lte_ue_measurements.c 33.1 KB
Newer Older
ghaddab's avatar
ghaddab committed
1
/*******************************************************************************
2
    OpenAirInterface
ghaddab's avatar
ghaddab committed
3 4 5 6 7 8 9 10 11 12 13 14 15 16
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
17 18
    along with OpenAirInterface.The full GNU General Public License is
   included in this distribution in the file called "COPYING". If not,
ghaddab's avatar
ghaddab committed
19 20 21 22 23 24
   see <http://www.gnu.org/licenses/>.

  Contact Information
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
  OpenAirInterface Dev  : openair4g-devel@eurecom.fr
25

ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
ghaddab's avatar
ghaddab committed
27 28

 *******************************************************************************/
29 30 31 32 33 34
// this function fills the PHY_vars->PHY_measurement structure

#include "PHY/defs.h"
#include "PHY/extern.h"
#include "SCHED/defs.h"
#include "SCHED/extern.h"
35
#include "log.h"
36
#include "PHY/sse_intrin.h"
37 38 39 40 41

//#define k1 1000
#define k1 ((long long int) 1000)
#define k2 ((long long int) (1024-k1))

knopp's avatar
 
knopp committed
42
//#define DEBUG_MEAS
43 44

#ifdef USER_MODE
45 46
void print_shorts(char *s,__m128i *x)
{
47 48 49 50 51

  short *tempb = (short *)x;

  printf("%s  : %d,%d,%d,%d,%d,%d,%d,%d\n",s,
         tempb[0],tempb[1],tempb[2],tempb[3],tempb[4],tempb[5],tempb[6],tempb[7]
52
        );
53 54

}
55 56
void print_ints(char *s,__m128i *x)
{
57 58 59 60 61

  int *tempb = (int *)x;

  printf("%s  : %d,%d,%d,%d\n",s,
         tempb[0],tempb[1],tempb[2],tempb[3]
62
        );
63 64 65 66 67 68 69 70 71 72 73

}
#endif

__m128i pmi128_re __attribute__ ((aligned(16)));
__m128i pmi128_im __attribute__ ((aligned(16)));
__m128i mmtmpPMI0 __attribute__ ((aligned(16)));
__m128i mmtmpPMI1 __attribute__ ((aligned(16)));
__m128i mmtmpPMI2 __attribute__ ((aligned(16)));
__m128i mmtmpPMI3 __attribute__ ((aligned(16)));

74 75
int16_t get_PL(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index)
{
76

knopp's avatar
 
knopp committed
77
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
78
  int RSoffset;
79 80


81 82 83 84
  if (phy_vars_ue->lte_frame_parms.mode1_flag == 1)
    RSoffset = 6;
  else
    RSoffset = 3;
85 86


87
  LOG_D(PHY,"get_PL : Frame %d : rsrp %f dBm/RE (%f), eNB power %d dBm/RE\n", phy_vars_ue->frame_rx,
88 89 90 91 92 93 94 95
        (1.0*dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_index])-(10.0*phy_vars_ue->rx_total_gain_dB))/10.0,
        10*log10((double)phy_vars_ue->PHY_measurements.rsrp[eNB_index]),
        phy_vars_ue->lte_frame_parms.pdsch_config_common.referenceSignalPower);

  return((int16_t)(((10*phy_vars_ue->rx_total_gain_dB) -
                    dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_index])+
                    //        dB_fixed_times10(RSoffset*12*PHY_vars_UE_g[Mod_id][CC_id]->lte_frame_parms.N_RB_DL) +
                    (phy_vars_ue->lte_frame_parms.pdsch_config_common.referenceSignalPower*10))/10));
96 97
}

98

99 100
uint8_t get_n_adj_cells (uint8_t Mod_id,uint8_t CC_id)
{
101

knopp's avatar
 
knopp committed
102
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
103 104

  if (phy_vars_ue)
105
    return phy_vars_ue->PHY_measurements.n_adj_cells;
106
  else
107 108 109
    return 0;
}

