxF_sss[2+66])+(rxF_sss[2+65]*rxF_sss[2+65]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += ((rxF_sss[2+64]*rxF_sss[2+64])+(rxF_sss[2+63]*rxF_sss[2+63]));
	      //+ve spectrum from PSS
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += ((rxF_pss[2+72]*rxF_pss[2+72])+(rxF_pss[2+71]*rxF_pss[2+71]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += ((rxF_pss[2+70]*rxF_pss[2+70])+(rxF_pss[2+69]*rxF_pss[2+69]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += ((rxF_pss[2+68]*rxF_pss[2+68])+(rxF_pss[2+67]*rxF_pss[2+67]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += ((rxF_pss[2+66]*rxF_pss[2+66])+(rxF_pss[2+65]*rxF_pss[2+65]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += ((rxF_pss[2+64]*rxF_pss[2+64])+(rxF_pss[2+63]*rxF_pss[2+63]));	  
	      //-ve spectrum from PSS
	      rxF_pss = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(7*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)];
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += ((rxF_pss[-72]*rxF_pss[-72])+(rxF_pss[-71]*rxF_pss[-71]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += ((rxF_pss[-70]*rxF_pss[-70])+(rxF_pss[-69]*rxF_pss[-69]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += ((rxF_pss[-68]*rxF_pss[-68])+(rxF_pss[-67]*rxF_pss[-67]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += ((rxF_pss[-66]*rxF_pss[-66])+(rxF_pss[-65]*rxF_pss[-65]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += ((rxF_pss[-64]*rxF_pss[-64])+(rxF_pss[-63]*rxF_pss[-63]));
	      phy_vars_ue->PHY_measurements.n0_power_dB[aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power[aarx]/10);
	      phy_vars_ue->PHY_measurements.n0_power_tot +=  phy_vars_ue->PHY_measurements.n0_power[aarx];
	    }
	    phy_vars_ue->PHY_measurements.n0_power_tot_dB = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power_tot/20);
	    phy_vars_ue->PHY_measurements.n0_power_tot_dBm = phy_vars_ue->PHY_measurements.n0_power_tot_dB - phy_vars_ue->rx_total_gain_dB;
	    
	  }
	} 
218 219
      }
    }
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

#ifdef DEBUG_MEAS
    LOG_D(PHY,"ue_rrc_measurements: eNB_offset %d => rssi %d\n",eNB_offset,phy_vars_ue->PHY_measurements.rssi);
#endif
    // recompute nushift with eNB_offset corresponding to adjacent eNB on which to perform channel estimation
    //    printf("[PHY][UE %d] Frame %d slot %d Doing ue_rrc_measurements rsrp/rssi (Nid_cell %d, Nid2 %d, nushift %d, eNB_offset %d)\n",phy_vars_ue->Mod_id,phy_vars_ue->frame,slot,Nid_cell,Nid2,nushift,eNB_offset);
    if (eNB_offset > 0)
      Nid_cell = phy_vars_ue->PHY_measurements.adj_cell_id[eNB_offset-1];


    nushift =  Nid_cell%6;



    phy_vars_ue->PHY_measurements.rsrp[eNB_offset] = 0;


    if (abstraction_flag == 0) {
      
      // compute RSRP using symbols 0 and 4-frame_parms->Ncp

      for (l=0,nu=0;l<=(4-phy_vars_ue->lte_frame_parms.Ncp);l+=(4-phy_vars_ue->lte_frame_parms.Ncp),nu=3) {
	k = (nu + nushift)%6;
#ifdef DEBUG_MEAS
knopp's avatar
 
knopp committed
244
	LOG_D(PHY,"[UE %d] Frame %d slot %d Doing ue_rrc_measurements rsrp/rssi (Nid_cell %d, nushift %d, eNB_offset %d, k %d)\n",phy_vars_ue->Mod_id,phy_vars_ue->frame_rx,slot,Nid_cell,nushift,eNB_offset,k);
245 246
#endif
	for (aarx=0;aarx<phy_vars_ue->lte_frame_parms.nb_antennas_rx;aarx++) {
gauthier's avatar
gauthier committed
247
	  rxF = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(l*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)];
248 249
	  off  = (phy_vars_ue->lte_frame_parms.first_carrier_offset+k)<<1;

knopp's avatar
 
knopp committed
250
	  if (l==(4-phy_vars_ue->lte_frame_parms.Ncp)) {
251 252 253 254 255
	    for (rb=0;rb<phy_vars_ue->lte_frame_parms.N_RB_DL;rb++) {
		
