lte_ue_measurements.c 34.1 KB
Newer Older
ghaddab's avatar
ghaddab committed
1
/*******************************************************************************
2
    OpenAirInterface
ghaddab's avatar
ghaddab committed
3 4 5 6 7 8 9 10 11 12 13 14 15 16
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
17 18
    along with OpenAirInterface.The full GNU General Public License is
   included in this distribution in the file called "COPYING". If not,
ghaddab's avatar
ghaddab committed
19 20 21 22 23
   see <http://www.gnu.org/licenses/>.

  Contact Information
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
24
  OpenAirInterface Dev  : openair4g-devel@lists.eurecom.fr
25

ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
ghaddab's avatar
ghaddab committed
27 28

 *******************************************************************************/
29 30 31 32 33 34
// this function fills the PHY_vars->PHY_measurement structure

#include "PHY/defs.h"
#include "PHY/extern.h"
#include "SCHED/defs.h"
#include "SCHED/extern.h"
35
#include "log.h"
36
#include "PHY/sse_intrin.h"
37 38 39 40 41

//#define k1 1000
#define k1 ((long long int) 1000)
#define k2 ((long long int) (1024-k1))

knopp's avatar
 
knopp committed
42
//#define DEBUG_MEAS
43 44

#ifdef USER_MODE
45
void print_shorts(char *s,short *x)
46
{
47 48 49


  printf("%s  : %d,%d,%d,%d,%d,%d,%d,%d\n",s,
50
         x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7]
51
        );
52 53

}
54
void print_ints(char *s,int *x)
55
{
56 57 58


  printf("%s  : %d,%d,%d,%d\n",s,
59
         x[0],x[1],x[2],x[3]
60
        );
61 62 63 64 65

}
#endif


66 67
int16_t get_PL(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index)
{
68

knopp's avatar
 
knopp committed
69
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
70
  /*
71
  int RSoffset;
72 73


74 75 76 77
  if (phy_vars_ue->lte_frame_parms.mode1_flag == 1)
    RSoffset = 6;
  else
    RSoffset = 3;
78
  */
79

80
  LOG_D(PHY,"get_PL : Frame %d : rsrp %f dBm/RE (%f), eNB power %d dBm/RE\n", phy_vars_ue->frame_rx,
81 82 83 84 85 86 87 88
        (1.0*dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_index])-(10.0*phy_vars_ue->rx_total_gain_dB))/10.0,
        10*log10((double)phy_vars_ue->PHY_measurements.rsrp[eNB_index]),
        phy_vars_ue->lte_frame_parms.pdsch_config_common.referenceSignalPower);

  return((int16_t)(((10*phy_vars_ue->rx_total_gain_dB) -
                    dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_index])+
                    //        dB_fixed_times10(RSoffset*12*PHY_vars_UE_g[Mod_id][CC_id]->lte_frame_parms.N_RB_DL) +
                    (phy_vars_ue->lte_frame_parms.pdsch_config_common.referenceSignalPower*10))/10));
89 90
}

91

92 93
uint8_t get_n_adj_cells (uint8_t Mod_id,uint8_t CC_id)
{
94

knopp's avatar
 
knopp committed
95
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
96 97

  if (phy_vars_ue)
98
    return phy_vars_ue->PHY_measurements.n_adj_cells;
99
  else
100 101 102
    return 0;
}

103 104
uint32_t get_rx_total_gain_dB (uint8_t Mod_id,uint8_t CC_id)
{
105

knopp's avatar
 
knopp committed
106
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
107 108

  if (phy_vars_ue)
109
    return phy_vars_ue->rx_total_gain_dB;
110

111
  return 0xFFFFFFFF;
112
}
113 114
uint32_t get_RSSI (uint8_t Mod_id,uint8_t CC_id)
{
115

knopp's avatar
 
knopp committed
116
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
117 118

  if (phy_vars_ue)
119
    return phy_vars_ue->PHY_measurements.rssi;
120

121
  return 0xFFFFFFFF;
122
}
123 124 125
uint32_t get_RSRP(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index)
{

knopp's avatar
 
knopp committed
126
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
127

128 129
  if (phy_vars_ue)
    return phy_vars_ue->PHY_measurements.rsrp[eNB_index];
130

131
  return 0xFFFFFFFF;
132 133
}

134 135
uint32_t get_RSRQ(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index)
{
136

knopp's avatar
 
knopp committed
137
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
138

139 140
  if (phy_vars_ue)
    return phy_vars_ue->PHY_measurements.rsrq[eNB_index];
141

142
  return 0xFFFFFFFF;
143 144
}

145 146 147
int8_t set_RSRP_filtered(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index,float rsrp)
{

knopp's avatar
 
knopp committed
148
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
149 150

  if (phy_vars_ue) {
151 152 153
    phy_vars_ue->PHY_measurements.rsrp_filtered[eNB_index]=rsrp;
    return 0;
  }
154

155 156 157 158
  LOG_W(PHY,"[UE%d] could not set the rsrp\n",Mod_id);
  return -1;
}

