lte_ue_measurements.c 28.7 KB
Newer Older
ghaddab's avatar
ghaddab committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*******************************************************************************
    OpenAirInterface 
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is 
   included in this distribution in the file called "COPYING". If not, 
   see <http://www.gnu.org/licenses/>.

  Contact Information
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
  OpenAirInterface Dev  : openair4g-devel@eurecom.fr
  
ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
ghaddab's avatar
ghaddab committed
27 28

 *******************************************************************************/
29 30 31 32 33 34
// this function fills the PHY_vars->PHY_measurement structure

#include "PHY/defs.h"
#include "PHY/extern.h"
#include "SCHED/defs.h"
#include "SCHED/extern.h"
35
#include "log.h"
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

#include "emmintrin.h"

#ifdef __SSE3__
#include "pmmintrin.h"
#include "tmmintrin.h"
#else
__m128i zeroPMI;
#define _mm_abs_epi16(xmmx) _mm_xor_si128((xmmx),_mm_cmpgt_epi16(zeroPMI,(xmmx)))
#define _mm_sign_epi16(xmmx,xmmy) _mm_xor_si128((xmmx),_mm_cmpgt_epi16(zeroPMI,(xmmy)))
#endif

//#define k1 1000
#define k1 ((long long int) 1000)
#define k2 ((long long int) (1024-k1))

52
//#define DEBUG_MEAS
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

#ifdef USER_MODE
void print_shorts(char *s,__m128i *x) {

  short *tempb = (short *)x;

  printf("%s  : %d,%d,%d,%d,%d,%d,%d,%d\n",s,
         tempb[0],tempb[1],tempb[2],tempb[3],tempb[4],tempb[5],tempb[6],tempb[7]
         );

}
void print_ints(char *s,__m128i *x) {

  int *tempb = (int *)x;

  printf("%s  : %d,%d,%d,%d\n",s,
         tempb[0],tempb[1],tempb[2],tempb[3]
         );

}
#endif

__m128i pmi128_re __attribute__ ((aligned(16)));
__m128i pmi128_im __attribute__ ((aligned(16)));
__m128i mmtmpPMI0 __attribute__ ((aligned(16)));
__m128i mmtmpPMI1 __attribute__ ((aligned(16)));
__m128i mmtmpPMI2 __attribute__ ((aligned(16)));
__m128i mmtmpPMI3 __attribute__ ((aligned(16)));

knopp's avatar
 
knopp committed
82
int16_t get_PL(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index) {
83

knopp's avatar
 
knopp committed
84
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
85 86 87 88 89 90 91 92 93 94 95
  int RSoffset;
    
  LOG_D(PHY,"get_PL : Frame %d : rssi %d, eNB power %d\n", phy_vars_ue->frame,
	dB_fixed(phy_vars_ue->PHY_measurements.rssi)-phy_vars_ue->rx_total_gain_dB,
    phy_vars_ue->lte_frame_parms.pdsch_config_common.referenceSignalPower);
  
  if (phy_vars_ue->lte_frame_parms.mode1_flag == 1)
    RSoffset = 6;
  else
    RSoffset = 3;

gauthier's avatar
gauthier committed
96
  return((int16_t)(phy_vars_ue->rx_total_gain_dB-dB_fixed(phy_vars_ue->PHY_measurements.rssi/RSoffset) + 
97 98 99
  	       phy_vars_ue->lte_frame_parms.pdsch_config_common.referenceSignalPower));
}

100

knopp's avatar
 
knopp committed
101
uint8_t get_n_adj_cells (uint8_t Mod_id,uint8_t CC_id){
102

knopp's avatar
 
knopp committed
103
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
104 105 106 107 108 109
  if (phy_vars_ue)  
    return phy_vars_ue->PHY_measurements.n_adj_cells;
  else 
    return 0;
}