		//	  printf("rb %d, off %d, off2 %d\n",rb,off,off2);
		
		phy_vars_ue->PHY_measurements.rsrp[eNB_offset] += ((rxF[off]*rxF[off])+(rxF[off+1]*rxF[off+1]));
256 257 258 259
		/*		if ((phy_vars_ue->frame_rx&0x3ff) == 0)
		  printf("rb %d, off %d : %d\n",rb,off,((rxF[off]*rxF[off])+(rxF[off+1]*rxF[off+1])));
		
		*/
260 261 262 263
		off+=12;
		if (off>=(phy_vars_ue->lte_frame_parms.ofdm_symbol_size<<1))
		  off = (1+k)<<1;
		phy_vars_ue->PHY_measurements.rsrp[eNB_offset] += ((rxF[off]*rxF[off])+(rxF[off+1]*rxF[off+1]));
264 265 266 267
		/*
		  if ((phy_vars_ue->frame_rx&0x3ff) == 0)
		  printf("rb %d, off %d : %d\n",rb,off,((rxF[off]*rxF[off])+(rxF[off+1]*rxF[off+1])));
		*/
268 269 270
		off+=12;
		if (off>=(phy_vars_ue->lte_frame_parms.ofdm_symbol_size<<1))
		  off = (1+k)<<1;
271

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	      }
	  
	      /*
	      if ((eNB_offset==0)&&(l==0)) {
		for (i=0;i<6;i++,off2+=4)
		  phy_vars_ue->PHY_measurements.rssi += ((rxF[off2]*rxF[off2])+(rxF[off2+1]*rxF[off2+1]));
		if (off2==(phy_vars_ue->lte_frame_parms.ofdm_symbol_size<<2))
		  off2=4;
		for (i=0;i<6;i++,off2+=4)
		  phy_vars_ue->PHY_measurements.rssi += ((rxF[off2]*rxF[off2])+(rxF[off2+1]*rxF[off2+1]));
	      }
	      */
	      //	  printf("slot %d, rb %d => rsrp %d, rssi %d\n",slot,rb,phy_vars_ue->PHY_measurements.rsrp[eNB_offset],phy_vars_ue->PHY_measurements.rssi);
	    }
	}
      }

knopp's avatar
 
knopp committed
289
//      LOG_D(PHY,"eNB: %d, RSRP_tmp: %d \n",eNB_offset,phy_vars_ue->PHY_measurements.rsrp[eNB_offset]);
290
      // 2 RE per PRB
291 292
      //      phy_vars_ue->PHY_measurements.rsrp[eNB_offset]/=(24*phy_vars_ue->lte_frame_parms.N_RB_DL);
      phy_vars_ue->PHY_measurements.rsrp[eNB_offset]/=(2*phy_vars_ue->lte_frame_parms.N_RB_DL);
knopp's avatar
 
knopp committed
293
     
294

knopp's avatar
 
knopp committed
295
 
296 297 298
      if (eNB_offset == 0) {
	//	phy_vars_ue->PHY_measurements.rssi/=(24*phy_vars_ue->lte_frame_parms.N_RB_DL);
	//	phy_vars_ue->PHY_measurements.rssi*=rx_power_correction;
299 300
	//	phy_vars_ue->PHY_measurements.rssi=phy_vars_ue->PHY_measurements.rsrp[0]*24/2;
	phy_vars_ue->PHY_measurements.rssi=phy_vars_ue->PHY_measurements.rsrp[0]*(12*phy_vars_ue->lte_frame_parms.N_RB_DL);
301 302 303 304 305 306 307 308 309 310
      }
      if (phy_vars_ue->PHY_measurements.rssi>0)
	phy_vars_ue->PHY_measurements.rsrq[eNB_offset] = 100*phy_vars_ue->PHY_measurements.rsrp[eNB_offset]*phy_vars_ue->lte_frame_parms.N_RB_DL/phy_vars_ue->PHY_measurements.rssi;
      else
	phy_vars_ue->PHY_measurements.rsrq[eNB_offset] = -12000;
      