159 160
int8_t set_RSRQ_filtered(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index,float rsrq)
{
161

knopp's avatar
 
knopp committed
162
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
163 164

  if (phy_vars_ue) {
165
    phy_vars_ue->PHY_measurements.rsrq_filtered[eNB_index]=rsrq;
166
    return 0;
167
  }
168

169 170
  LOG_W(PHY,"[UE%d] could not set the rsrq\n",Mod_id);
  return -1;
171

172
}
173

174
void ue_rrc_measurements(PHY_VARS_UE *phy_vars_ue,
175 176 177
                         uint8_t slot,
                         uint8_t abstraction_flag)
{
178

179
  int aarx,rb;
180
  int16_t *rxF,*rxF_pss,*rxF_sss;
181

gauthier's avatar
gauthier committed
182 183 184
  uint16_t Nid_cell = phy_vars_ue->lte_frame_parms.Nid_cell;
  uint8_t eNB_offset,nu,l,nushift,k;
  uint16_t off;
185 186


187
  for (eNB_offset = 0; eNB_offset<1+phy_vars_ue->PHY_measurements.n_adj_cells; eNB_offset++) {
188

189
    if (eNB_offset==0) {
190
      phy_vars_ue->PHY_measurements.rssi = 0;
191 192
      phy_vars_ue->PHY_measurements.n0_power_tot = 0;

knopp's avatar
 
knopp committed
193
      if (abstraction_flag == 0) {
194 195 196 197 198
        if ((phy_vars_ue->lte_frame_parms.frame_type == FDD) &&
            ((slot == 0) || (slot == 10))) {  // FDD PSS/SSS, compute noise in DTX REs

          if (phy_vars_ue->lte_frame_parms.Ncp==NORMAL) {
            for (aarx=0; aarx<phy_vars_ue->lte_frame_parms.nb_antennas_rx; aarx++) {
199

knopp's avatar
 
knopp committed
200 201 202
	      rxF_sss = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(5*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)];
	      rxF_pss = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(6*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)];
	      
203 204

              //-ve spectrum from SSS
205 206 207 208 209
	      //	      printf("slot %d: SSS DTX: %d,%d, non-DTX %d,%d\n",slot,rxF_pss[-72],rxF_pss[-71],rxF_pss[-36],rxF_pss[-35]);

	      //              phy_vars_ue->PHY_measurements.n0_power[aarx] = (((int32_t)rxF_pss[-72]*rxF_pss[-72])+((int32_t)rxF_pss[-71]*rxF_pss[-71]));
	      //	      printf("sssn36 %d\n",phy_vars_ue->PHY_measurements.n0_power[aarx]);
              phy_vars_ue->PHY_measurements.n0_power[aarx] = (((int32_t)rxF_pss[-70]*rxF_pss[-70])+((int32_t)rxF_pss[-69]*rxF_pss[-69]));
210 211
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-68]*rxF_pss[-68])+((int32_t)rxF_pss[-67]*rxF_pss[-67]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-66]*rxF_pss[-66])+((int32_t)rxF_pss[-65]*rxF_pss[-65]));
212 213
	      //              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-64]*rxF_pss[-64])+((int32_t)rxF_pss[-63]*rxF_pss[-63]));
	      //	      printf("sssm32 %d\n",phy_vars_ue->PHY_measurements.n0_power[aarx]);
214
              //+ve spectrum from SSS
215
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_sss[2+70]*rxF_sss[2+70])+((int32_t)rxF_sss[2+69]*rxF_sss[2+69]));
216 217
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_sss[2+68]*rxF_sss[2+68])+((int32_t)rxF_sss[2+67]*rxF_sss[2+67]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_sss[2+66]*rxF_sss[2+66])+((int32_t)rxF_sss[2+65]*rxF_sss[2+65]));
218 219
	      //	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_sss[2+64]*rxF_sss[2+64])+((int32_t)rxF_sss[2+63]*rxF_sss[2+63]));
	      //	      printf("sssp32 %d\n",phy_vars_ue->PHY_measurements.n0_power[aarx]);
220 221 222 223
              //+ve spectrum from PSS
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[2+70]*rxF_pss[2+70])+((int32_t)rxF_pss[2+69]*rxF_pss[2+69]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[2+68]*rxF_pss[2+68])+((int32_t)rxF_pss[2+67]*rxF_pss[2+67]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[2+66]*rxF_pss[2+66])+((int32_t)rxF_pss[2+65]*rxF_pss[2+65]));
224 225
	      //              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[2+64]*rxF_pss[2+64])+((int32_t)rxF_pss[2+63]*rxF_pss[2+63]));
	      //	      printf("pss32 %d\n",phy_vars_ue->PHY_measurements.n0_power[aarx]);              //-ve spectrum from PSS
226
              rxF_pss = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(7*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)];
227 228
	      //              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-72]*rxF_pss[-72])+((int32_t)rxF_pss[-71]*rxF_pss[-71]));
	      //	      printf("pssm36 %d\n",phy_vars_ue->PHY_measurements.n0_power[aarx]);
229 230 231
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-70]*rxF_pss[-70])+((int32_t)rxF_pss[-69]*rxF_pss[-69]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-68]*rxF_pss[-68])+((int32_t)rxF_pss[-67]*rxF_pss[-67]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-66]*rxF_pss[-66])+((int32_t)rxF_pss[-65]*rxF_pss[-65]));
232 233
	      //              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-64]*rxF_pss[-64])+((int32_t)rxF_pss[-63]*rxF_pss[-63]));
	      //	      printf("pssm32 %d\n",phy_vars_ue->PHY_measurements.n0_power[aarx]);
knopp's avatar
knopp committed
234
              phy_vars_ue->PHY_measurements.n0_power_dB[aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power[aarx]/12);
235 236 237
              phy_vars_ue->PHY_measurements.n0_power_tot +=  phy_vars_ue->PHY_measurements.n0_power[aarx];
            }