110 111
uint32_t get_rx_total_gain_dB (uint8_t Mod_id,uint8_t CC_id)
{
112

knopp's avatar
 
knopp committed
113
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
114 115

  if (phy_vars_ue)
116
    return phy_vars_ue->rx_total_gain_dB;
117

118
  return 0xFFFFFFFF;
119
}
120 121
uint32_t get_RSSI (uint8_t Mod_id,uint8_t CC_id)
{
122

knopp's avatar
 
knopp committed
123
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
124 125

  if (phy_vars_ue)
126
    return phy_vars_ue->PHY_measurements.rssi;
127

128
  return 0xFFFFFFFF;
129
}
130 131 132
uint32_t get_RSRP(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index)
{

knopp's avatar
 
knopp committed
133
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
134

135 136
  if (phy_vars_ue)
    return phy_vars_ue->PHY_measurements.rsrp[eNB_index];
137

138
  return 0xFFFFFFFF;
139 140
}

141 142
uint32_t get_RSRQ(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index)
{
143

knopp's avatar
 
knopp committed
144
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
145

146 147
  if (phy_vars_ue)
    return phy_vars_ue->PHY_measurements.rsrq[eNB_index];
148

149
  return 0xFFFFFFFF;
150 151
}

152 153 154
int8_t set_RSRP_filtered(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index,float rsrp)
{

knopp's avatar
 
knopp committed
155
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
156 157

  if (phy_vars_ue) {
158 159 160
    phy_vars_ue->PHY_measurements.rsrp_filtered[eNB_index]=rsrp;
    return 0;
  }
161

162 163 164 165
  LOG_W(PHY,"[UE%d] could not set the rsrp\n",Mod_id);
  return -1;
}

166 167
int8_t set_RSRQ_filtered(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index,float rsrq)
{
168

knopp's avatar
 
knopp committed
169
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
170 171

  if (phy_vars_ue) {
172
    phy_vars_ue->PHY_measurements.rsrq_filtered[eNB_index]=rsrq;
173
    return 0;
174
  }
175

176 177
  LOG_W(PHY,"[UE%d] could not set the rsrq\n",Mod_id);
  return -1;
178

179
}
180

181
void ue_rrc_measurements(PHY_VARS_UE *phy_vars_ue,
182 183 184
                         uint8_t slot,
                         uint8_t abstraction_flag)
{
185

186
  int aarx,rb;
187
  int16_t *rxF,*rxF_pss,*rxF_sss;
188

gauthier's avatar
gauthier committed
189 190 191
  uint16_t Nid_cell = phy_vars_ue->lte_frame_parms.Nid_cell;
  uint8_t eNB_offset,nu,l,nushift,k;
  uint16_t off;
192 193


194
  for (eNB_offset = 0; eNB_offset<1+phy_vars_ue->PHY_measurements.n_adj_cells; eNB_offset++) {
195

196
    if (eNB_offset==0) {
197
      phy_vars_ue->PHY_measurements.rssi = 0;
198 199
      phy_vars_ue->PHY_measurements.n0_power_tot = 0;

knopp's avatar
 
knopp committed
200
      if (abstraction_flag == 0) {
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
        if ((phy_vars_ue->lte_frame_parms.frame_type == FDD) &&
            ((slot == 0) || (slot == 10))) {  // FDD PSS/SSS, compute noise in DTX REs

          if (phy_vars_ue->lte_frame_parms.Ncp==NORMAL) {
            for (aarx=0; aarx<phy_vars_ue->lte_frame_parms.nb_antennas_rx; aarx++) {

              rxF_sss = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(5*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)];
              rxF_pss = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(6*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)];