110
uint32_t get_rx_total_gain_dB (uint8_t Mod_id,uint8_t CC_id){
111

knopp's avatar
 
knopp committed
112
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
113 114
  if (phy_vars_ue)  
    return phy_vars_ue->rx_total_gain_dB;
115
  return 0xFFFFFFFF;
116
}
117
uint32_t get_RSSI (uint8_t Mod_id,uint8_t CC_id){
118

knopp's avatar
 
knopp committed
119
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
120 121
  if (phy_vars_ue)  
    return phy_vars_ue->PHY_measurements.rssi;
122
  return 0xFFFFFFFF;
123
}
124
uint32_t get_RSRP(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index) {
125
  
knopp's avatar
 
knopp committed
126
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
127 128
  if (phy_vars_ue)
    return phy_vars_ue->PHY_measurements.rsrp[eNB_index];
129
  return 0xFFFFFFFF;
130 131
}

132
uint32_t get_RSRQ(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index) {
133

knopp's avatar
 
knopp committed
134
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
135 136
  if (phy_vars_ue)
    return phy_vars_ue->PHY_measurements.rsrq[eNB_index];
137
  return 0xFFFFFFFF;
138 139
}

knopp's avatar
 
knopp committed
140
int8_t set_RSRP_filtered(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index,float rsrp) {
141
  
knopp's avatar
 
knopp committed
142
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
143 144 145 146 147 148 149 150
  if (phy_vars_ue){
    phy_vars_ue->PHY_measurements.rsrp_filtered[eNB_index]=rsrp;
    return 0;
  }
  LOG_W(PHY,"[UE%d] could not set the rsrp\n",Mod_id);
  return -1;
}

knopp's avatar
 
knopp committed
151
int8_t set_RSRQ_filtered(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index,float rsrq) {
152

knopp's avatar
 
knopp committed
153
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
154 155 156 157 158 159 160 161
  if (phy_vars_ue){
    phy_vars_ue->PHY_measurements.rsrq_filtered[eNB_index]=rsrq;
    return 0;
  }
  LOG_W(PHY,"[UE%d] could not set the rsrq\n",Mod_id);
  return -1;
  
}
162 163
 
void ue_rrc_measurements(PHY_VARS_UE *phy_vars_ue,
gauthier's avatar
gauthier committed
164 165
			 uint8_t slot,
			 uint8_t abstraction_flag) {
166

167
  int aarx,rb;
gauthier's avatar
gauthier committed
168
  int16_t *rxF;
169

gauthier's avatar
gauthier committed
170 171 172 173
  uint16_t Nid_cell = phy_vars_ue->lte_frame_parms.Nid_cell;
  uint8_t eNB_offset,nu,l,nushift,k;
  uint16_t off;
  int16_t rx_power_correction;
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223


  // if the fft size an odd power of 2, the output of the fft is shifted one too much, so we need to compensate for that
  if  (abstraction_flag==0) {
    rx_power_correction = 1;
  }
  else {
#ifndef NEW_FFT
    if ((phy_vars_ue->lte_frame_parms.ofdm_symbol_size == 128) ||
	(phy_vars_ue->lte_frame_parms.ofdm_symbol_size == 512)) 
      rx_power_correction = 2;
    else
      rx_power_correction = 1;
#else
    rx_power_correction=1;
#endif
  }

  for (eNB_offset = 0;eNB_offset<1+phy_vars_ue->PHY_measurements.n_adj_cells;eNB_offset++) {

    if (eNB_offset==0)
      phy_vars_ue->PHY_measurements.rssi = 0;

#ifdef DEBUG_MEAS
    LOG_D(PHY,"ue_rrc_measurements: eNB_offset %d => rssi %d\n",eNB_offset,phy_vars_ue->PHY_measurements.rssi);
#endif
    // recompute nushift with eNB_offset corresponding to adjacent eNB on which to perform channel estimation
    //    printf("[PHY][UE %d] Frame %d slot %d Doing ue_rrc_measurements rsrp/rssi (Nid_cell %d, Nid2 %d, nushift %d, eNB_offset %d)\n",phy_vars_ue->Mod_id,phy_vars_ue->frame,slot,Nid_cell,Nid2,nushift,eNB_offset);
    if (eNB_offset > 0)
      Nid_cell = phy_vars_ue->PHY_measurements.adj_cell_id[eNB_offset-1];


    nushift =  Nid_cell%6;



    phy_vars_ue->PHY_measurements.rsrp[eNB_offset] = 0;