knopp's avatar
knopp committed
238 239
	    phy_vars_ue->PHY_measurements.n0_power_tot_dB = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power_tot/(12*aarx));
	    phy_vars_ue->PHY_measurements.n0_power_tot_dBm = phy_vars_ue->PHY_measurements.n0_power_tot_dB - phy_vars_ue->rx_total_gain_dB - dB_fixed(phy_vars_ue->lte_frame_parms.ofdm_symbol_size);
240
	  }
241
        }
242 243 244 245 246 247 248 249 250 251
	else if ((phy_vars_ue->lte_frame_parms.frame_type == TDD) &&
		 (slot == 1)) {  // TDD SSS, compute noise in DTX REs

          if (phy_vars_ue->lte_frame_parms.Ncp==NORMAL) {
            for (aarx=0; aarx<phy_vars_ue->lte_frame_parms.nb_antennas_rx; aarx++) {

	      rxF_sss = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(6*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)];
	      // note this is a dummy pointer, the pss is not really there!
	      // in FDD the pss is in the symbol after the sss, but not in TDD
	      rxF_pss = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(7*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)];
knopp's avatar
 
knopp committed
252 253
	      
	      //-ve spectrum from SSS
254 255 256 257 258
	      //              phy_vars_ue->PHY_measurements.n0_power[aarx] = (((int32_t)rxF_pss[-72]*rxF_pss[-72])+((int32_t)rxF_pss[-71]*rxF_pss[-71]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] = (((int32_t)rxF_pss[-70]*rxF_pss[-70])+((int32_t)rxF_pss[-69]*rxF_pss[-69]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-68]*rxF_pss[-68])+((int32_t)rxF_pss[-67]*rxF_pss[-67]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-66]*rxF_pss[-66])+((int32_t)rxF_pss[-65]*rxF_pss[-65]));
	      //              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-64]*rxF_pss[-64])+((int32_t)rxF_pss[-63]*rxF_pss[-63]));
knopp's avatar
 
knopp committed
259
	      //+ve spectrum from SSS
260 261
	      //	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_sss[2+72]*rxF_sss[2+72])+((int32_t)rxF_sss[2+71]*rxF_sss[2+71]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] = (((int32_t)rxF_sss[2+70]*rxF_sss[2+70])+((int32_t)rxF_sss[2+69]*rxF_sss[2+69]));
262 263
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_sss[2+68]*rxF_sss[2+68])+((int32_t)rxF_sss[2+67]*rxF_sss[2+67]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_sss[2+66]*rxF_sss[2+66])+((int32_t)rxF_sss[2+65]*rxF_sss[2+65]));
264 265
	      //	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_sss[2+64]*rxF_sss[2+64])+((int32_t)rxF_sss[2+63]*rxF_sss[2+63]));
	      
knopp's avatar
knopp committed
266
	      phy_vars_ue->PHY_measurements.n0_power_dB[aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power[aarx]/(6));
267 268
	      phy_vars_ue->PHY_measurements.n0_power_tot +=  phy_vars_ue->PHY_measurements.n0_power[aarx];	  
	    }	      
knopp's avatar
knopp committed
269 270
	    phy_vars_ue->PHY_measurements.n0_power_tot_dB = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power_tot/(6*aarx));
	    phy_vars_ue->PHY_measurements.n0_power_tot_dBm = phy_vars_ue->PHY_measurements.n0_power_tot_dB - phy_vars_ue->rx_total_gain_dB - dB_fixed(phy_vars_ue->lte_frame_parms.ofdm_symbol_size);
271
	      
knopp's avatar
 
knopp committed
272 273
	    
	  }
274
	}
275 276
      }
    }
277 278 279 280 281 282 283 284 285 286 287 288 289 290
    // recompute nushift with eNB_offset corresponding to adjacent eNB on which to perform channel estimation
    //    printf("[PHY][UE %d] Frame %d slot %d Doing ue_rrc_measurements rsrp/rssi (Nid_cell %d, Nid2 %d, nushift %d, eNB_offset %d)\n",phy_vars_ue->Mod_id,phy_vars_ue->frame,slot,Nid_cell,Nid2,nushift,eNB_offset);
    if (eNB_offset > 0)
      Nid_cell = phy_vars_ue->PHY_measurements.adj_cell_id[eNB_offset-1];