              //-ve spectrum from SSS
              phy_vars_ue->PHY_measurements.n0_power[aarx] = (((int32_t)rxF_pss[-72]*rxF_pss[-72])+((int32_t)rxF_pss[-71]*rxF_pss[-71]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-70]*rxF_pss[-70])+((int32_t)rxF_pss[-69]*rxF_pss[-69]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-68]*rxF_pss[-68])+((int32_t)rxF_pss[-67]*rxF_pss[-67]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-66]*rxF_pss[-66])+((int32_t)rxF_pss[-65]*rxF_pss[-65]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-64]*rxF_pss[-64])+((int32_t)rxF_pss[-63]*rxF_pss[-63]));
              //+ve spectrum from SSS
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_sss[2+72]*rxF_sss[2+72])+((int32_t)rxF_sss[2+71]*rxF_sss[2+71]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_sss[2+70]*rxF_sss[2+70])+((int32_t)rxF_sss[2+69]*rxF_sss[2+69]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_sss[2+68]*rxF_sss[2+68])+((int32_t)rxF_sss[2+67]*rxF_sss[2+67]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_sss[2+66]*rxF_sss[2+66])+((int32_t)rxF_sss[2+65]*rxF_sss[2+65]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_sss[2+64]*rxF_sss[2+64])+((int32_t)rxF_sss[2+63]*rxF_sss[2+63]));
              //+ve spectrum from PSS
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[2+72]*rxF_pss[2+72])+((int32_t)rxF_pss[2+71]*rxF_pss[2+71]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[2+70]*rxF_pss[2+70])+((int32_t)rxF_pss[2+69]*rxF_pss[2+69]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[2+68]*rxF_pss[2+68])+((int32_t)rxF_pss[2+67]*rxF_pss[2+67]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[2+66]*rxF_pss[2+66])+((int32_t)rxF_pss[2+65]*rxF_pss[2+65]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[2+64]*rxF_pss[2+64])+((int32_t)rxF_pss[2+63]*rxF_pss[2+63]));
              //-ve spectrum from PSS
              rxF_pss = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(7*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)];
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-72]*rxF_pss[-72])+((int32_t)rxF_pss[-71]*rxF_pss[-71]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-70]*rxF_pss[-70])+((int32_t)rxF_pss[-69]*rxF_pss[-69]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-68]*rxF_pss[-68])+((int32_t)rxF_pss[-67]*rxF_pss[-67]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-66]*rxF_pss[-66])+((int32_t)rxF_pss[-65]*rxF_pss[-65]));
              phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-64]*rxF_pss[-64])+((int32_t)rxF_pss[-63]*rxF_pss[-63]));
              phy_vars_ue->PHY_measurements.n0_power_dB[aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power[aarx]/10);
              phy_vars_ue->PHY_measurements.n0_power_tot +=  phy_vars_ue->PHY_measurements.n0_power[aarx];
            }

            phy_vars_ue->PHY_measurements.n0_power_tot_dB = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power_tot/20);
            phy_vars_ue->PHY_measurements.n0_power_tot_dBm = phy_vars_ue->PHY_measurements.n0_power_tot_dB - phy_vars_ue->rx_total_gain_dB;

          }
        }
245 246
      }
    }
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

    // recompute nushift with eNB_offset corresponding to adjacent eNB on which to perform channel estimation
    //    printf("[PHY][UE %d] Frame %d slot %d Doing ue_rrc_measurements rsrp/rssi (Nid_cell %d, Nid2 %d, nushift %d, eNB_offset %d)\n",phy_vars_ue->Mod_id,phy_vars_ue->frame,slot,Nid_cell,Nid2,nushift,eNB_offset);
    if (eNB_offset > 0)
      Nid_cell = phy_vars_ue->PHY_measurements.adj_cell_id[eNB_offset-1];


    nushift =  Nid_cell%6;



    phy_vars_ue->PHY_measurements.rsrp[eNB_offset] = 0;


    if (abstraction_flag == 0) {
262

263 264
      // compute RSRP using symbols 0 and 4-frame_parms->Ncp

265 266
      for (l=0,nu=0; l<=(4-phy_vars_ue->lte_frame_parms.Ncp); l+=(4-phy_vars_ue->lte_frame_parms.Ncp),nu=3) {
        k = (nu + nushift)%6;
267
#ifdef DEBUG_MEAS
268 269
        LOG_D(PHY,"[UE %d] Frame %d slot %d Doing ue_rrc_measurements rsrp/rssi (Nid_cell %d, nushift %d, eNB_offset %d, k %d, l %d)\n",phy_vars_ue->Mod_id,phy_vars_ue->frame_rx,slot,Nid_cell,nushift,
              eNB_offset,k,l);
270
#endif
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