    if (abstraction_flag == 0) {
      
      // compute RSRP using symbols 0 and 4-frame_parms->Ncp

      for (l=0,nu=0;l<=(4-phy_vars_ue->lte_frame_parms.Ncp);l+=(4-phy_vars_ue->lte_frame_parms.Ncp),nu=3) {
	k = (nu + nushift)%6;
#ifdef DEBUG_MEAS
	LOG_D(PHY,"[UE %d] Frame %d slot %d Doing ue_rrc_measurements rsrp/rssi (Nid_cell %d, nushift %d, eNB_offset %d, k %d)\n",phy_vars_ue->Mod_id,phy_vars_ue->frame,slot,Nid_cell,nushift,eNB_offset,k);
#endif
	for (aarx=0;aarx<phy_vars_ue->lte_frame_parms.nb_antennas_rx;aarx++) {
#ifndef NEW_FFT
gauthier's avatar
gauthier committed
224
	  rxF = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(l*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)<<1];
225 226
	  off  = (phy_vars_ue->lte_frame_parms.first_carrier_offset+k)<<2;
#else
gauthier's avatar
gauthier committed
227
	  rxF = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(l*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)];
228
	  off  = (phy_vars_ue->lte_frame_parms.first_carrier_offset+k)<<1;
229
#endif
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

      if (l==(4-phy_vars_ue->lte_frame_parms.Ncp)) {
	    for (rb=0;rb<phy_vars_ue->lte_frame_parms.N_RB_DL;rb++) {
		
		//	  printf("rb %d, off %d, off2 %d\n",rb,off,off2);
		
		phy_vars_ue->PHY_measurements.rsrp[eNB_offset] += ((rxF[off]*rxF[off])+(rxF[off+1]*rxF[off+1]));
#ifndef NEW_FFT
		off+=24;
		if (off>=(phy_vars_ue->lte_frame_parms.ofdm_symbol_size<<2))
		  off = (1+k)<<2;
#else
		off+=12;
		if (off>=(phy_vars_ue->lte_frame_parms.ofdm_symbol_size<<1))
		  off = (1+k)<<1;
#endif
		phy_vars_ue->PHY_measurements.rsrp[eNB_offset] += ((rxF[off]*rxF[off])+(rxF[off+1]*rxF[off+1]));
#ifndef NEW_FFT
		off+=24;
		if (off>=(phy_vars_ue->lte_frame_parms.ofdm_symbol_size<<2))
		  off = (1+k)<<2;
#else
		off+=12;
		if (off>=(phy_vars_ue->lte_frame_parms.ofdm_symbol_size<<1))
		  off = (1+k)<<1;
#endif
	      }
	  
	      /*
	      if ((eNB_offset==0)&&(l==0)) {
		for (i=0;i<6;i++,off2+=4)
		  phy_vars_ue->PHY_measurements.rssi += ((rxF[off2]*rxF[off2])+(rxF[off2+1]*rxF[off2+1]));
		if (off2==(phy_vars_ue->lte_frame_parms.ofdm_symbol_size<<2))
		  off2=4;
		for (i=0;i<6;i++,off2+=4)
		  phy_vars_ue->PHY_measurements.rssi += ((rxF[off2]*rxF[off2])+(rxF[off2+1]*rxF[off2+1]));
	      }
	      */
	      //	  printf("slot %d, rb %d => rsrp %d, rssi %d\n",slot,rb,phy_vars_ue->PHY_measurements.rsrp[eNB_offset],phy_vars_ue->PHY_measurements.rssi);
	    }
	}
      }


274
      // 2 RE per PRB
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
      phy_vars_ue->PHY_measurements.rsrp[eNB_offset]/=(24*phy_vars_ue->lte_frame_parms.N_RB_DL);
      phy_vars_ue->PHY_measurements.rsrp[eNB_offset]*=rx_power_correction;

