lte_ul_channel_estimation.c 29.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.0  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */
ghaddab's avatar
ghaddab committed
21

22 23
#include "PHY/defs.h"
#include "PHY/extern.h"
24
#include "PHY/sse_intrin.h"
25
//#define DEBUG_CH
26
#include "UTIL/LOG/log.h"
27

28
#include "T.h"
29 30

// round(exp(sqrt(-1)*(pi/2)*[0:1:N-1]/N)*pow2(15))
31
static int16_t ru_90[2*128] = {32767, 0,32766, 402,32758, 804,32746, 1206,32729, 1608,32706, 2009,32679, 2411,32647, 2811,32610, 3212,32568, 3612,32522, 4011,32470, 4410,32413, 4808,32352, 5205,32286, 5602,32214, 5998,32138, 6393,32058, 6787,31972, 7180,31881, 7571,31786, 7962,31686, 8351,31581, 8740,31471, 9127,31357, 9512,31238, 9896,31114, 10279,30986, 10660,30853, 11039,30715, 11417,30572, 11793,30425, 12167,30274, 12540,30118, 12910,29957, 13279,29792, 13646,29622, 14010,29448, 14373,29269, 14733,29086, 15091,28899, 15447,28707, 15800,28511, 16151,28311, 16500,28106, 16846,27897, 17190,27684, 17531,27467, 17869,27246, 18205,27020, 18538,26791, 18868,26557, 19195,26320, 19520,26078, 19841,25833, 20160,25583, 20475,25330, 20788,25073, 21097,24812, 21403,24548, 21706,24279, 22006,24008, 22302,23732, 22595,23453, 22884,23170, 23170,22884, 23453,22595, 23732,22302, 24008,22006, 24279,21706, 24548,21403, 24812,21097, 25073,20788, 25330,20475, 25583,20160, 25833,19841, 26078,19520, 26320,19195, 26557,18868, 26791,18538, 27020,18205, 27246,17869, 27467,17531, 27684,17190, 27897,16846, 28106,16500, 28311,16151, 28511,15800, 28707,15447, 28899,15091, 29086,14733, 29269,14373, 29448,14010, 29622,13646, 29792,13279, 29957,12910, 30118,12540, 30274,12167, 30425,11793, 30572,11417, 30715,11039, 30853,10660, 30986,10279, 31114,9896, 31238,9512, 31357,9127, 31471,8740, 31581,8351, 31686,7962, 31786,7571, 31881,7180, 31972,6787, 32058,6393, 32138,5998, 32214,5602, 32286,5205, 32352,4808, 32413,4410, 32470,4011, 32522,3612, 32568,3212, 32610,2811, 32647,2411, 32679,2009, 32706,1608, 32729,1206, 32746,804, 32758,402, 32766};
32

33
static int16_t ru_90c[2*128] = {32767, 0,32766, -402,32758, -804,32746, -1206,32729, -1608,32706, -2009,32679, -2411,32647, -2811,32610, -3212,32568, -3612,32522, -4011,32470, -4410,32413, -4808,32352, -5205,32286, -5602,32214, -5998,32138, -6393,32058, -6787,31972, -7180,31881, -7571,31786, -7962,31686, -8351,31581, -8740,31471, -9127,31357, -9512,31238, -9896,31114, -10279,30986, -10660,30853, -11039,30715, -11417,30572, -11793,30425, -12167,30274, -12540,30118, -12910,29957, -13279,29792, -13646,29622, -14010,29448, -14373,29269, -14733,29086, -15091,28899, -15447,28707, -15800,28511, -16151,28311, -16500,28106, -16846,27897, -17190,27684, -17531,27467, -17869,27246, -18205,27020, -18538,26791, -18868,26557, -19195,26320, -19520,26078, -19841,25833, -20160,25583, -20475,25330, -20788,25073, -21097,24812, -21403,24548, -21706,24279, -22006,24008, -22302,23732, -22595,23453, -22884,23170, -23170,22884, -23453,22595, -23732,22302, -24008,22006, -24279,21706, -24548,21403, -24812,21097, -25073,20788, -25330,20475, -25583,20160, -25833,19841, -26078,19520, -26320,19195, -26557,18868, -26791,18538, -27020,18205, -27246,17869, -27467,17531, -27684,17190, -27897,16846, -28106,16500, -28311,16151, -28511,15800, -28707,15447, -28899,15091, -29086,14733, -29269,14373, -29448,14010, -29622,13646, -29792,13279, -29957,12910, -30118,12540, -30274,12167, -30425,11793, -30572,11417, -30715,11039, -30853,10660, -30986,10279, -31114,9896, -31238,9512, -31357,9127, -31471,8740, -31581,8351, -31686,7962, -31786,7571, -31881,7180, -31972,6787, -32058,6393, -32138,5998, -32214,5602, -32286,5205, -32352,4808, -32413,4410, -32470,4011, -32522,3612, -32568,3212, -32610,2811, -32647,2411, -32679,2009, -32706,1608, -32729,1206, -32746,804, -32758,402, -32766};
34 35 36