        for (aarx=0; aarx<phy_vars_ue->lte_frame_parms.nb_antennas_rx; aarx++) {
          rxF = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(l*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)];
          off  = (phy_vars_ue->lte_frame_parms.first_carrier_offset+k)<<1;

          if (l==(4-phy_vars_ue->lte_frame_parms.Ncp)) {
            for (rb=0; rb<phy_vars_ue->lte_frame_parms.N_RB_DL; rb++) {

              //    printf("rb %d, off %d, off2 %d\n",rb,off,off2);

              phy_vars_ue->PHY_measurements.rsrp[eNB_offset] += (((int32_t)(rxF[off])*rxF[off])+((int32_t)(rxF[off+1])*rxF[off+1]));
              //        printf("rb %d, off %d : %d\n",rb,off,((((int32_t)rxF[off])*rxF[off])+((int32_t)(rxF[off+1])*rxF[off+1])));
              /*    if ((phy_vars_ue->frame_rx&0x3ff) == 0)
                printf("rb %d, off %d : %d\n",rb,off,((rxF[off]*rxF[off])+(rxF[off+1]*rxF[off+1])));

              */
              off+=12;

              if (off>=(phy_vars_ue->lte_frame_parms.ofdm_symbol_size<<1))
                off = (1+k)<<1;

              phy_vars_ue->PHY_measurements.rsrp[eNB_offset] += (((int32_t)(rxF[off])*rxF[off])+((int32_t)(rxF[off+1])*rxF[off+1]));
              //    printf("rb %d, off %d : %d\n",rb,off,(((int32_t)(rxF[off])*rxF[off])+((int32_t)(rxF[off+1])*rxF[off+1])));
              /*
                if ((phy_vars_ue->frame_rx&0x3ff) == 0)
                printf("rb %d, off %d : %d\n",rb,off,((rxF[off]*rxF[off])+(rxF[off+1]*rxF[off+1])));
              */
              off+=12;

              if (off>=(phy_vars_ue->lte_frame_parms.ofdm_symbol_size<<1))
                off = (1+k)<<1;

            }

            /*
            if ((eNB_offset==0)&&(l==0)) {
            for (i=0;i<6;i++,off2+=4)
            phy_vars_ue->PHY_measurements.rssi += ((rxF[off2]*rxF[off2])+(rxF[off2+1]*rxF[off2+1]));
            if (off2==(phy_vars_ue->lte_frame_parms.ofdm_symbol_size<<2))
            off2=4;
            for (i=0;i<6;i++,off2+=4)
            phy_vars_ue->PHY_measurements.rssi += ((rxF[off2]*rxF[off2])+(rxF[off2+1]*rxF[off2+1]));
            }
            */
            //    printf("slot %d, rb %d => rsrp %d, rssi %d\n",slot,rb,phy_vars_ue->PHY_measurements.rsrp[eNB_offset],phy_vars_ue->PHY_measurements.rssi);
          }
        }
318 319
      }

320

321
      // 2 RE per PRB
322
      //      phy_vars_ue->PHY_measurements.rsrp[eNB_offset]/=(24*phy_vars_ue->lte_frame_parms.N_RB_DL);
323
      phy_vars_ue->PHY_measurements.rsrp[eNB_offset]/=(2*phy_vars_ue->lte_frame_parms.N_RB_DL*phy_vars_ue->lte_frame_parms.ofdm_symbol_size);
324 325
      LOG_D(PHY,"eNB: %d, RSRP: %d \n",eNB_offset,phy_vars_ue->PHY_measurements.rsrp[eNB_offset]);