      //      phy_vars_ue->PHY_measurements.rsrp[eNB_offset] = phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_offset][0][0]/(2*phy_vars_ue->lte_frame_parms.N_RB_DL);
      if (eNB_offset == 0) {
	//	phy_vars_ue->PHY_measurements.rssi/=(24*phy_vars_ue->lte_frame_parms.N_RB_DL);
	//	phy_vars_ue->PHY_measurements.rssi*=rx_power_correction;
	phy_vars_ue->PHY_measurements.rssi=phy_vars_ue->PHY_measurements.rsrp[0]*24/2;
      }
      if (phy_vars_ue->PHY_measurements.rssi>0)
	phy_vars_ue->PHY_measurements.rsrq[eNB_offset] = 100*phy_vars_ue->PHY_measurements.rsrp[eNB_offset]*phy_vars_ue->lte_frame_parms.N_RB_DL/phy_vars_ue->PHY_measurements.rssi;
      else
	phy_vars_ue->PHY_measurements.rsrq[eNB_offset] = -12000;
      
      //((200*phy_vars_ue->PHY_measurements.rsrq[eNB_offset]) + ((1024-200)*100*phy_vars_ue->PHY_measurements.rsrp[eNB_offset]*phy_vars_ue->lte_frame_parms.N_RB_DL/phy_vars_ue->PHY_measurements.rssi))>>10;
    }
    else {   // Do abstraction of RSRP and RSRQ
      phy_vars_ue->PHY_measurements.rssi = phy_vars_ue->PHY_measurements.rx_power_avg[0];
293 294 295
      // dummay value for the moment
      phy_vars_ue->PHY_measurements.rsrp[eNB_offset] = -93 ;     
      phy_vars_ue->PHY_measurements.rsrq[eNB_offset] = 3;
296 297

    }
298
    if (((phy_vars_ue->frame %10) == 0) && (slot == 1)) {
299
#ifdef DEBUG_MEAS
300
    if (eNB_offset == 0)
301 302 303
	LOG_D(PHY,"[UE %d] Frame %d, slot %d RRC Measurements => rssi %3.1f dBm (digital: %3.1f dB)\n",phy_vars_ue->Mod_id,
	      phy_vars_ue->frame,slot,10*log10(phy_vars_ue->PHY_measurements.rssi)-phy_vars_ue->rx_total_gain_dB,
	      10*log10(phy_vars_ue->PHY_measurements.rssi));
304 305 306 307 308 309 310
	LOG_D(PHY,"[UE %d] Frame %d, slot %d RRC Measurements (idx %d, Cell id %d) => rsrp: %3.1f (%3.1f) dBm, rsrq: %3.1f dB\n",
	      phy_vars_ue->Mod_id,
	      phy_vars_ue->frame,slot,eNB_offset,
	      (eNB_offset>0) ? phy_vars_ue->PHY_measurements.adj_cell_id[eNB_offset-1] : phy_vars_ue->lte_frame_parms.Nid_cell,
	      (dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_offset])/10.0)-phy_vars_ue->rx_total_gain_dB-dB_fixed(phy_vars_ue->lte_frame_parms.N_RB_DL*12),
	      (10*log10(phy_vars_ue->PHY_measurements.rx_power_avg[0])/10.0)-phy_vars_ue->rx_total_gain_dB-dB_fixed(phy_vars_ue->lte_frame_parms.N_RB_DL*12),
	      (10*log10(phy_vars_ue->PHY_measurements.rsrq[eNB_offset]))-20);
311
	//LOG_D(PHY,"RSRP_total_dB: %3.2f \n",(dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_offset])/10.0)-phy_vars_ue->rx_total_gain_dB-dB_fixed(phy_vars_ue->lte_frame_parms.N_RB_DL*12));
312

313 314 315 316
    //LOG_D(PHY,"RSRP_dB: %3.2f \n",(dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_offset])/10.0));
    //LOG_D(PHY,"gain_loss_dB: %d \n",phy_vars_ue->rx_total_gain_dB);
    //LOG_D(PHY,"gain_fixed_dB: %d \n",dB_fixed(phy_vars_ue->lte_frame_parms.N_RB_DL*12));
#endif
317
    }
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
  }
}

void lte_ue_measurements(PHY_VARS_UE *phy_vars_ue,
			   unsigned int subframe_offset,
			   unsigned char N0_symbol,
			   unsigned char abstraction_flag){


    int aarx,aatx,eNB_id=0,rx_power_correction=1,gain_offset=0;
    //int rx_power[NUMBER_OF_CONNECTED_eNB_MAX];
    int i;
    unsigned int limit,subband;
    __m128i *dl_ch0_128,*dl_ch1_128;
    int *dl_ch0,*dl_ch1;
    LTE_DL_FRAME_PARMS *frame_parms = &phy_vars_ue->lte_frame_parms;

    phy_vars_ue->PHY_measurements.nb_antennas_rx = frame_parms->nb_antennas_rx;