    nushift =  Nid_cell%6;



    phy_vars_ue->PHY_measurements.rsrp[eNB_offset] = 0;


    if (abstraction_flag == 0) {
291

292 293
      // compute RSRP using symbols 0 and 4-frame_parms->Ncp

294 295
      for (l=0,nu=0; l<=(4-phy_vars_ue->lte_frame_parms.Ncp); l+=(4-phy_vars_ue->lte_frame_parms.Ncp),nu=3) {
        k = (nu + nushift)%6;
296
#ifdef DEBUG_MEAS
297
        LOG_I(PHY,"[UE %d] Frame %d slot %d Doing ue_rrc_measurements rsrp/rssi (Nid_cell %d, nushift %d, eNB_offset %d, k %d, l %d)\n",phy_vars_ue->Mod_id,phy_vars_ue->frame_rx,slot,Nid_cell,nushift,
298
              eNB_offset,k,l);
299 300
#endif

301 302 303 304 305 306 307 308 309 310 311
        for (aarx=0; aarx<phy_vars_ue->lte_frame_parms.nb_antennas_rx; aarx++) {
          rxF = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(l*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)];
          off  = (phy_vars_ue->lte_frame_parms.first_carrier_offset+k)<<1;

          if (l==(4-phy_vars_ue->lte_frame_parms.Ncp)) {
            for (rb=0; rb<phy_vars_ue->lte_frame_parms.N_RB_DL; rb++) {

              //    printf("rb %d, off %d, off2 %d\n",rb,off,off2);

              phy_vars_ue->PHY_measurements.rsrp[eNB_offset] += (((int32_t)(rxF[off])*rxF[off])+((int32_t)(rxF[off+1])*rxF[off+1]));
              //        printf("rb %d, off %d : %d\n",rb,off,((((int32_t)rxF[off])*rxF[off])+((int32_t)(rxF[off+1])*rxF[off+1])));
312 313
	      //	      if ((phy_vars_ue->frame_rx&0x3ff) == 0)
	      //                printf("rb %d, off %d : %d\n",rb,off,((rxF[off]*rxF[off])+(rxF[off+1]*rxF[off+1])));
314

315
              
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
              off+=12;

              if (off>=(phy_vars_ue->lte_frame_parms.ofdm_symbol_size<<1))
                off = (1+k)<<1;

              phy_vars_ue->PHY_measurements.rsrp[eNB_offset] += (((int32_t)(rxF[off])*rxF[off])+((int32_t)(rxF[off+1])*rxF[off+1]));
              //    printf("rb %d, off %d : %d\n",rb,off,(((int32_t)(rxF[off])*rxF[off])+((int32_t)(rxF[off+1])*rxF[off+1])));
              /*
                if ((phy_vars_ue->frame_rx&0x3ff) == 0)
                printf("rb %d, off %d : %d\n",rb,off,((rxF[off]*rxF[off])+(rxF[off+1]*rxF[off+1])));
              */
              off+=12;

              if (off>=(phy_vars_ue->lte_frame_parms.ofdm_symbol_size<<1))
                off = (1+k)<<1;

            }

            /*
            if ((eNB_offset==0)&&(l==0)) {
            for (i=0;i<6;i++,off2+=4)
            phy_vars_ue->PHY_measurements.rssi += ((rxF[off2]*rxF[off2])+(rxF[off2+1]*rxF[off2+1]));
            if (off2==(phy_vars_ue->lte_frame_parms.ofdm_symbol_size<<2))
            off2=4;
            for (i=0;i<6;i++,off2+=4)
            phy_vars_ue->PHY_measurements.rssi += ((rxF[off2]*rxF[off2])+(rxF[off2+1]*rxF[off2+1]));
            }
            */
            //    printf("slot %d, rb %d => rsrp %d, rssi %d\n",slot,rb,phy_vars_ue->PHY_measurements.rsrp[eNB_offset],phy_vars_ue->PHY_measurements.rssi);
          }
        }
347
      }
348

349
      // 2 RE per PRB
350
      //      phy_vars_ue->PHY_measurements.rsrp[eNB_offset]/=(24*phy_vars_ue->lte_frame_parms.N_RB_DL);
351
      phy_vars_ue->PHY_measurements.rsrp[eNB_offset]/=(2*phy_vars_ue->lte_frame_parms.N_RB_DL*phy_vars_ue->lte_frame_parms.ofdm_symbol_size);
352
      //      LOG_I(PHY,"eNB: %d, RSRP: %d \n",eNB_offset,phy_vars_ue->PHY_measurements.rsrp[eNB_offset]);
353
      if (eNB_offset == 0) {
354 355 356 357
        //  phy_vars_ue->PHY_measurements.rssi/=(24*phy_vars_ue->lte_frame_parms.N_RB_DL);
        //  phy_vars_ue->PHY_measurements.rssi*=rx_power_correction;
        //  phy_vars_ue->PHY_measurements.rssi=phy_vars_ue->PHY_measurements.rsrp[0]*24/2;
        phy_vars_ue->PHY_measurements.rssi=phy_vars_ue->PHY_measurements.rsrp[0]*(12*phy_vars_ue->lte_frame_parms.N_RB_DL);
358
      }
359