      //((200*phy_vars_ue->PHY_measurements.rsrq[eNB_offset]) + ((1024-200)*100*phy_vars_ue->PHY_measurements.rsrp[eNB_offset]*phy_vars_ue->lte_frame_parms.N_RB_DL/phy_vars_ue->PHY_measurements.rssi))>>10;
    }
    else {   // Do abstraction of RSRP and RSRQ
      phy_vars_ue->PHY_measurements.rssi = phy_vars_ue->PHY_measurements.rx_power_avg[0];
311 312 313
      // dummay value for the moment
      phy_vars_ue->PHY_measurements.rsrp[eNB_offset] = -93 ;     
      phy_vars_ue->PHY_measurements.rsrq[eNB_offset] = 3;
314 315

    }
knopp's avatar
 
knopp committed
316
    if (((phy_vars_ue->frame_rx %10) == 0) && (slot == 0)) {
knopp's avatar
 
knopp committed
317
//#ifdef DEBUG_MEAS
318
    if (eNB_offset == 0)
knopp's avatar
 
knopp committed
319
	LOG_D(PHY,"[UE %d] Frame %d, slot %d RRC Measurements => rssi %3.1f dBm (digital: %3.1f dB, gain %d)\n",phy_vars_ue->Mod_id,
knopp's avatar
 
knopp committed
320
	      phy_vars_ue->frame_rx,slot,10*log10(phy_vars_ue->PHY_measurements.rssi)-phy_vars_ue->rx_total_gain_dB,
knopp's avatar
 
knopp committed
321 322
	      10*log10(phy_vars_ue->PHY_measurements.rssi),
	      phy_vars_ue->rx_total_gain_dB);
323 324
	LOG_D(PHY,"[UE %d] Frame %d, slot %d RRC Measurements (idx %d, Cell id %d) => rsrp: %3.1f (%3.1f) dBm, rsrq: %3.1f dB\n",
	      phy_vars_ue->Mod_id,
knopp's avatar
 
knopp committed
325
	      phy_vars_ue->frame_rx,slot,eNB_offset,
326 327 328 329
	      (eNB_offset>0) ? phy_vars_ue->PHY_measurements.adj_cell_id[eNB_offset-1] : phy_vars_ue->lte_frame_parms.Nid_cell,
	      (dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_offset])/10.0)-phy_vars_ue->rx_total_gain_dB-dB_fixed(phy_vars_ue->lte_frame_parms.N_RB_DL*12),
	      (10*log10(phy_vars_ue->PHY_measurements.rx_power_avg[0])/10.0)-phy_vars_ue->rx_total_gain_dB-dB_fixed(phy_vars_ue->lte_frame_parms.N_RB_DL*12),
	      (10*log10(phy_vars_ue->PHY_measurements.rsrq[eNB_offset]))-20);
330
	//LOG_D(PHY,"RSRP_total_dB: %3.2f \n",(dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_offset])/10.0)-phy_vars_ue->rx_total_gain_dB-dB_fixed(phy_vars_ue->lte_frame_parms.N_RB_DL*12));
331

332 333 334
    //LOG_D(PHY,"RSRP_dB: %3.2f \n",(dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_offset])/10.0));
    //LOG_D(PHY,"gain_loss_dB: %d \n",phy_vars_ue->rx_total_gain_dB);
    //LOG_D(PHY,"gain_fixed_dB: %d \n",dB_fixed(phy_vars_ue->lte_frame_parms.N_RB_DL*12));
knopp's avatar
 
knopp committed
335
//#endif
336
    }
337 338 339 340 341 342 343 344 345
  }
}

void lte_ue_measurements(PHY_VARS_UE *phy_vars_ue,
			   unsigned int subframe_offset,
			   unsigned char N0_symbol,
			   unsigned char abstraction_flag){


knopp's avatar
 
knopp committed
346
    int aarx,aatx,eNB_id=0,gain_offset=0;
347 348 349 350 351 352
    //int rx_power[NUMBER_OF_CONNECTED_eNB_MAX];
    int i;
    unsigned int limit,subband;
    __m128i *dl_ch0_128,*dl_ch1_128;
    int *dl_ch0,*dl_ch1;
    LTE_DL_FRAME_PARMS *frame_parms = &phy_vars_ue->lte_frame_parms;
knopp's avatar
 