#ifdef CBMIMO1
  if (openair_daq_vars.rx_rf_mode == 0)
    gain_offset = 25;
  else
    gain_offset = 0;
#endif

#ifndef __SSE3__
    zeroPMI = _mm_xor_si128(zeroPMI,zeroPMI);
#endif
  
    if (phy_vars_ue->init_averaging == 1) {
      for (eNB_id=0;eNB_id<phy_vars_ue->n_connected_eNB;eNB_id++) {
	phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id] = 0;
      }

      for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
	phy_vars_ue->PHY_measurements.n0_power[aarx] = 0;
	phy_vars_ue->PHY_measurements.n0_power_dB[aarx] = 0;
      }
    
      phy_vars_ue->PHY_measurements.n0_power_tot = 0;
      phy_vars_ue->PHY_measurements.n0_power_tot_dB = 0;
      phy_vars_ue->PHY_measurements.n0_power_avg = 0;
      phy_vars_ue->PHY_measurements.n0_power_avg_dB = 0;
    }

    // if the fft size an odd power of 2, the output of the fft is shifted one too much, so we need to compensate for that
    if (abstraction_flag==0) {
      rx_power_correction = 1;
    }
    else {
#ifndef NEW_FFT
      if ((frame_parms->ofdm_symbol_size == 128) || (frame_parms->ofdm_symbol_size == 512)) 
	rx_power_correction = 2;
      else
	rx_power_correction = 1;
#else
      rx_power_correction=1;
#endif 
    } 
  
    // noise measurements
    // for abstraction we do noise measurements based on the precalculated phy_vars_ue->N0
    // otherwise if there is a symbol where we can take noise measurements on, we measure there
    // otherwise do not update the noise measurements 
  
    if (abstraction_flag!=0) {
      phy_vars_ue->PHY_measurements.n0_power_tot = 0;
      for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
	phy_vars_ue->PHY_measurements.n0_power[aarx] = pow(10.0,phy_vars_ue->N0/10.0)*pow(10.0,((double)phy_vars_ue->rx_total_gain_dB)/10.0);
	phy_vars_ue->PHY_measurements.n0_power_dB[aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power[aarx]);
	phy_vars_ue->PHY_measurements.n0_power_tot +=  phy_vars_ue->PHY_measurements.n0_power[aarx];
      } 
      phy_vars_ue->PHY_measurements.n0_power_tot_dB = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power_tot);
      phy_vars_ue->PHY_measurements.n0_power_tot_dBm = phy_vars_ue->PHY_measurements.n0_power_tot_dB - phy_vars_ue->rx_total_gain_dB;
    }
    else if (N0_symbol != 0) {
      phy_vars_ue->PHY_measurements.n0_power_tot = 0;
      for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
#ifndef HW_PREFIX_REMOVAL
	phy_vars_ue->PHY_measurements.n0_power[aarx] = signal_energy(&phy_vars_ue->lte_ue_common_vars.rxdata[aarx][subframe_offset+frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples0],frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples);
#else
	phy_vars_ue->PHY_measurements.n0_power[aarx] = signal_energy(&phy_vars_ue->lte_ue_common_vars.rxdata[aarx][subframe_offset+frame_parms->ofdm_symbol_size],frame_parms->ofdm_symbol_size);
#endif
	phy_vars_ue->PHY_measurements.n0_power_dB[aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power[aarx]);
	phy_vars_ue->PHY_measurements.n0_power_tot +=  phy_vars_ue->PHY_measurements.n0_power[aarx];
      }

      phy_vars_ue->PHY_measurements.n0_power_tot_dB = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power_tot);
      phy_vars_ue->PHY_measurements.n0_power_tot_dBm = phy_vars_ue->PHY_measurements.n0_power_tot_dB - phy_vars_ue->rx_total_gain_dB + gain_offset;
      //    printf("PHY measurements UE %d: n0_power %d (%d)\n",phy_vars_ue->Mod_id,phy_vars_ue->PHY_measurements.n0_power_tot_dBm,phy_vars_ue->PHY_measurements.n0_power_tot_dB);
    }
    else {
      phy_vars_ue->PHY_measurements.n0_power_tot_dBm = phy_vars_ue->PHY_measurements.n0_power_tot_dB - phy_vars_ue->rx_total_gain_dB + gain_offset;
    }