#define SCALE 0x3FFF

37
int32_t lte_ul_channel_estimation(PHY_VARS_eNB *eNB,
knopp's avatar
knopp committed
38
				  eNB_rxtx_proc_t *proc,
39 40
                                  uint8_t UE_id,
                                  unsigned char l,
41
                                  unsigned char Ns) {
42

43 44
  LTE_DL_FRAME_PARMS *frame_parms = &eNB->frame_parms;
  LTE_eNB_PUSCH *pusch_vars = eNB->pusch_vars[UE_id];
45 46 47
  int32_t **ul_ch_estimates=pusch_vars->drs_ch_estimates;
  int32_t **ul_ch_estimates_time=  pusch_vars->drs_ch_estimates_time;
  int32_t **rxdataF_ext=  pusch_vars->rxdataF_ext;
knopp's avatar
knopp committed
48 49
  int subframe = proc->subframe_rx;
  uint8_t harq_pid = subframe2harq_pid(frame_parms,proc->frame_rx,subframe);
50 51 52 53
  int16_t delta_phase = 0;
  int16_t *ru1 = ru_90;
  int16_t *ru2 = ru_90;
  int16_t current_phase1,current_phase2;
54
  uint16_t N_rb_alloc = eNB->ulsch[UE_id]->harq_processes[harq_pid]->nb_rb;
55 56
  uint16_t aa,Msc_RS,Msc_RS_idx;
  uint16_t * Msc_idx_ptr;
57
  int k,pilot_pos1 = 3 - frame_parms->Ncp, pilot_pos2 = 10 - 2*frame_parms->Ncp;
58 59
  int32_t *ul_ch1=NULL, *ul_ch2=NULL;
  int16_t ul_ch_estimates_re,ul_ch_estimates_im;
60

Xiwen JIANG's avatar
Xiwen JIANG committed
61
  //uint8_t nb_antennas_rx = frame_parms->nb_antenna_ports_eNB;
62
  uint8_t nb_antennas_rx = frame_parms->nb_antennas_rx;
63
  uint8_t cyclic_shift;
64

65 66 67 68
  uint32_t alpha_ind;
  uint32_t u=frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.grouphop[Ns+(subframe<<1)];
  uint32_t v=frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.seqhop[Ns+(subframe<<1)];
  int32_t tmp_estimates[N_rb_alloc*12] __attribute__((aligned(16)));
69

70
  int symbol_offset,i;
71 72 73 74

  //debug_msg("lte_ul_channel_estimation: cyclic shift %d\n",cyclicShift);


75 76
  int16_t alpha_re[12] = {32767, 28377, 16383,     0,-16384,  -28378,-32768,-28378,-16384,    -1, 16383, 28377};
  int16_t alpha_im[12] = {0,     16383, 28377, 32767, 28377,   16383,     0,-16384,-28378,-32768,-28378,-16384};
77

78
#if defined(__x86_64__) || defined(__i386__)
79 80
  __m128i *rxdataF128,*ul_ref128,*ul_ch128;
  __m128i mmtmpU0,mmtmpU1,mmtmpU2,mmtmpU3;
81 82 83 84
#elif defined(__arm__)
  int16x8_t *rxdataF128,*ul_ref128,*ul_ch128;
  int32x4_t mmtmp0,mmtmp1,mmtmp_re,mmtmp_im;
#endif
85 86 87

int32_t temp_in_ifft_0[2048*2] __attribute__((aligned(32)));

88 89 90
  Msc_RS = N_rb_alloc*12;

  cyclic_shift = (frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.cyclicShift +
91
                  eNB->ulsch[UE_id]->harq_processes[harq_pid]->n_DMRS2 +
92
                  frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.nPRS[(subframe<<1)+Ns]) % 12;
93

94
#if defined(USER_MODE)
95
  Msc_idx_ptr = (uint16_t*) bsearch(&Msc_RS, dftsizes, 33, sizeof(uint16_t), compareints);
96

97 98 99
  if (Msc_idx_ptr)
    Msc_RS_idx = Msc_idx_ptr - dftsizes;
  else {
100
    LOG_E(PHY,"lte_ul_channel_estimation: index for Msc_RS=%d not found\n",Msc_RS);
101 102
    return(-1);
  }
103

104
#else
105
  uint8_t b;
106 107

  for (b=0; b<33; b++)
108 109
    if (Msc_RS==dftsizes[b])
      Msc_RS_idx = b;
110

111 112
#endif

113 114
  //  LOG_I(PHY,"subframe %d, Ns %d, l %d, Msc_RS = %d, Msc_RS_idx = %d, u %d, v %d, cyclic_shift %d\n",subframe,Ns,l,Msc_RS, Msc_RS_idx,u,v,cyclic_shift);
#ifdef DEBUG_CH
115 116

#ifdef USER_MODE
117

118 119 120 121
  if (Ns==0)
    write_output("drs_seq0.m","drsseq0",ul_ref_sigs_rx[u][v][Msc_RS_idx],2*Msc_RS,2,1);
  else
    write_output("drs_seq1.m","drsseq1",ul_ref_sigs_rx[u][v][Msc_RS_idx],2*Msc_RS,2,1);
122