knopp committed
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
    int nb_subbands,subband_size,last_subband_size;
    int N_RB_DL = frame_parms->N_RB_DL;

    switch (N_RB_DL) {
    case 6:
      nb_subbands = 6;
      subband_size = 12;
      last_subband_size = 0;
      break;
    default:
    case 25:
      nb_subbands = 7;
      subband_size = 4*12;
      last_subband_size = 12;
      break;
    case 50:
      nb_subbands = 9;
      subband_size = 6*12;
      last_subband_size = 2*12;
      break;
    case 100:
      nb_subbands = 13;
      subband_size = 8*12;
      last_subband_size = 4*12;
      break;
378
    }
379
    /*  // DONE NOW in ue_rrc_measurements
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
    if (abstraction_flag!=0) {
      phy_vars_ue->PHY_measurements.n0_power_tot = 0;
      for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
	phy_vars_ue->PHY_measurements.n0_power[aarx] = pow(10.0,phy_vars_ue->N0/10.0)*pow(10.0,((double)phy_vars_ue->rx_total_gain_dB)/10.0);
	phy_vars_ue->PHY_measurements.n0_power_dB[aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power[aarx]);
	phy_vars_ue->PHY_measurements.n0_power_tot +=  phy_vars_ue->PHY_measurements.n0_power[aarx];
      } 
      phy_vars_ue->PHY_measurements.n0_power_tot_dB = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power_tot);
      phy_vars_ue->PHY_measurements.n0_power_tot_dBm = phy_vars_ue->PHY_measurements.n0_power_tot_dB - phy_vars_ue->rx_total_gain_dB;
    }
    else if (N0_symbol != 0) {
      phy_vars_ue->PHY_measurements.n0_power_tot = 0;
      for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
#ifndef HW_PREFIX_REMOVAL
	phy_vars_ue->PHY_measurements.n0_power[aarx] = signal_energy(&phy_vars_ue->lte_ue_common_vars.rxdata[aarx][subframe_offset+frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples0],frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples);
#else
	phy_vars_ue->PHY_measurements.n0_power[aarx] = signal_energy(&phy_vars_ue->lte_ue_common_vars.rxdata[aarx][subframe_offset+frame_parms->ofdm_symbol_size],frame_parms->ofdm_symbol_size);
#endif
	phy_vars_ue->PHY_measurements.n0_power_dB[aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power[aarx]);
	phy_vars_ue->PHY_measurements.n0_power_tot +=  phy_vars_ue->PHY_measurements.n0_power[aarx];
      }

      phy_vars_ue->PHY_measurements.n0_power_tot_dB = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power_tot);
      phy_vars_ue->PHY_measurements.n0_power_tot_dBm = phy_vars_ue->PHY_measurements.n0_power_tot_dB - phy_vars_ue->rx_total_gain_dB + gain_offset;
      //    printf("PHY measurements UE %d: n0_power %d (%d)\n",phy_vars_ue->Mod_id,phy_vars_ue->PHY_measurements.n0_power_tot_dBm,phy_vars_ue->PHY_measurements.n0_power_tot_dB);
    }
    else {
      phy_vars_ue->PHY_measurements.n0_power_tot_dBm = phy_vars_ue->PHY_measurements.n0_power_tot_dB - phy_vars_ue->rx_total_gain_dB + gain_offset;
    }
409
    */
410 411 412 413 414 415
    // signal measurements  
    for (eNB_id=0;eNB_id<phy_vars_ue->n_connected_eNB;eNB_id++) {
      for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
	for (aatx=0; aatx<frame_parms->nb_antennas_tx_eNB; aatx++) {
	  phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx] = 
	    (signal_energy_nodc(&phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][(aatx<<1) + aarx][0],
knopp's avatar
 
knopp committed
416
				(N_RB_DL*12)));
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
	    //- phy_vars_ue->PHY_measurements.n0_power[aarx];
	
	  if (phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx]<0)
	    phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx] = 0; //phy_vars_ue->PHY_measurements.n0_power[aarx];
	
	  phy_vars_ue->PHY_measurements.rx_spatial_power_dB[eNB_id][aatx][aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx]);
	
	  if (aatx==0)
	    phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx] = phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx];
	  else
	    phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx] += phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx];
	} //aatx

	phy_vars_ue->PHY_measurements.rx_power_dB[eNB_id][aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx]);

	if (aarx==0)
	  phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id] = phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx];
	else
	  phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id] += phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx];
      } //aarx

      phy_vars_ue->PHY_measurements.rx_power_tot_dB[eNB_id] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id]);