360
      if (phy_vars_ue->PHY_measurements.rssi>0)
361
        phy_vars_ue->PHY_measurements.rsrq[eNB_offset] = 100*phy_vars_ue->PHY_measurements.rsrp[eNB_offset]*phy_vars_ue->lte_frame_parms.N_RB_DL/phy_vars_ue->PHY_measurements.rssi;
362
      else
363 364
        phy_vars_ue->PHY_measurements.rsrq[eNB_offset] = -12000;

365
      //((200*phy_vars_ue->PHY_measurements.rsrq[eNB_offset]) + ((1024-200)*100*phy_vars_ue->PHY_measurements.rsrp[eNB_offset]*phy_vars_ue->lte_frame_parms.N_RB_DL/phy_vars_ue->PHY_measurements.rssi))>>10;
366
    } else { // Do abstraction of RSRP and RSRQ
367
      phy_vars_ue->PHY_measurements.rssi = phy_vars_ue->PHY_measurements.rx_power_avg[0];
368
      // dummay value for the moment
369
      phy_vars_ue->PHY_measurements.rsrp[eNB_offset] = -93 ;
370
      phy_vars_ue->PHY_measurements.rsrq[eNB_offset] = 3;
371 372

    }
373

374 375
#ifdef DEBUG_MEAS

376
    //    if (slot == 0) {
377

378
      if (eNB_offset == 0)
379
        LOG_I(PHY,"[UE %d] Frame %d, slot %d RRC Measurements => rssi %3.1f dBm (digital: %3.1f dB, gain %d), N0 %d dBm\n",phy_vars_ue->Mod_id,
380 381 382 383 384
              phy_vars_ue->frame_rx,slot,10*log10(phy_vars_ue->PHY_measurements.rssi)-phy_vars_ue->rx_total_gain_dB,
              10*log10(phy_vars_ue->PHY_measurements.rssi),
              phy_vars_ue->rx_total_gain_dB,
              phy_vars_ue->PHY_measurements.n0_power_tot_dBm);

385
      LOG_I(PHY,"[UE %d] Frame %d, slot %d RRC Measurements (idx %d, Cell id %d) => rsrp: %3.1f dBm/RE (%d), rsrq: %3.1f dB\n",
386 387 388 389 390 391 392 393 394 395 396 397
            phy_vars_ue->Mod_id,
            phy_vars_ue->frame_rx,slot,eNB_offset,
            (eNB_offset>0) ? phy_vars_ue->PHY_measurements.adj_cell_id[eNB_offset-1] : phy_vars_ue->lte_frame_parms.Nid_cell,
            10*log10(phy_vars_ue->PHY_measurements.rsrp[eNB_offset])-phy_vars_ue->rx_total_gain_dB,
            phy_vars_ue->PHY_measurements.rsrp[eNB_offset],
            (10*log10(phy_vars_ue->PHY_measurements.rsrq[eNB_offset])));
      //LOG_D(PHY,"RSRP_total_dB: %3.2f \n",(dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_offset])/10.0)-phy_vars_ue->rx_total_gain_dB-dB_fixed(phy_vars_ue->lte_frame_parms.N_RB_DL*12));

      //LOG_D(PHY,"RSRP_dB: %3.2f \n",(dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_offset])/10.0));
      //LOG_D(PHY,"gain_loss_dB: %d \n",phy_vars_ue->rx_total_gain_dB);
      //LOG_D(PHY,"gain_fixed_dB: %d \n",dB_fixed(phy_vars_ue->lte_frame_parms.N_RB_DL*12));

398
      //    }
399

400 401 402
#endif
  }

403 404 405
}

void lte_ue_measurements(PHY_VARS_UE *phy_vars_ue,
406 407 408 409 410 411
                         unsigned int subframe_offset,
                         unsigned char N0_symbol,
                         unsigned char abstraction_flag)
{