123 124 125 126 127 128 129 130
#endif
#endif


  if (l == (3 - frame_parms->Ncp)) {

    symbol_offset = frame_parms->N_RB_UL*12*(l+((7-frame_parms->Ncp)*(Ns&1)));

131
    for (aa=0; aa<nb_antennas_rx; aa++) {
132 133
      //           msg("Componentwise prod aa %d, symbol_offset %d,ul_ch_estimates %p,ul_ch_estimates[aa] %p,ul_ref_sigs_rx[0][0][Msc_RS_idx] %p\n",aa,symbol_offset,ul_ch_estimates,ul_ch_estimates[aa],ul_ref_sigs_rx[0][0][Msc_RS_idx]);

134
#if defined(__x86_64__) || defined(__i386__)
135 136 137
      rxdataF128 = (__m128i *)&rxdataF_ext[aa][symbol_offset];
      ul_ch128   = (__m128i *)&ul_ch_estimates[aa][symbol_offset];
      ul_ref128  = (__m128i *)ul_ref_sigs_rx[u][v][Msc_RS_idx];
138 139 140 141 142
#elif defined(__arm__)
      rxdataF128 = (int16x8_t *)&rxdataF_ext[aa][symbol_offset];
      ul_ch128   = (int16x8_t *)&ul_ch_estimates[aa][symbol_offset];
      ul_ref128  = (int16x8_t *)ul_ref_sigs_rx[u][v][Msc_RS_idx];
#endif
143

144
      for (i=0; i<Msc_RS/12; i++) {
145
#if defined(__x86_64__) || defined(__i386__)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
        // multiply by conjugated channel
        mmtmpU0 = _mm_madd_epi16(ul_ref128[0],rxdataF128[0]);
        // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
        mmtmpU1 = _mm_shufflelo_epi16(ul_ref128[0],_MM_SHUFFLE(2,3,0,1));
        mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
        mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)&conjugate[0]);
        mmtmpU1 = _mm_madd_epi16(mmtmpU1,rxdataF128[0]);
        // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
        mmtmpU0 = _mm_srai_epi32(mmtmpU0,15);
        mmtmpU1 = _mm_srai_epi32(mmtmpU1,15);
        mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
        mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);

        ul_ch128[0] = _mm_packs_epi32(mmtmpU2,mmtmpU3);
        //  printf("rb %d ch: %d %d\n",i,((int16_t*)ul_ch128)[0],((int16_t*)ul_ch128)[1]);
        // multiply by conjugated channel
        mmtmpU0 = _mm_madd_epi16(ul_ref128[1],rxdataF128[1]);
        // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
        mmtmpU1 = _mm_shufflelo_epi16(ul_ref128[1],_MM_SHUFFLE(2,3,0,1));
        mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
        mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)conjugate);
        mmtmpU1 = _mm_madd_epi16(mmtmpU1,rxdataF128[1]);
        // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
        mmtmpU0 = _mm_srai_epi32(mmtmpU0,15);
        mmtmpU1 = _mm_srai_epi32(mmtmpU1,15);
        mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
        mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);

        ul_ch128[1] = _mm_packs_epi32(mmtmpU2,mmtmpU3);

        mmtmpU0 = _mm_madd_epi16(ul_ref128[2],rxdataF128[2]);
        // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
        mmtmpU1 = _mm_shufflelo_epi16(ul_ref128[2],_MM_SHUFFLE(2,3,0,1));
        mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
        mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)conjugate);
        mmtmpU1 = _mm_madd_epi16(mmtmpU1,rxdataF128[2]);
        // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
        mmtmpU0 = _mm_srai_epi32(mmtmpU0,15);
        mmtmpU1 = _mm_srai_epi32(mmtmpU1,15);
        mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
        mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);

        ul_ch128[2] = _mm_packs_epi32(mmtmpU2,mmtmpU3);
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
#elif defined(__arm__)
      mmtmp0 = vmull_s16(((int16x4_t*)ul_ref128)[0],((int16x4_t*)rxdataF128)[0]);
      mmtmp1 = vmull_s16(((int16x4_t*)ul_ref128)[1],((int16x4_t*)rxdataF128)[1]);
      mmtmp_re = vcombine_s32(vpadd_s32(vget_low_s32(mmtmp0),vget_high_s32(mmtmp0)),
                              vpadd_s32(vget_low_s32(mmtmp1),vget_high_s32(mmtmp1)));
      mmtmp0 = vmull_s16(vrev32_s16(vmul_s16(((int16x4_t*)ul_ref128)[0],*(int16x4_t*)conjugate)), ((int16x4_t*)rxdataF128)[0]);
      mmtmp1 = vmull_s16(vrev32_s16(vmul_s16(((int16x4_t*)ul_ref128)[1],*(int16x4_t*)conjugate)), ((int16x4_t*)rxdataF128)[1]);
      mmtmp_im = vcombine_s32(vpadd_s32(vget_low_s32(mmtmp0),vget_high_s32(mmtmp0)),
                              vpadd_s32(vget_low_s32(mmtmp1),vget_high_s32(mmtmp1)));