    // signal measurements  
    for (eNB_id=0;eNB_id<phy_vars_ue->n_connected_eNB;eNB_id++) {
      for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
	for (aatx=0; aatx<frame_parms->nb_antennas_tx_eNB; aatx++) {
	  phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx] = 
	    (signal_energy_nodc(&phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][(aatx<<1) + aarx][0],
				(frame_parms->N_RB_DL*12))*rx_power_correction);
	    //- phy_vars_ue->PHY_measurements.n0_power[aarx];
	
	  if (phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx]<0)
	    phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx] = 0; //phy_vars_ue->PHY_measurements.n0_power[aarx];
	
	  phy_vars_ue->PHY_measurements.rx_spatial_power_dB[eNB_id][aatx][aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx]);
	
	  if (aatx==0)
	    phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx] = phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx];
	  else
	    phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx] += phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx];
	} //aatx

	phy_vars_ue->PHY_measurements.rx_power_dB[eNB_id][aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx]);

	if (aarx==0)
	  phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id] = phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx];
	else
	  phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id] += phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx];
      } //aarx

      phy_vars_ue->PHY_measurements.rx_power_tot_dB[eNB_id] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id]);

    } //eNB_id

    // filter to remove jitter
    if (phy_vars_ue->init_averaging == 0) {
      for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++)
	phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id] = (int) 
	  (((k1*((long long int)(phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id]))) + 
	    (k2*((long long int)(phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id]))))>>10);
      phy_vars_ue->PHY_measurements.n0_power_avg = (int)
	(((k1*((long long int) (phy_vars_ue->PHY_measurements.n0_power_avg))) + 
	  (k2*((long long int) (phy_vars_ue->PHY_measurements.n0_power_tot))))>>10);
    }
    else {
      for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++)
	phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id] = phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id];
      phy_vars_ue->PHY_measurements.n0_power_avg = phy_vars_ue->PHY_measurements.n0_power_tot;
      phy_vars_ue->init_averaging = 0;
    }

    for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++) {
      phy_vars_ue->PHY_measurements.rx_power_avg_dB[eNB_id] = dB_fixed( phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id]);
      phy_vars_ue->PHY_measurements.wideband_cqi_tot[eNB_id] = dB_fixed2(phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id],phy_vars_ue->PHY_measurements.n0_power_tot);
      phy_vars_ue->PHY_measurements.wideband_cqi_avg[eNB_id] = dB_fixed2(phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id],phy_vars_ue->PHY_measurements.n0_power_avg);
      phy_vars_ue->PHY_measurements.rx_rssi_dBm[eNB_id] = phy_vars_ue->PHY_measurements.rx_power_avg_dB[eNB_id] - phy_vars_ue->rx_total_gain_dB + gain_offset;
    }
    phy_vars_ue->PHY_measurements.n0_power_avg_dB = dB_fixed( phy_vars_ue->PHY_measurements.n0_power_avg);

    for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++) {
      if (frame_parms->mode1_flag==0) {
	// cqi/pmi information
      
	for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
	  dl_ch0    = &phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][aarx][4];
	  dl_ch1    = &phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][2+aarx][4];
	
	  for (subband=0;subband<7;subband++) {
	  
	    // cqi
	    if (aarx==0)
	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband]=0;
	  
	    if (subband<6) {
	      /*
		for (i=0;i<48;i++)
		msg("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]);
	      */
	      phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] = 
		(signal_energy_nodc(dl_ch0,48) + signal_energy_nodc(dl_ch1,48))*rx_power_correction;
	      if ( phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] < 0)
		phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband]=0;
	      /*
	      else
		phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband]-=phy_vars_ue->PHY_measurements.n0_power[aarx];
	      */