    } //eNB_id

    // filter to remove jitter
    if (phy_vars_ue->init_averaging == 0) {
      for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++)
	phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id] = (int) 
	  (((k1*((long long int)(phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id]))) + 
	    (k2*((long long int)(phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id]))))>>10);
      phy_vars_ue->PHY_measurements.n0_power_avg = (int)
	(((k1*((long long int) (phy_vars_ue->PHY_measurements.n0_power_avg))) + 
	  (k2*((long long int) (phy_vars_ue->PHY_measurements.n0_power_tot))))>>10);
    }
    else {
      for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++)
	phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id] = phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id];
      phy_vars_ue->PHY_measurements.n0_power_avg = phy_vars_ue->PHY_measurements.n0_power_tot;
      phy_vars_ue->init_averaging = 0;
    }

    for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++) {
      phy_vars_ue->PHY_measurements.rx_power_avg_dB[eNB_id] = dB_fixed( phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id]);
      phy_vars_ue->PHY_measurements.wideband_cqi_tot[eNB_id] = dB_fixed2(phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id],phy_vars_ue->PHY_measurements.n0_power_tot);
      phy_vars_ue->PHY_measurements.wideband_cqi_avg[eNB_id] = dB_fixed2(phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id],phy_vars_ue->PHY_measurements.n0_power_avg);
463
      phy_vars_ue->PHY_measurements.rx_rssi_dBm[eNB_id] = phy_vars_ue->PHY_measurements.rx_power_avg_dB[eNB_id] - phy_vars_ue->rx_total_gain_dB;
knopp's avatar
 
knopp committed
464
#ifdef DEBUG_MEAS
465
      LOG_D(PHY,"[eNB %d] lte_ue_measurements: RSSI %d dBm, RSSI (digital) %d dB\n",
knopp's avatar
 
knopp committed
466 467 468
	     eNB_id,phy_vars_ue->PHY_measurements.rx_rssi_dBm[eNB_id],
	     phy_vars_ue->PHY_measurements.rx_power_avg_dB[eNB_id]);
#endif
469 470 471 472 473 474 475 476 477 478 479
    }
    phy_vars_ue->PHY_measurements.n0_power_avg_dB = dB_fixed( phy_vars_ue->PHY_measurements.n0_power_avg);

    for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++) {
      if (frame_parms->mode1_flag==0) {
	// cqi/pmi information
      
	for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
	  dl_ch0    = &phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][aarx][4];
	  dl_ch1    = &phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][2+aarx][4];
	
knopp's avatar
 
knopp committed
480
	  for (subband=0;subband<nb_subbands;subband++) {
481 482 483 484 485
	  
	    // cqi
	    if (aarx==0)
	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband]=0;
	  
knopp's avatar
 
knopp committed
486 487
	    if ((subband<(nb_subbands-1))||(N_RB_DL==6)) {
	      /*for (i=0;i<48;i++)
488 489 490
		msg("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]);
	      */
	      phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] = 
knopp's avatar
 
knopp committed
491
		(signal_energy_nodc(dl_ch0,subband_size) + signal_energy_nodc(dl_ch1,subband_size));
492 493 494 495 496 497 498 499 500 501 502
	      if ( phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] < 0)
		phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband]=0;
	      /*
	      else
		phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband]-=phy_vars_ue->PHY_measurements.n0_power[aarx];
	      */

	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
	      phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
											      phy_vars_ue->PHY_measurements.n0_power[aarx]);
	    }
knopp's avatar
 
knopp committed
503
	    else {  // this is for the last subband which is smaller in size
504 505
	      //	    for (i=0;i<12;i++)
	      //	      printf("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]); 
knopp's avatar
 
knopp committed
506 507
	      phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] = (signal_energy_nodc(dl_ch0,last_subband_size) + 
										  signal_energy_nodc(dl_ch1,last_subband_size)); // - phy_vars_ue->PHY_measurements.n0_power[aarx];
508 509 510 511
	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
	      phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
											      phy_vars_ue->PHY_measurements.n0_power[aarx]);			
	    }
knopp's avatar
 
knopp committed
512 513
	    dl_ch1+=subband_size;
	    dl_ch0+=subband_size;
514 515 516 517
	    //	  msg("subband_cqi[%d][%d][%d] => %d (%d dB)\n",eNB_id,aarx,subband,phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband]);
	  }
	