      ul_ch128[0] = vcombine_s16(vmovn_s32(mmtmp_re),vmovn_s32(mmtmp_im));
      ul_ch128++;
      ul_ref128++;
      rxdataF128++;
      mmtmp0 = vmull_s16(((int16x4_t*)ul_ref128)[0],((int16x4_t*)rxdataF128)[0]);
      mmtmp1 = vmull_s16(((int16x4_t*)ul_ref128)[1],((int16x4_t*)rxdataF128)[1]);
      mmtmp_re = vcombine_s32(vpadd_s32(vget_low_s32(mmtmp0),vget_high_s32(mmtmp0)),
                              vpadd_s32(vget_low_s32(mmtmp1),vget_high_s32(mmtmp1)));
      mmtmp0 = vmull_s16(vrev32_s16(vmul_s16(((int16x4_t*)ul_ref128)[0],*(int16x4_t*)conjugate)), ((int16x4_t*)rxdataF128)[0]);
      mmtmp1 = vmull_s16(vrev32_s16(vmul_s16(((int16x4_t*)ul_ref128)[1],*(int16x4_t*)conjugate)), ((int16x4_t*)rxdataF128)[1]);
      mmtmp_im = vcombine_s32(vpadd_s32(vget_low_s32(mmtmp0),vget_high_s32(mmtmp0)),
                              vpadd_s32(vget_low_s32(mmtmp1),vget_high_s32(mmtmp1)));

      ul_ch128[0] = vcombine_s16(vmovn_s32(mmtmp_re),vmovn_s32(mmtmp_im));
      ul_ch128++;
      ul_ref128++;
      rxdataF128++;

      mmtmp0 = vmull_s16(((int16x4_t*)ul_ref128)[0],((int16x4_t*)rxdataF128)[0]);
      mmtmp1 = vmull_s16(((int16x4_t*)ul_ref128)[1],((int16x4_t*)rxdataF128)[1]);
      mmtmp_re = vcombine_s32(vpadd_s32(vget_low_s32(mmtmp0),vget_high_s32(mmtmp0)),
                              vpadd_s32(vget_low_s32(mmtmp1),vget_high_s32(mmtmp1)));
      mmtmp0 = vmull_s16(vrev32_s16(vmul_s16(((int16x4_t*)ul_ref128)[0],*(int16x4_t*)conjugate)), ((int16x4_t*)rxdataF128)[0]);
      mmtmp1 = vmull_s16(vrev32_s16(vmul_s16(((int16x4_t*)ul_ref128)[1],*(int16x4_t*)conjugate)), ((int16x4_t*)rxdataF128)[1]);
      mmtmp_im = vcombine_s32(vpadd_s32(vget_low_s32(mmtmp0),vget_high_s32(mmtmp0)),
                              vpadd_s32(vget_low_s32(mmtmp1),vget_high_s32(mmtmp1)));

      ul_ch128[0] = vcombine_s16(vmovn_s32(mmtmp_re),vmovn_s32(mmtmp_im));
      ul_ch128++;
      ul_ref128++;
      rxdataF128++;

231

232
#endif
233 234 235
        ul_ch128+=3;
        ul_ref128+=3;
        rxdataF128+=3;
236 237 238
      }

      alpha_ind = 0;
239 240 241 242 243

      if((cyclic_shift != 0)) {
        // Compensating for the phase shift introduced at the transmitte
#ifdef DEBUG_CH
        write_output("drs_est_pre.m","drsest_pre",ul_ch_estimates[0],300*12,1,1);
244
#endif
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

        for(i=symbol_offset; i<symbol_offset+Msc_RS; i++) {
          ul_ch_estimates_re = ((int16_t*) ul_ch_estimates[aa])[i<<1];
          ul_ch_estimates_im = ((int16_t*) ul_ch_estimates[aa])[(i<<1)+1];
          //    ((int16_t*) ul_ch_estimates[aa])[i<<1] =  (i%2 == 1? 1:-1) * ul_ch_estimates_re;
          ((int16_t*) ul_ch_estimates[aa])[i<<1] =
            (int16_t) (((int32_t) (alpha_re[alpha_ind]) * (int32_t) (ul_ch_estimates_re) +
                        (int32_t) (alpha_im[alpha_ind]) * (int32_t) (ul_ch_estimates_im))>>15);

          //((int16_t*) ul_ch_estimates[aa])[(i<<1)+1] =  (i%2 == 1? 1:-1) * ul_ch_estimates_im;
          ((int16_t*) ul_ch_estimates[aa])[(i<<1)+1] =
            (int16_t) (((int32_t) (alpha_re[alpha_ind]) * (int32_t) (ul_ch_estimates_im) -
                        (int32_t) (alpha_im[alpha_ind]) * (int32_t) (ul_ch_estimates_re))>>15);

          alpha_ind+=cyclic_shift;

          if (alpha_ind>11)
            alpha_ind-=12;
        }

265
#ifdef DEBUG_CH
266
        write_output("drs_est_post.m","drsest_post",ul_ch_estimates[0],300*12,1,1);
267
#endif
268 269 270
      }