	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
	      phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
											      phy_vars_ue->PHY_measurements.n0_power[aarx]);
	    }
	    else {
	      //	    for (i=0;i<12;i++)
	      //	      printf("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]); 
	      phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] = (signal_energy_nodc(dl_ch0,12) + signal_energy_nodc(dl_ch1,12))*rx_power_correction; // - phy_vars_ue->PHY_measurements.n0_power[aarx];
	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
	      phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
											      phy_vars_ue->PHY_measurements.n0_power[aarx]);			
	    }
	    dl_ch1+=48;
	    dl_ch0+=48;
	    //	  msg("subband_cqi[%d][%d][%d] => %d (%d dB)\n",eNB_id,aarx,subband,phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband]);
	  }
	
	}
	for (subband=0;subband<7;subband++) {
	  phy_vars_ue->PHY_measurements.subband_cqi_tot_dB[eNB_id][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband],phy_vars_ue->PHY_measurements.n0_power_tot);
	  //	  msg("subband_cqi_tot[%d][%d] => %d dB (n0 %d)\n",eNB_id,subband,phy_vars_ue->PHY_measurements.subband_cqi_tot_dB[eNB_id][subband],phy_vars_ue->PHY_measurements.n0_power_tot);
	}	
      
	for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
        // skip the first 4 RE due to interpolation filter length of 5 (not possible to skip 5 due to 128i alignment, must be multiple of 128bit)
	  dl_ch0_128    = (__m128i *)&phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][aarx][4];
	  dl_ch1_128    = (__m128i *)&phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][2+aarx][4];
	  /*
	    #ifdef DEBUG_PHY	
	    if(eNB_id==0){
	    print_shorts("Ch0",dl_ch0_128);
	    print_shorts("Ch1",dl_ch1_128);
	    printf("eNB_ID = %d\n",eNB_id);
	    }
	    #endif
	  */
	  for (subband=0;subband<7;subband++) {
	  
	  
	    // pmi
	  
	    pmi128_re = _mm_xor_si128(pmi128_re,pmi128_re);
	    pmi128_im = _mm_xor_si128(pmi128_im,pmi128_im);
	    // limit is the number of groups of 4 REs in a subband (12 = 4 RBs, 3 = 1 RB)
	    // for 5 MHz channelization, there are 7 subbands, 6 of size 4 RBs and 1 of size 1 RB
	    limit = (subband < 6) ? 12 : 3;
	    for (i=0;i<limit;i++) {
	    
	      // For each RE in subband perform ch0 * conj(ch1)
	      // multiply by conjugated channel
	      // if(eNB_id==0){
	      //print_shorts("ch0",dl_ch0_128);
	      //print_shorts("ch1",dl_ch1_128);
	      // }
	      // if(i==0){
	      mmtmpPMI0 = _mm_xor_si128(mmtmpPMI0,mmtmpPMI0);
	      mmtmpPMI1 = _mm_xor_si128(mmtmpPMI1,mmtmpPMI1);
	      //	    }
	      // if(eNB_id==0)
	      // print_ints("Pre_re",&mmtmpPMI0);

	      mmtmpPMI0 = _mm_madd_epi16(dl_ch0_128[0],dl_ch1_128[0]);
	      //  if(eNB_id==0)
	      //  print_ints("re",&mmtmpPMI0);
	    
	      // mmtmpPMI0 contains real part of 4 consecutive outputs (32-bit)
	      // print_shorts("Ch1",dl_ch1_128);
	    
	      mmtmpPMI1 = _mm_shufflelo_epi16(dl_ch1_128[0],_MM_SHUFFLE(2,3,0,1));//_MM_SHUFFLE(2,3,0,1)
	      // print_shorts("mmtmpPMI1:",&mmtmpPMI1);
	      mmtmpPMI1 = _mm_shufflehi_epi16(mmtmpPMI1,_MM_SHUFFLE(2,3,0,1));
	      // print_shorts("mmtmpPMI1:",&mmtmpPMI1);