	}
knopp's avatar
 
knopp committed
518
	for (subband=0;subband<nb_subbands;subband++) {
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
	  phy_vars_ue->PHY_measurements.subband_cqi_tot_dB[eNB_id][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband],phy_vars_ue->PHY_measurements.n0_power_tot);
	  //	  msg("subband_cqi_tot[%d][%d] => %d dB (n0 %d)\n",eNB_id,subband,phy_vars_ue->PHY_measurements.subband_cqi_tot_dB[eNB_id][subband],phy_vars_ue->PHY_measurements.n0_power_tot);
	}	
      
	for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
        // skip the first 4 RE due to interpolation filter length of 5 (not possible to skip 5 due to 128i alignment, must be multiple of 128bit)
	  dl_ch0_128    = (__m128i *)&phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][aarx][4];
	  dl_ch1_128    = (__m128i *)&phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][2+aarx][4];
	  /*
	    #ifdef DEBUG_PHY	
	    if(eNB_id==0){
	    print_shorts("Ch0",dl_ch0_128);
	    print_shorts("Ch1",dl_ch1_128);
	    printf("eNB_ID = %d\n",eNB_id);
	    }
	    #endif
	  */
knopp's avatar
 
knopp committed
536
	  for (subband=0;subband<nb_subbands;subband++) {
537 538 539 540
	  
	  
	    // pmi
	  
541 542
            pmi128_re = _mm_setzero_si128();
            pmi128_im = _mm_setzero_si128();
543 544
	    // limit is the number of groups of 4 REs in a subband (12 = 4 RBs, 3 = 1 RB)
	    // for 5 MHz channelization, there are 7 subbands, 6 of size 4 RBs and 1 of size 1 RB
knopp's avatar
 
knopp committed
545 546 547 548 549
	    if ((N_RB_DL==6) || (subband<(nb_subbands-1)))
	      limit = subband_size>>2;
	    else
	      limit = last_subband_size>>2;

550 551 552 553 554 555 556 557 558
	    for (i=0;i<limit;i++) {
	    
	      // For each RE in subband perform ch0 * conj(ch1)
	      // multiply by conjugated channel
	      // if(eNB_id==0){
	      //print_shorts("ch0",dl_ch0_128);
	      //print_shorts("ch1",dl_ch1_128);
	      // }
	      // if(i==0){
559 560
              mmtmpPMI0 = _mm_setzero_si128();
              mmtmpPMI1 = _mm_setzero_si128();
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	      //	    }
	      // if(eNB_id==0)
	      // print_ints("Pre_re",&mmtmpPMI0);

	      mmtmpPMI0 = _mm_madd_epi16(dl_ch0_128[0],dl_ch1_128[0]);
	      //  if(eNB_id==0)
	      //  print_ints("re",&mmtmpPMI0);
	    
	      // mmtmpPMI0 contains real part of 4 consecutive outputs (32-bit)
	      // print_shorts("Ch1",dl_ch1_128);
	    
	      mmtmpPMI1 = _mm_shufflelo_epi16(dl_ch1_128[0],_MM_SHUFFLE(2,3,0,1));//_MM_SHUFFLE(2,3,0,1)
	      // print_shorts("mmtmpPMI1:",&mmtmpPMI1);
	      mmtmpPMI1 = _mm_shufflehi_epi16(mmtmpPMI1,_MM_SHUFFLE(2,3,0,1));
	      // print_shorts("mmtmpPMI1:",&mmtmpPMI1);

	      mmtmpPMI1 = _mm_sign_epi16(mmtmpPMI1,*(__m128i*)&conjugate[0]);
	      // print_shorts("mmtmpPMI1:",&mmtmpPMI1);
	      mmtmpPMI1 = _mm_madd_epi16(mmtmpPMI1,dl_ch0_128[0]);
	      //  if(eNB_id==0)
	      //  print_ints("im",&mmtmpPMI1);
	      // mmtmpPMI1 contains imag part of 4 consecutive outputs (32-bit)
	    