412
  int aarx,aatx,eNB_id=0; //,gain_offset=0;
413 414 415
  //int rx_power[NUMBER_OF_CONNECTED_eNB_MAX];
  int i;
  unsigned int limit,subband;
416
#if defined(__x86_64__) || defined(__i386__)
417
  __m128i *dl_ch0_128,*dl_ch1_128;
418 419
#elif defined(__arm__)
  int16x8_t *dl_ch0_128, *dl_ch1_128;
420
#endif
421 422 423 424
  int *dl_ch0,*dl_ch1;
  LTE_DL_FRAME_PARMS *frame_parms = &phy_vars_ue->lte_frame_parms;
  int nb_subbands,subband_size,last_subband_size;
  int N_RB_DL = frame_parms->N_RB_DL;
Elena Lukashova's avatar
Elena Lukashova committed
425 426 427 428 429 430
      phy_vars_ue->PHY_measurements.nb_antennas_rx = frame_parms->nb_antennas_rx;
    
    if (phy_vars_ue->transmission_mode[eNB_id]!=4)
     phy_vars_ue->PHY_measurements.rank[eNB_id] = 0;
    else 
    phy_vars_ue->PHY_measurements.rank[eNB_id] = 1;
Elena Lukashova's avatar
Elena Lukashova committed
431 432
  //  printf ("tx mode %d\n", phy_vars_ue->transmission_mode[eNB_id]);
  //  printf ("rank %d\n", phy_vars_ue->PHY_measurements.rank[eNB_id]);
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459

  switch (N_RB_DL) {
  case 6:
    nb_subbands = 6;
    subband_size = 12;
    last_subband_size = 0;
    break;

  default:
  case 25:
    nb_subbands = 7;
    subband_size = 4*12;
    last_subband_size = 12;
    break;

  case 50:
    nb_subbands = 9;
    subband_size = 6*12;
    last_subband_size = 2*12;
    break;

  case 100:
    nb_subbands = 13;
    subband_size = 8*12;
    last_subband_size = 4*12;
    break;
  }
460

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
  // signal measurements
  for (eNB_id=0; eNB_id<phy_vars_ue->n_connected_eNB; eNB_id++) {
    for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
      for (aatx=0; aatx<frame_parms->nb_antennas_tx_eNB; aatx++) {
        phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx] =
          (signal_energy_nodc(&phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][(aatx<<1) + aarx][0],
                              (N_RB_DL*12)));
        //- phy_vars_ue->PHY_measurements.n0_power[aarx];

        if (phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx]<0)
          phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx] = 0; //phy_vars_ue->PHY_measurements.n0_power[aarx];

        phy_vars_ue->PHY_measurements.rx_spatial_power_dB[eNB_id][aatx][aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx]);

        if (aatx==0)
          phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx] = phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx];
        else
          phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx] += phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx];
      } //aatx

      phy_vars_ue->PHY_measurements.rx_power_dB[eNB_id][aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx]);

      if (aarx==0)
        phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id] = phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx];
      else
        phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id] += phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx];
    } //aarx

    phy_vars_ue->PHY_measurements.rx_power_tot_dB[eNB_id] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id]);

  } //eNB_id

  // filter to remove jitter
  if (phy_vars_ue->init_averaging == 0) {
    for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++)
      phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id] = (int)
          (((k1*((long long int)(phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id]))) +
            (k2*((long long int)(phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id]))))>>10);
499

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
    phy_vars_ue->PHY_measurements.n0_power_avg = (int)
        (((k1*((long long int) (phy_vars_ue->PHY_measurements.n0_power_avg))) +
          (k2*((long long int) (phy_vars_ue->PHY_measurements.n0_power_tot))))>>10);
  } else {
    for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++)
      phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id] = phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id];

    phy_vars_ue->PHY_measurements.n0_power_avg = phy_vars_ue->PHY_measurements.n0_power_tot;
    phy_vars_ue->init_averaging = 0;
  }

  for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++) {
    phy_vars_ue->PHY_measurements.rx_power_avg_dB[eNB_id] = dB_fixed( phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id]);
    phy_vars_ue->PHY_measurements.wideband_cqi_tot[eNB_id] = dB_fixed2(phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id],phy_vars_ue->PHY_measurements.n0_power_tot);
    phy_vars_ue->PHY_measurements.wideband_cqi_avg[eNB_id] = dB_fixed2(phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id],phy_vars_ue->PHY_measurements.n0_power_avg);
    phy_vars_ue->PHY_measurements.rx_rssi_dBm[eNB_id] = phy_vars_ue->PHY_measurements.rx_power_avg_dB[eNB_id] - phy_vars_ue->rx_total_gain_dB;
knopp's avatar
 
knopp committed
516
#ifdef DEBUG_MEAS
knopp's avatar
knopp committed
517
    LOG_I(PHY,"[eNB %d] lte_ue_measurements: RSSI %d dBm, RSSI (digital) %d dB\n",
518 519
          eNB_id,phy_vars_ue->PHY_measurements.rx_rssi_dBm[eNB_id],
          phy_vars_ue->PHY_measurements.rx_power_avg_dB[eNB_id]);
knopp's avatar
 
knopp committed
520
#endif
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
  }

  phy_vars_ue->PHY_measurements.n0_power_avg_dB = dB_fixed( phy_vars_ue->PHY_measurements.n0_power_avg);

  for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++) {
    if (frame_parms->mode1_flag==0) {
      // cqi/pmi information

      for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
        dl_ch0    = &phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][aarx][4];
        dl_ch1    = &phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][2+aarx][4];

        for (subband=0; subband<nb_subbands; subband++) {

          // cqi
          if (aarx==0)
            phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband]=0;

          if ((subband<(nb_subbands-1))||(N_RB_DL==6)) {
            /*for (i=0;i<48;i++)
            msg("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]);
            */
            phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] =
              (signal_energy_nodc(dl_ch0,subband_size) + signal_energy_nodc(dl_ch1,subband_size));

            if ( phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] < 0)
              phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband]=0;