326 327

      if (eNB_offset == 0) {
328 329 330 331
        //  phy_vars_ue->PHY_measurements.rssi/=(24*phy_vars_ue->lte_frame_parms.N_RB_DL);
        //  phy_vars_ue->PHY_measurements.rssi*=rx_power_correction;
        //  phy_vars_ue->PHY_measurements.rssi=phy_vars_ue->PHY_measurements.rsrp[0]*24/2;
        phy_vars_ue->PHY_measurements.rssi=phy_vars_ue->PHY_measurements.rsrp[0]*(12*phy_vars_ue->lte_frame_parms.N_RB_DL);
332
      }
333

334
      if (phy_vars_ue->PHY_measurements.rssi>0)
335
        phy_vars_ue->PHY_measurements.rsrq[eNB_offset] = 100*phy_vars_ue->PHY_measurements.rsrp[eNB_offset]*phy_vars_ue->lte_frame_parms.N_RB_DL/phy_vars_ue->PHY_measurements.rssi;
336
      else
337 338
        phy_vars_ue->PHY_measurements.rsrq[eNB_offset] = -12000;

339
      //((200*phy_vars_ue->PHY_measurements.rsrq[eNB_offset]) + ((1024-200)*100*phy_vars_ue->PHY_measurements.rsrp[eNB_offset]*phy_vars_ue->lte_frame_parms.N_RB_DL/phy_vars_ue->PHY_measurements.rssi))>>10;
340
    } else { // Do abstraction of RSRP and RSRQ
341
      phy_vars_ue->PHY_measurements.rssi = phy_vars_ue->PHY_measurements.rx_power_avg[0];
342
      // dummay value for the moment
343
      phy_vars_ue->PHY_measurements.rsrp[eNB_offset] = -93 ;
344
      phy_vars_ue->PHY_measurements.rsrq[eNB_offset] = 3;
345 346

    }
347

348
#ifdef DEBUG_MEAS
349

350 351
    if (slot == 0) {

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
      if (eNB_offset == 0)
        LOG_D(PHY,"[UE %d] Frame %d, slot %d RRC Measurements => rssi %3.1f dBm (digital: %3.1f dB, gain %d), N0 %d dBm\n",phy_vars_ue->Mod_id,
              phy_vars_ue->frame_rx,slot,10*log10(phy_vars_ue->PHY_measurements.rssi)-phy_vars_ue->rx_total_gain_dB,
              10*log10(phy_vars_ue->PHY_measurements.rssi),
              phy_vars_ue->rx_total_gain_dB,
              phy_vars_ue->PHY_measurements.n0_power_tot_dBm);

      LOG_D(PHY,"[UE %d] Frame %d, slot %d RRC Measurements (idx %d, Cell id %d) => rsrp: %3.1f dBm/RE (%d), rsrq: %3.1f dB\n",
            phy_vars_ue->Mod_id,
            phy_vars_ue->frame_rx,slot,eNB_offset,
            (eNB_offset>0) ? phy_vars_ue->PHY_measurements.adj_cell_id[eNB_offset-1] : phy_vars_ue->lte_frame_parms.Nid_cell,
            10*log10(phy_vars_ue->PHY_measurements.rsrp[eNB_offset])-phy_vars_ue->rx_total_gain_dB,
            phy_vars_ue->PHY_measurements.rsrp[eNB_offset],
            (10*log10(phy_vars_ue->PHY_measurements.rsrq[eNB_offset])));
      //LOG_D(PHY,"RSRP_total_dB: %3.2f \n",(dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_offset])/10.0)-phy_vars_ue->rx_total_gain_dB-dB_fixed(phy_vars_ue->lte_frame_parms.N_RB_DL*12));

      //LOG_D(PHY,"RSRP_dB: %3.2f \n",(dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_offset])/10.0));
      //LOG_D(PHY,"gain_loss_dB: %d \n",phy_vars_ue->rx_total_gain_dB);
      //LOG_D(PHY,"gain_fixed_dB: %d \n",dB_fixed(phy_vars_ue->lte_frame_parms.N_RB_DL*12));