	      pmi128_re = _mm_add_epi32(pmi128_re,mmtmpPMI0);
	      pmi128_im = _mm_add_epi32(pmi128_im,mmtmpPMI1);
	      dl_ch0_128++;
	      dl_ch1_128++;
	    }
	    phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx] = (((int *)&pmi128_re)[0] + ((int *)&pmi128_re)[1] + ((int *)&pmi128_re)[2] + ((int *)&pmi128_re)[3])>>2;
	    //	  if(eNB_id==0)
	    // printf("in lte_ue_measurements.c: pmi_re %d\n",phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx]);
	    phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx] = (((int *)&pmi128_im)[0] + ((int *)&pmi128_im)[1] + ((int *)&pmi128_im)[2] + ((int *)&pmi128_im)[3])>>2;
	    //	  if(eNB_id==0)
	    // printf("in lte_ue_measurements.c: pmi_im %d\n",phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx]);
	    phy_vars_ue->PHY_measurements.wideband_pmi_re[eNB_id][aarx] += phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx];	  phy_vars_ue->PHY_measurements.wideband_pmi_im[eNB_id][aarx] += phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx];
	    //	    msg("subband_pmi[%d][%d][%d] => (%d,%d)\n",eNB_id,subband,aarx,phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx],phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx]);
	  
	  } // subband loop
	} // rx antenna loop  
      }  // if frame_parms->mode1_flag == 0
      else {
	// cqi information only for mode 1
	for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
	  dl_ch0    = &phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][aarx][4];
	
	  for (subband=0;subband<7;subband++) {
	  
	    // cqi
	    if (aarx==0)
	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband]=0;
	  
	    if (subband<6) {
	      //	    for (i=0;i<48;i++)
	      //	      printf("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]);
	      phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] = 
knopp's avatar
 
knopp committed
616
		(signal_energy_nodc(dl_ch0,48) ) - phy_vars_ue->PHY_measurements.n0_power[aarx];
617 618 619 620 621 622 623 624
	    
	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
	      phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
											      phy_vars_ue->PHY_measurements.n0_power[aarx]);
	    }
	    else {
	      //	    for (i=0;i<12;i++)
	      //	      printf("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]); 
knopp's avatar
 
knopp committed
625
	      phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] = (signal_energy_nodc(dl_ch0,12) ) - phy_vars_ue->PHY_measurements.n0_power[aarx];
626 627 628 629 630 631 632 633
	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
	      phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
											      phy_vars_ue->PHY_measurements.n0_power[aarx]);							
	    }
	    dl_ch1+=48;
	    //	  msg("subband_cqi[%d][%d][%d] => %d (%d dB)\n",eNB_id,aarx,subband,phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband]);
	  }
	}
knopp's avatar
 
knopp committed
634
	for (subband=0;subband<nb_subbands;subband++) {
635 636 637 638 639
	  phy_vars_ue->PHY_measurements.subband_cqi_tot_dB[eNB_id][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband],phy_vars_ue->PHY_measurements.n0_power_tot);
	}
      }

      phy_vars_ue->PHY_measurements.rank[eNB_id] = 0;
knopp's avatar
 
knopp committed
640
      for (i=0;i<nb_subbands;i++) {
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
	phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 0;
	if (frame_parms->nb_antennas_rx>1) {
	  if (phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][0][i] >= phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][1][i])
	    phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 0;
	  else
	    phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 1;
	}
	else
	  phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 0;
      }
      // if(eNB_id==0)
      // printf("in lte_ue_measurements: selected rx_antenna[eNB_id==0]:%u\n", phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i]);
    }  // eNB_id loop

    _mm_empty();
    _m_empty();

  }


gauthier's avatar
gauthier committed
661
  void lte_ue_measurements_emul(PHY_VARS_UE *phy_vars_ue,uint8_t last_slot,uint8_t eNB_id) {
662 663 664 665

    msg("[PHY] EMUL UE lte_ue_measurements_emul last slot %d, eNB_id %d\n",last_slot,eNB_id);
  }