            /*
            else
            phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband]-=phy_vars_ue->PHY_measurements.n0_power[aarx];
            */

            phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
            phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
                phy_vars_ue->PHY_measurements.n0_power[aarx]);
          } else { // this is for the last subband which is smaller in size
            //      for (i=0;i<12;i++)
            //        printf("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]);
            phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] = (signal_energy_nodc(dl_ch0,last_subband_size) +
                signal_energy_nodc(dl_ch1,last_subband_size)); // - phy_vars_ue->PHY_measurements.n0_power[aarx];
            phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
            phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
                phy_vars_ue->PHY_measurements.n0_power[aarx]);
          }

          dl_ch1+=subband_size;
          dl_ch0+=subband_size;
          //    msg("subband_cqi[%d][%d][%d] => %d (%d dB)\n",eNB_id,aarx,subband,phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband]);
        }

      }

      for (subband=0; subband<nb_subbands; subband++) {
        phy_vars_ue->PHY_measurements.subband_cqi_tot_dB[eNB_id][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband],phy_vars_ue->PHY_measurements.n0_power_tot);
        //    msg("subband_cqi_tot[%d][%d] => %d dB (n0 %d)\n",eNB_id,subband,phy_vars_ue->PHY_measurements.subband_cqi_tot_dB[eNB_id][subband],phy_vars_ue->PHY_measurements.n0_power_tot);
577 578 579 580
      }

      for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
        // skip the first 4 RE due to interpolation filter length of 5 (not possible to skip 5 due to 128i alignment, must be multiple of 128bit)
581 582 583 584

#if defined(__x86_64__) || defined(__i386__)
       __m128i pmi128_re,pmi128_im,mmtmpPMI0,mmtmpPMI1,mmtmpPMI2,mmtmpPMI3;

585 586
        dl_ch0_128    = (__m128i *)&phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][aarx][4];
        dl_ch1_128    = (__m128i *)&phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][2+aarx][4];
587 588
#elif defined(__arm__)
        int32x4_t pmi128_re,pmi128_im,mmtmpPMI0,mmtmpPMI1,mmtmpPMI0b,mmtmpPMI1b;
589

590 591 592 593
        dl_ch0_128    = (int16x8_t *)&phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][aarx][4];
        dl_ch1_128    = (int16x8_t *)&phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][2+aarx][4];

#endif
594 595 596 597
        for (subband=0; subband<nb_subbands; subband++) {


          // pmi
598
#if defined(__x86_64__) || defined(__i386__)
599 600
          pmi128_re = _mm_setzero_si128();
          pmi128_im = _mm_setzero_si128();
601 602 603 604
#elif defined(__arm__)
          pmi128_re = vdupq_n_s32(0);
	  pmi128_im = vdupq_n_s32(0);
#endif
605 606 607 608 609 610 611 612 613 614 615
          // limit is the number of groups of 4 REs in a subband (12 = 4 RBs, 3 = 1 RB)
          // for 5 MHz channelization, there are 7 subbands, 6 of size 4 RBs and 1 of size 1 RB
          if ((N_RB_DL==6) || (subband<(nb_subbands-1)))
            limit = subband_size>>2;
          else
            limit = last_subband_size>>2;

          for (i=0; i<limit; i++) {

            // For each RE in subband perform ch0 * conj(ch1)
            // multiply by conjugated channel
616
#if defined(__x86_64__) || defined(__i386__)
617
	    mmtmpPMI0 = _mm_madd_epi16(dl_ch0_128[0],dl_ch1_128[0]);
618 619 620 621 622 623 624 625
            mmtmpPMI1 = _mm_shufflelo_epi16(dl_ch1_128[0],_MM_SHUFFLE(2,3,0,1));//_MM_SHUFFLE(2,3,0,1)
            mmtmpPMI1 = _mm_shufflehi_epi16(mmtmpPMI1,_MM_SHUFFLE(2,3,0,1));
            mmtmpPMI1 = _mm_sign_epi16(mmtmpPMI1,*(__m128i*)&conjugate[0]);
            mmtmpPMI1 = _mm_madd_epi16(mmtmpPMI1,dl_ch0_128[0]);
            // mmtmpPMI1 contains imag part of 4 consecutive outputs (32-bit)