      // Convert to time domain for visualization
Cedric Roux's avatar
Cedric Roux committed
271
      memset(temp_in_ifft_0,0,frame_parms->ofdm_symbol_size*sizeof(int32_t));
272 273
      for(i=0; i<Msc_RS; i++)
        ((int32_t*)temp_in_ifft_0)[i] = ul_ch_estimates[aa][symbol_offset+i];
Cedric Roux's avatar
Cedric Roux committed
274

275 276
      switch(frame_parms->N_RB_DL) {
      case 6:
277
	idft128((int16_t*) temp_in_ifft_0,
278 279 280 281
	       (int16_t*) ul_ch_estimates_time[aa],
	       1);
	break;
      case 25:
282
	idft512((int16_t*) temp_in_ifft_0,
283 284 285 286
	       (int16_t*) ul_ch_estimates_time[aa],
	       1);
	break;
      case 50:
287
	idft1024((int16_t*) temp_in_ifft_0,
288 289 290 291
	       (int16_t*) ul_ch_estimates_time[aa],
	       1);
	break;
      case 100:
292
	idft2048((int16_t*) temp_in_ifft_0,
293 294 295
	       (int16_t*) ul_ch_estimates_time[aa],
	       1);
	break;
296 297
      }

Cedric Roux's avatar
Cedric Roux committed
298
#if T_TRACER
299
      if (aa == 0)
Cedric Roux's avatar
Cedric Roux committed
300
        T(T_ENB_PHY_UL_CHANNEL_ESTIMATE, T_INT(0), T_INT(eNB->ulsch[UE_id]->rnti),
Cedric Roux's avatar
Cedric Roux committed
301
          T_INT(proc->frame_rx), T_INT(subframe),
302
          T_INT(0), T_BUFFER(ul_ch_estimates_time[0], 512  * 4));
Cedric Roux's avatar
Cedric Roux committed
303
#endif
304

305 306
#ifdef DEBUG_CH

307
      if (aa==0) {
308 309 310
        if (Ns == 0) {
          write_output("rxdataF_ext.m","rxF_ext",&rxdataF_ext[aa][symbol_offset],512*2,2,1);
          write_output("tmpin_ifft.m","drs_in",temp_in_ifft_0,512,1,1);
311
          write_output("drs_est0.m","drs0",ul_ch_estimates_time[aa],512,1,1);
312
        } else
313
          write_output("drs_est1.m","drs1",ul_ch_estimates_time[aa],512,1,1);
314
      }
315

316 317 318
#endif


319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
    
    
	if (Ns&1) {//we are in the second slot of the sub-frame, so do the interpolation

	  ul_ch1 = &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*pilot_pos1];
	  ul_ch2 = &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*pilot_pos2];
	  
	  
	  // Estimation of phase difference between the 2 channel estimates
	  delta_phase = lte_ul_freq_offset_estimation(frame_parms,
						      ul_ch_estimates[aa],
						      N_rb_alloc);
	  // negative phase index indicates negative Im of ru
	  //    msg("delta_phase: %d\n",delta_phase);
	  
334
#ifdef DEBUG_CH
335
	  LOG_D(PHY,"lte_ul_channel_estimation: ul_ch1 = %p, ul_ch2 = %p, pilot_pos1=%d, pilot_pos2=%d\n",ul_ch1, ul_ch2, pilot_pos1,pilot_pos2);
336
#endif
337 338 339 340 341 342 343 344
	  
	  for (k=0; k<frame_parms->symbols_per_tti; k++) {
	    
	    // we scale alpha and beta by SCALE (instead of 0x7FFF) to avoid overflows
	    //	    alpha = (int16_t) (((int32_t) SCALE * (int32_t) (pilot_pos2-k))/(pilot_pos2-pilot_pos1));
	    //	    beta  = (int16_t) (((int32_t) SCALE * (int32_t) (k-pilot_pos1))/(pilot_pos2-pilot_pos1));

	    
345
#ifdef DEBUG_CH
346
	    LOG_D(PHY,"lte_ul_channel_estimation: k=%d, alpha = %d, beta = %d\n",k,alpha,beta);
347
#endif
348
          //symbol_offset_subframe = frame_parms->N_RB_UL*12*k;
349
	    
350
          // interpolate between estimates
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
	    if ((k != pilot_pos1) && (k != pilot_pos2))  {
	      //          multadd_complex_vector_real_scalar((int16_t*) ul_ch1,alpha,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],1,Msc_RS);
	      //          multadd_complex_vector_real_scalar((int16_t*) ul_ch2,beta ,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],0,Msc_RS);
	      
	      //          multadd_complex_vector_real_scalar((int16_t*) ul_ch1,SCALE,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],1,Msc_RS);
	      //          multadd_complex_vector_real_scalar((int16_t*) ul_ch2,SCALE,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],0,Msc_RS);
	      //          msg("phase = %d\n",ru[2*cmax(((delta_phase/7)*(k-3)),0)]);
	      