    }

374 375 376
#endif
  }

377 378 379
}

void lte_ue_measurements(PHY_VARS_UE *phy_vars_ue,
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
                         unsigned int subframe_offset,
                         unsigned char N0_symbol,
                         unsigned char abstraction_flag)
{


  int aarx,aatx,eNB_id=0,gain_offset=0;
  //int rx_power[NUMBER_OF_CONNECTED_eNB_MAX];
  int i;
  unsigned int limit,subband;
  __m128i *dl_ch0_128,*dl_ch1_128;
  int *dl_ch0,*dl_ch1;
  LTE_DL_FRAME_PARMS *frame_parms = &phy_vars_ue->lte_frame_parms;
  int nb_subbands,subband_size,last_subband_size;
  int N_RB_DL = frame_parms->N_RB_DL;

  switch (N_RB_DL) {
  case 6:
    nb_subbands = 6;
    subband_size = 12;
    last_subband_size = 0;
    break;

  default:
  case 25:
    nb_subbands = 7;
    subband_size = 4*12;
    last_subband_size = 12;
    break;

  case 50:
    nb_subbands = 9;
    subband_size = 6*12;
    last_subband_size = 2*12;
    break;

  case 100:
    nb_subbands = 13;
    subband_size = 8*12;
    last_subband_size = 4*12;
    break;
  }

  /*  // DONE NOW in ue_rrc_measurements
  if (abstraction_flag!=0) {
    phy_vars_ue->PHY_measurements.n0_power_tot = 0;
    for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
  phy_vars_ue->PHY_measurements.n0_power[aarx] = pow(10.0,phy_vars_ue->N0/10.0)*pow(10.0,((double)phy_vars_ue->rx_total_gain_dB)/10.0);
  phy_vars_ue->PHY_measurements.n0_power_dB[aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power[aarx]);
  phy_vars_ue->PHY_measurements.n0_power_tot +=  phy_vars_ue->PHY_measurements.n0_power[aarx];
430
    }
431 432 433 434 435 436 437 438 439 440 441 442 443
    phy_vars_ue->PHY_measurements.n0_power_tot_dB = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power_tot);
    phy_vars_ue->PHY_measurements.n0_power_tot_dBm = phy_vars_ue->PHY_measurements.n0_power_tot_dB - phy_vars_ue->rx_total_gain_dB;
  }
  else if (N0_symbol != 0) {
    phy_vars_ue->PHY_measurements.n0_power_tot = 0;
    for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
  #ifndef HW_PREFIX_REMOVAL
  phy_vars_ue->PHY_measurements.n0_power[aarx] = signal_energy(&phy_vars_ue->lte_ue_common_vars.rxdata[aarx][subframe_offset+frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples0],frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples);
  #else
  phy_vars_ue->PHY_measurements.n0_power[aarx] = signal_energy(&phy_vars_ue->lte_ue_common_vars.rxdata[aarx][subframe_offset+frame_parms->ofdm_symbol_size],frame_parms->ofdm_symbol_size);
  #endif
  phy_vars_ue->PHY_measurements.n0_power_dB[aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power[aarx]);
  phy_vars_ue->PHY_measurements.n0_power_tot +=  phy_vars_ue->PHY_measurements.n0_power[aarx];
444
    }
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

    phy_vars_ue->PHY_measurements.n0_power_tot_dB = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power_tot);
    phy_vars_ue->PHY_measurements.n0_power_tot_dBm = phy_vars_ue->PHY_measurements.n0_power_tot_dB - phy_vars_ue->rx_total_gain_dB + gain_offset;
    //    printf("PHY measurements UE %d: n0_power %d (%d)\n",phy_vars_ue->Mod_id,phy_vars_ue->PHY_measurements.n0_power_tot_dBm,phy_vars_ue->PHY_measurements.n0_power_tot_dB);
  }
  else {
    phy_vars_ue->PHY_measurements.n0_power_tot_dBm = phy_vars_ue->PHY_measurements.n0_power_tot_dB - phy_vars_ue->rx_total_gain_dB + gain_offset;
  }
  */
  // signal measurements
  for (eNB_id=0; eNB_id<phy_vars_ue->n_connected_eNB; eNB_id++) {
    for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
      for (aatx=0; aatx<frame_parms->nb_antennas_tx_eNB; aatx++) {
        phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx] =
          (signal_energy_nodc(&phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][(aatx<<1) + aarx][0],
                              (N_RB_DL*12)));
        //- phy_vars_ue->PHY_measurements.n0_power[aarx];