	      mmtmpPMI1 = _mm_sign_epi16(mmtmpPMI1,*(__m128i*)&conjugate[0]);
	      // print_shorts("mmtmpPMI1:",&mmtmpPMI1);
	      mmtmpPMI1 = _mm_madd_epi16(mmtmpPMI1,dl_ch0_128[0]);
	      //  if(eNB_id==0)
	      //  print_ints("im",&mmtmpPMI1);
	      // mmtmpPMI1 contains imag part of 4 consecutive outputs (32-bit)
	    
	      pmi128_re = _mm_add_epi32(pmi128_re,mmtmpPMI0);
	      pmi128_im = _mm_add_epi32(pmi128_im,mmtmpPMI1);
	      dl_ch0_128++;
	      dl_ch1_128++;
	    }
	    phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx] = (((int *)&pmi128_re)[0] + ((int *)&pmi128_re)[1] + ((int *)&pmi128_re)[2] + ((int *)&pmi128_re)[3])>>2;
	    //	  if(eNB_id==0)
	    // printf("in lte_ue_measurements.c: pmi_re %d\n",phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx]);
	    phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx] = (((int *)&pmi128_im)[0] + ((int *)&pmi128_im)[1] + ((int *)&pmi128_im)[2] + ((int *)&pmi128_im)[3])>>2;
	    //	  if(eNB_id==0)
	    // printf("in lte_ue_measurements.c: pmi_im %d\n",phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx]);
	    phy_vars_ue->PHY_measurements.wideband_pmi_re[eNB_id][aarx] += phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx];	  phy_vars_ue->PHY_measurements.wideband_pmi_im[eNB_id][aarx] += phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx];
	    //	    msg("subband_pmi[%d][%d][%d] => (%d,%d)\n",eNB_id,subband,aarx,phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx],phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx]);
	  
	  } // subband loop
	} // rx antenna loop  
      }  // if frame_parms->mode1_flag == 0
      else {
	// cqi information only for mode 1
	for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
	  dl_ch0    = &phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][aarx][4];
	
	  for (subband=0;subband<7;subband++) {
	  
	    // cqi
	    if (aarx==0)
	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband]=0;
	  
	    if (subband<6) {
	      //	    for (i=0;i<48;i++)
	      //	      printf("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]);
	      phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] = 
		(signal_energy_nodc(dl_ch0,48) )*rx_power_correction - phy_vars_ue->PHY_measurements.n0_power[aarx];
	    
	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
	      phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
											      phy_vars_ue->PHY_measurements.n0_power[aarx]);
	    }
	    else {
	      //	    for (i=0;i<12;i++)
	      //	      printf("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]); 
	      phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] = (signal_energy_nodc(dl_ch0,12) )*rx_power_correction - phy_vars_ue->PHY_measurements.n0_power[aarx];
	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
	      phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
											      phy_vars_ue->PHY_measurements.n0_power[aarx]);							
	    }
	    dl_ch1+=48;
	    //	  msg("subband_cqi[%d][%d][%d] => %d (%d dB)\n",eNB_id,aarx,subband,phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband]);
	  }
	}
	for (subband=0;subband<7;subband++) {
	  phy_vars_ue->PHY_measurements.subband_cqi_tot_dB[eNB_id][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband],phy_vars_ue->PHY_measurements.n0_power_tot);
	}
      }

      phy_vars_ue->PHY_measurements.rank[eNB_id] = 0;
      for (i=0;i<NUMBER_OF_SUBBANDS;i++) {
	phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 0;
	if (frame_parms->nb_antennas_rx>1) {
	  if (phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][0][i] >= phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][1][i])
	    phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 0;
	  else
	    phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 1;
	}
	else
	  phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 0;
      }
      // if(eNB_id==0)
      // printf("in lte_ue_measurements: selected rx_antenna[eNB_id==0]:%u\n", phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i]);
    }  // eNB_id loop

    _mm_empty();
    _m_empty();

  }


gauthier's avatar
gauthier committed
656
  void lte_ue_measurements_emul(PHY_VARS_UE *phy_vars_ue,uint8_t last_slot,uint8_t eNB_id) {
657 658 659 660

    msg("[PHY] EMUL UE lte_ue_measurements_emul last slot %d, eNB_id %d\n",last_slot,eNB_id);
  }