	      // the phase is linearly interpolated
	      current_phase1 = (delta_phase/7)*(k-pilot_pos1);
	      current_phase2 = (delta_phase/7)*(k-pilot_pos2);
	      //          msg("sym: %d, current_phase1: %d, current_phase2: %d\n",k,current_phase1,current_phase2);
	      // set the right quadrant
	      (current_phase1 > 0) ? (ru1 = ru_90) : (ru1 = ru_90c);
	      (current_phase2 > 0) ? (ru2 = ru_90) : (ru2 = ru_90c);
	      // take absolute value and clip
	      current_phase1 = cmin(abs(current_phase1),127);
	      current_phase2 = cmin(abs(current_phase2),127);
	      
	      //          msg("sym: %d, current_phase1: %d, ru: %d + j%d, current_phase2: %d, ru: %d + j%d\n",k,current_phase1,ru1[2*current_phase1],ru1[2*current_phase1+1],current_phase2,ru2[2*current_phase2],ru2[2*current_phase2+1]);
	      
	      // rotate channel estimates by estimated phase
	      rotate_cpx_vector((int16_t*) ul_ch1,
				&ru1[2*current_phase1],
				(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],
				Msc_RS,
				15);
	      
	      rotate_cpx_vector((int16_t*) ul_ch2,
				&ru2[2*current_phase2],
				(int16_t*) &tmp_estimates[0],
				Msc_RS,
				15);
	      
	      // Combine the two rotated estimates
	      multadd_complex_vector_real_scalar((int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],SCALE,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],1,Msc_RS);
	      multadd_complex_vector_real_scalar((int16_t*) &tmp_estimates[0],SCALE,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],0,Msc_RS);
	      
	      /*
		if ((k<pilot_pos1) || ((k>pilot_pos2))) {
		
392
                multadd_complex_vector_real_scalar((int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],SCALE>>1,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],1,Msc_RS);
393
		
394
                multadd_complex_vector_real_scalar((int16_t*) &tmp_estimates[0],SCALE>>1,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],0,Msc_RS);
395 396 397
		
		} else {
		
398
                multadd_complex_vector_real_scalar((int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],SCALE>>1,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],1,Msc_RS);
399
		
400
                multadd_complex_vector_real_scalar((int16_t*) &tmp_estimates[0],SCALE>>1,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],0,Msc_RS);
401
		
402
                //              multadd_complex_vector_real_scalar((int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],alpha,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],1,Msc_RS);
403
		
404
                //              multadd_complex_vector_real_scalar((int16_t*) &tmp_estimates[0],beta ,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],0,Msc_RS);
405 406 407 408 409 410 411
		
		}
	      */
	      
	      //      memcpy(&ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],ul_ch1,Msc_RS*sizeof(int32_t));
	    }
	  } //for(k=...
412

413 414 415 416
	  // because of the scaling of alpha and beta we also need to scale the final channel estimate at the pilot positions
	  
	  //    multadd_complex_vector_real_scalar((int16_t*) ul_ch1,SCALE,(int16_t*) ul_ch1,1,Msc_RS);
	  //    multadd_complex_vector_real_scalar((int16_t*) ul_ch2,SCALE,(int16_t*) ul_ch2,1,Msc_RS);
417

418
	} //if (Ns&1)
419 420

    } //for(aa=...
421

422 423 424
  } //if(l==...


425

426
  return(0);
427
}
428

429
extern uint16_t transmission_offset_tdd[16];
430
//#define DEBUG_SRS
431

432
int32_t lte_srs_channel_estimation(LTE_DL_FRAME_PARMS *frame_parms,
433 434
                                   LTE_eNB_COMMON *common_vars,
                                   LTE_eNB_SRS *srs_vars,
435
                                   SOUNDINGRS_UL_CONFIG_DEDICATED *soundingrs_ul_config_dedicated,
436
                                   unsigned char subframe,
437
                                   unsigned char eNB_id)
438
{
439

440
  int aa;
441
  int N_symb,symbol;
442
  uint8_t nb_antennas_rx = frame_parms->nb_antennas_rx;
443 444 445 446
#ifdef DEBUG_SRS
  char fname[40], vname[40];
#endif

447 448
  //uint8_t Ssrs  = frame_parms->soundingrs_ul_config_common.srs_SubframeConfig;
  //uint8_t T_SFC = (Ssrs<=7 ? 5 : 10);
449 450

  N_symb = 2*7-frame_parms->Ncp;
451
  symbol = N_symb-1; //SRS is always in last symbol of subframe
452

453
  /*
454
     msg("SRS channel estimation eNB %d, subframs %d, %d %d %d %d %d\n",eNB_id,sub_frame_number,
455 456 457 458 459 460 461
     SRS_parms->Csrs,
     SRS_parms->Bsrs,
     SRS_parms->kTC,
     SRS_parms->n_RRC,
     SRS_parms->Ssrs);
  */

462
  //if ((1<<(sub_frame_number%T_SFC))&transmission_offset_tdd[Ssrs]) {
463

464 465 466 467 468
  if (generate_srs(frame_parms,
		   soundingrs_ul_config_dedicated,
		   &srs_vars->srs[eNB_id],
		   0x7FFF,
		   subframe)==-1) {
469
      LOG_E(PHY,"lte_srs_channel_estimation: Error in generate_srs_rx\n");
470 471 472
      return(-1);
    }