        if (phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx]<0)
          phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx] = 0; //phy_vars_ue->PHY_measurements.n0_power[aarx];

        phy_vars_ue->PHY_measurements.rx_spatial_power_dB[eNB_id][aatx][aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx]);

        if (aatx==0)
          phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx] = phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx];
        else
          phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx] += phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx];
      } //aatx

      phy_vars_ue->PHY_measurements.rx_power_dB[eNB_id][aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx]);

      if (aarx==0)
        phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id] = phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx];
      else
        phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id] += phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx];
    } //aarx

    phy_vars_ue->PHY_measurements.rx_power_tot_dB[eNB_id] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id]);

  } //eNB_id

  // filter to remove jitter
  if (phy_vars_ue->init_averaging == 0) {
    for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++)
      phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id] = (int)
          (((k1*((long long int)(phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id]))) +
            (k2*((long long int)(phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id]))))>>10);

    phy_vars_ue->PHY_measurements.n0_power_avg = (int)
        (((k1*((long long int) (phy_vars_ue->PHY_measurements.n0_power_avg))) +
          (k2*((long long int) (phy_vars_ue->PHY_measurements.n0_power_tot))))>>10);
  } else {
    for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++)
      phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id] = phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id];

    phy_vars_ue->PHY_measurements.n0_power_avg = phy_vars_ue->PHY_measurements.n0_power_tot;
    phy_vars_ue->init_averaging = 0;
  }

  for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++) {
    phy_vars_ue->PHY_measurements.rx_power_avg_dB[eNB_id] = dB_fixed( phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id]);
    phy_vars_ue->PHY_measurements.wideband_cqi_tot[eNB_id] = dB_fixed2(phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id],phy_vars_ue->PHY_measurements.n0_power_tot);
    phy_vars_ue->PHY_measurements.wideband_cqi_avg[eNB_id] = dB_fixed2(phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id],phy_vars_ue->PHY_measurements.n0_power_avg);
    phy_vars_ue->PHY_measurements.rx_rssi_dBm[eNB_id] = phy_vars_ue->PHY_measurements.rx_power_avg_dB[eNB_id] - phy_vars_ue->rx_total_gain_dB;
#ifdef DEBUG_MEAS
    LOG_D(PHY,"[eNB %d] lte_ue_measurements: RSSI %d dBm, RSSI (digital) %d dB\n",
          eNB_id,phy_vars_ue->PHY_measurements.rx_rssi_dBm[eNB_id],
          phy_vars_ue->PHY_measurements.rx_power_avg_dB[eNB_id]);
513
#endif
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
  }

  phy_vars_ue->PHY_measurements.n0_power_avg_dB = dB_fixed( phy_vars_ue->PHY_measurements.n0_power_avg);

  for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++) {
    if (frame_parms->mode1_flag==0) {
      // cqi/pmi information

      for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
        dl_ch0    = &phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][aarx][4];
        dl_ch1    = &phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][2+aarx][4];

        for (subband=0; subband<nb_subbands; subband++) {

          // cqi
          if (aarx==0)
            phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband]=0;

          if ((subband<(nb_subbands-1))||(N_RB_DL==6)) {
            /*for (i=0;i<48;i++)
            msg("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]);
            */
            phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] =
              (signal_energy_nodc(dl_ch0,subband_size) + signal_energy_nodc(dl_ch1,subband_size));

            if ( phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] < 0)
              phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband]=0;