            pmi128_re = _mm_add_epi32(pmi128_re,mmtmpPMI0);
            pmi128_im = _mm_add_epi32(pmi128_im,mmtmpPMI1);
626 627 628 629 630 631 632 633 634 635
#elif defined(__arm__)
            mmtmpPMI0 = vmull_s16(((int16x4_t*)dl_ch0_128)[0], ((int16x4_t*)dl_ch1_128)[0]);
            mmtmpPMI1 = vmull_s16(((int16x4_t*)dl_ch0_128)[1], ((int16x4_t*)dl_ch1_128)[1]);
            pmi128_re = vqaddq_s32(pmi128_re,vcombine_s32(vpadd_s32(vget_low_s32(mmtmpPMI0),vget_high_s32(mmtmpPMI0)),vpadd_s32(vget_low_s32(mmtmpPMI1),vget_high_s32(mmtmpPMI1))));

            mmtmpPMI0b = vmull_s16(vrev32_s16(vmul_s16(((int16x4_t*)dl_ch0_128)[0],*(int16x4_t*)conjugate)), ((int16x4_t*)dl_ch1_128)[0]);
            mmtmpPMI1b = vmull_s16(vrev32_s16(vmul_s16(((int16x4_t*)dl_ch0_128)[1],*(int16x4_t*)conjugate)), ((int16x4_t*)dl_ch1_128)[1]);
            pmi128_im = vqaddq_s32(pmi128_im,vcombine_s32(vpadd_s32(vget_low_s32(mmtmpPMI0b),vget_high_s32(mmtmpPMI0b)),vpadd_s32(vget_low_s32(mmtmpPMI1b),vget_high_s32(mmtmpPMI1b))));

#endif
636 637 638 639 640 641 642 643 644 645 646
            dl_ch0_128++;
            dl_ch1_128++;
          }

          phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx] = (((int *)&pmi128_re)[0] + ((int *)&pmi128_re)[1] + ((int *)&pmi128_re)[2] + ((int *)&pmi128_re)[3])>>2;
          phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx] = (((int *)&pmi128_im)[0] + ((int *)&pmi128_im)[1] + ((int *)&pmi128_im)[2] + ((int *)&pmi128_im)[3])>>2;
          phy_vars_ue->PHY_measurements.wideband_pmi_re[eNB_id][aarx] += phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx];
          phy_vars_ue->PHY_measurements.wideband_pmi_im[eNB_id][aarx] += phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx];
        } // subband loop
      } // rx antenna loop
    }  // if frame_parms->mode1_flag == 0
647
    else {
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
      // cqi information only for mode 1
      for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
        dl_ch0    = &phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][aarx][4];

        for (subband=0; subband<7; subband++) {

          // cqi
          if (aarx==0)
            phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband]=0;

          if (subband<6) {
            //      for (i=0;i<48;i++)
            //        printf("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]);
            phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] =
              (signal_energy_nodc(dl_ch0,48) ) - phy_vars_ue->PHY_measurements.n0_power[aarx];

            phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
            phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
                phy_vars_ue->PHY_measurements.n0_power[aarx]);
          } else {
            //      for (i=0;i<12;i++)
            //        printf("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]);
            phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] = (signal_energy_nodc(dl_ch0,12) ) - phy_vars_ue->PHY_measurements.n0_power[aarx];
            phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
            phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
                phy_vars_ue->PHY_measurements.n0_power[aarx]);
          }

          dl_ch1+=48;
          //    msg("subband_cqi[%d][%d][%d] => %d (%d dB)\n",eNB_id,aarx,subband,phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband]);
        }
679 680
      }

681 682
      for (subband=0; subband<nb_subbands; subband++) {
        phy_vars_ue->PHY_measurements.subband_cqi_tot_dB[eNB_id][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband],phy_vars_ue->PHY_measurements.n0_power_tot);
683 684 685
      }
    }

Elena Lukashova's avatar
Elena Lukashova committed
686
  //  phy_vars_ue->PHY_measurements.rank[eNB_id] = 0;
687

688 689
    for (i=0; i<nb_subbands; i++) {
      phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 0;
690

691 692 693 694 695 696 697
      if (frame_parms->nb_antennas_rx>1) {
        if (phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][0][i] >= phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][1][i])
          phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 0;
        else
          phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 1;
      } else
        phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 0;
698 699
    }

700 701 702
    // if(eNB_id==0)
    // printf("in lte_ue_measurements: selected rx_antenna[eNB_id==0]:%u\n", phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i]);
  }  // eNB_id loop
703

704
#if defined(__x86_64__) || defined(__i386__)
705 706
  _mm_empty();
  _m_empty();
707
#endif
708
}
709 710


711 712
void lte_ue_measurements_emul(PHY_VARS_UE *phy_vars_ue,uint8_t last_slot,uint8_t eNB_id)
{
713

714 715
  msg("[PHY] EMUL UE lte_ue_measurements_emul last slot %d, eNB_id %d\n",last_slot,eNB_id);
}
716