473
    for (aa=0; aa<nb_antennas_rx; aa++) {
474
#ifdef DEBUG_SRS
475 476 477 478
      LOG_E(PHY,"SRS channel estimation eNB %d, subframs %d, aarx %d, %p, %p, %p\n",eNB_id,sub_frame_number,aa,
	    &common_vars->rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],
	    srs_vars->srs,
	    srs_vars->srs_ch_estimates[aa]);
479
#endif
480
      
481 482
      //write_output("eNB_rxF.m","rxF",&common_vars->rxdataF[0][aa][2*frame_parms->ofdm_symbol_size*symbol],2*(frame_parms->ofdm_symbol_size),2,1);
      //write_output("eNB_srs.m","srs_eNB",common_vars->srs,(frame_parms->ofdm_symbol_size),1,1);
483

484

485
      mult_cpx_conj_vector((int16_t*) &common_vars->rxdataF[aa][2*frame_parms->ofdm_symbol_size*symbol],
486
			   (int16_t*) srs_vars->srs,
487
			   (int16_t*) srs_vars->srs_ch_estimates[aa],
488 489 490
			   frame_parms->ofdm_symbol_size,
			   15,
			   0);
491 492 493

#ifdef USER_MODE
#ifdef DEBUG_SRS
494 495 496
      sprintf(fname,"srs_ch_est%d.m",aa);
      sprintf(vname,"srs_est%d",aa);
      write_output(fname,vname,srs_vars->srs_ch_estimates[aa],frame_parms->ofdm_symbol_size,1,1);
497 498 499
#endif
#endif
    }
500

501 502
  /*
    else {
503
    for (aa=0;aa<nb_antennas_rx;aa++)
504
    bzero(srs_vars->srs_ch_estimates[eNB_id][aa],frame_parms->ofdm_symbol_size*sizeof(int));
505 506 507 508 509
    }
  */
  return(0);
}

510
int16_t lte_ul_freq_offset_estimation(LTE_DL_FRAME_PARMS *frame_parms,
511 512 513 514
                                      int32_t *ul_ch_estimates,
                                      uint16_t nb_rb)
{

515
#if defined(__x86_64__) || defined(__i386__)
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
  int k, rb;
  int a_idx = 64;
  uint8_t conj_flag = 0;
  uint8_t output_shift;
  int pilot_pos1 = 3 - frame_parms->Ncp;
  int pilot_pos2 = 10 - 2*frame_parms->Ncp;
  __m128i *ul_ch1 = (__m128i*)&ul_ch_estimates[pilot_pos1*frame_parms->N_RB_UL*12];
  __m128i *ul_ch2 = (__m128i*)&ul_ch_estimates[pilot_pos2*frame_parms->N_RB_UL*12];
  int32_t avg[2];
  int16_t Ravg[2];
  Ravg[0]=0;
  Ravg[1]=0;
  int16_t iv, rv, phase_idx;
  __m128i avg128U1, avg128U2, R[3], mmtmpD0,mmtmpD1,mmtmpD2,mmtmpD3;

  // round(tan((pi/4)*[1:1:N]/N)*pow2(15))
  int16_t alpha[128] = {201, 402, 603, 804, 1006, 1207, 1408, 1610, 1811, 2013, 2215, 2417, 2619, 2822, 3024, 3227, 3431, 3634, 3838, 4042, 4246, 4450, 4655, 4861, 5066, 5272, 5479, 5686, 5893, 6101, 6309, 6518, 6727, 6937, 7147, 7358, 7570, 7782, 7995, 8208, 8422, 8637, 8852, 9068, 9285, 9503, 9721, 9940, 10160, 10381, 10603, 10825, 11049, 11273, 11498, 11725, 11952, 12180, 12410, 12640, 12872, 13104, 13338, 13573, 13809, 14046, 14285, 14525, 14766, 15009, 15253, 15498, 15745, 15993, 16243, 16494, 16747, 17001, 17257, 17515, 17774, 18035, 18298, 18563, 18829, 19098, 19368, 19640, 19915, 20191, 20470, 20750, 21033, 21318, 21605, 21895, 22187, 22481, 22778, 23078, 23380, 23685, 23992, 24302, 24615, 24931, 25250, 25572, 25897, 26226, 26557, 26892, 27230, 27572, 27917, 28266, 28618, 28975, 29335, 29699, 30067, 30440, 30817, 31198, 31583, 31973, 32368, 32767};

  // compute log2_maxh (output_shift)
  avg128U1 = _mm_setzero_si128();
  avg128U2 = _mm_setzero_si128();

  for (rb=0; rb<nb_rb; rb++) {
    avg128U1 = _mm_add_epi32(avg128U1,_mm_madd_epi16(ul_ch1[0],ul_ch1[0]));
    avg128U1 = _mm_add_epi32(avg128U1,_mm_madd_epi16(ul_ch1[1],ul_ch1[1]));
    avg128U1 = _mm_add_epi32(avg128U1,_mm_madd_epi16(ul_ch1[2],ul_ch1[2]));

    avg128U2 = _mm_add_epi32(avg128U2,_mm_madd_epi16(ul_ch2[0],ul_ch2[0]));
    avg128U2 = _mm_add_epi32(avg128U2,_mm_madd_epi16(ul_ch2[1],ul_ch2[1]));
    avg128U2 = _mm_add_epi32(avg128U2,_mm_madd_epi16(ul_ch2[2],ul_ch2[2]));

    ul_ch1+=3;
    ul_ch2+=3;
  }

  avg[0] = (((int*)&avg128U1)[0] +
            ((int*)&avg128U1)[1] +
            ((int*)&avg128U1)[2] +
            ((int*)&avg128U1)[3])/(nb_rb*12);

  avg[1] = (((int*)&avg128U2)[0] +
            ((int*)&avg128U2)[1] +
            ((int*)&avg128U2)[2] +
            ((int*)&avg128U2)[3])/(nb_rb*12);

  //    msg("avg0 = %d, avg1 = %d\n",avg[0],avg[1]);
  avg[0] = cmax(avg[0],avg[1]);
  avg[1] = log2_approx(avg[0]);
  output_shift = cmax(0,avg[1]-10);
  //output_shift  = (log2_approx(avg[0])/2)+ log2_approx(frame_parms->nb_antennas_rx-1)+1;
  //    msg("avg= %d, shift = %d\n",avg[0],output_shift);

  ul_ch1 = (__m128i*)&ul_ch_estimates[pilot_pos1*frame_parms->N_RB_UL*12];
  ul_ch2 = (__m128i*)&ul_ch_estimates[pilot_pos2*frame_parms->N_RB_UL*12];

  // correlate and average the 2 channel estimates ul_ch1*ul_ch2
  for (rb=0; rb<nb_rb; rb++) {
    mmtmpD0 = _mm_madd_epi16(ul_ch1[0],ul_ch2[0]);
    mmtmpD1 = _mm_shufflelo_epi16(ul_ch1[0],_MM_SHUFFLE(2,3,0,1));
    mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
    mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)&conjugate);
    mmtmpD1 = _mm_madd_epi16(mmtmpD1,ul_ch2[0]);
    mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
    mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
    mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
    mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
    R[0] = _mm_packs_epi32(mmtmpD2,mmtmpD3);

    mmtmpD0 = _mm_madd_epi16(ul_ch1[1],ul_ch2[1]);
    mmtmpD1 = _mm_shufflelo_epi16(ul_ch1[1],_MM_SHUFFLE(2,3,0,1));
    mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
    mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)&conjugate);
    mmtmpD1 = _mm_madd_epi16(mmtmpD1,ul_ch2[1]);
    mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
    mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
    mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
    mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
    R[1] = _mm_packs_epi32(mmtmpD2,mmtmpD3);

    mmtmpD0 = _mm_madd_epi16(ul_ch1[2],ul_ch2[2]);
    mmtmpD1 = _mm_shufflelo_epi16(ul_ch1[2],_MM_SHUFFLE(2,3,0,1));
    mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
    mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)&conjugate);
    mmtmpD1 = _mm_madd_epi16(mmtmpD1,ul_ch2[2]);
    mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
    mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
    mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
    mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
    R[2] = _mm_packs_epi32(mmtmpD2,mmtmpD3);

    R[0] = _mm_add_epi16(_mm_srai_epi16(R[0],1),_mm_srai_epi16(R[1],1));
    R[0] = _mm_add_epi16(_mm_srai_epi16(R[0],1),_mm_srai_epi16(R[2],1));

    Ravg[0] += (((short*)&R)[0] +
                ((short*)&R)[2] +
                ((short*)&R)[4] +
                ((short*)&R)[6])/(nb_rb*4);

    Ravg[1] += (((short*)&R)[1] +
                ((short*)&R)[3] +
                ((short*)&R)[5] +
                ((short*)&R)[7])/(nb_rb*4);

    ul_ch1+=3;
    ul_ch2+=3;
  }

  // phase estimation on Ravg
  //   Ravg[0] = 56;
  //   Ravg[1] = 0;
  rv = Ravg[0];
  iv = Ravg[1];

  if (iv<0)
    iv = -Ravg[1];

  if (rv<iv) {
    rv = iv;
    iv = Ravg[0];
    conj_flag = 1;
  }

  //   msg("rv = %d, iv = %d\n",rv,iv);
  //   msg("max_avg = %d, log2_approx = %d, shift = %d\n",avg[0], avg[1], output_shift);

  for (k=0; k<6; k++) {
    (iv<(((int32_t)(alpha[a_idx]*rv))>>15)) ? (a_idx -= 32>>k) : (a_idx += 32>>k);
  }

  (conj_flag==1) ? (phase_idx = 127-(a_idx>>1)) : (phase_idx = (a_idx>>1));

  if (Ravg[1]<0)
    phase_idx = -phase_idx;

  return(phase_idx);
651 652 653
#elif defined(__arm__)
  return(0);
#endif
654
}