            /*
            else
            phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband]-=phy_vars_ue->PHY_measurements.n0_power[aarx];
            */

            phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
            phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
                phy_vars_ue->PHY_measurements.n0_power[aarx]);
          } else { // this is for the last subband which is smaller in size
            //      for (i=0;i<12;i++)
            //        printf("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]);
            phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] = (signal_energy_nodc(dl_ch0,last_subband_size) +
                signal_energy_nodc(dl_ch1,last_subband_size)); // - phy_vars_ue->PHY_measurements.n0_power[aarx];
            phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
            phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
                phy_vars_ue->PHY_measurements.n0_power[aarx]);
          }

          dl_ch1+=subband_size;
          dl_ch0+=subband_size;
          //    msg("subband_cqi[%d][%d][%d] => %d (%d dB)\n",eNB_id,aarx,subband,phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband]);
        }

      }

      for (subband=0; subband<nb_subbands; subband++) {
        phy_vars_ue->PHY_measurements.subband_cqi_tot_dB[eNB_id][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband],phy_vars_ue->PHY_measurements.n0_power_tot);
        //    msg("subband_cqi_tot[%d][%d] => %d dB (n0 %d)\n",eNB_id,subband,phy_vars_ue->PHY_measurements.subband_cqi_tot_dB[eNB_id][subband],phy_vars_ue->PHY_measurements.n0_power_tot);
570 571 572
      }

      for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
        // skip the first 4 RE due to interpolation filter length of 5 (not possible to skip 5 due to 128i alignment, must be multiple of 128bit)
        dl_ch0_128    = (__m128i *)&phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][aarx][4];
        dl_ch1_128    = (__m128i *)&phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][2+aarx][4];

        /*
          #ifdef DEBUG_PHY
          if(eNB_id==0){
          print_shorts("Ch0",dl_ch0_128);
          print_shorts("Ch1",dl_ch1_128);
          printf("eNB_ID = %d\n",eNB_id);
          }
          #endif
        */
        for (subband=0; subband<nb_subbands; subband++) {


          // pmi

          pmi128_re = _mm_setzero_si128();
          pmi128_im = _mm_setzero_si128();

          // limit is the number of groups of 4 REs in a subband (12 = 4 RBs, 3 = 1 RB)
          // for 5 MHz channelization, there are 7 subbands, 6 of size 4 RBs and 1 of size 1 RB
          if ((N_RB_DL==6) || (subband<(nb_subbands-1)))
            limit = subband_size>>2;
          else
            limit = last_subband_size>>2;

          for (i=0; i<limit; i++) {

            // For each RE in subband perform ch0 * conj(ch1)
            // multiply by conjugated channel
            // if(eNB_id==0){
            //print_shorts("ch0",dl_ch0_128);
            //print_shorts("ch1",dl_ch1_128);
            // }
            // if(i==0){
            mmtmpPMI0 = _mm_setzero_si128();
            mmtmpPMI1 = _mm_setzero_si128();
            //      }
            // if(eNB_id==0)
            // print_ints("Pre_re",&mmtmpPMI0);

            mmtmpPMI0 = _mm_madd_epi16(dl_ch0_128[0],dl_ch1_128[0]);
            //  if(eNB_id==0)
            //  print_ints("re",&mmtmpPMI0);

            // mmtmpPMI0 contains real part of 4 consecutive outputs (32-bit)
            // print_shorts("Ch1",dl_ch1_128);

            mmtmpPMI1 = _mm_shufflelo_epi16(dl_ch1_128[0],_MM_SHUFFLE(2,3,0,1));//_MM_SHUFFLE(2,3,0,1)
            // print_shorts("mmtmpPMI1:",&mmtmpPMI1);
            mmtmpPMI1 = _mm_shufflehi_epi16(mmtmpPMI1,_MM_SHUFFLE(2,3,0,1));
            // print_shorts("mmtmpPMI1:",&mmtmpPMI1);

            mmtmpPMI1 = _mm_sign_epi16(mmtmpPMI1,*(__m128i*)&conjugate[0]);
            // print_shorts("mmtmpPMI1:",&mmtmpPMI1);
            mmtmpPMI1 = _mm_madd_epi16(mmtmpPMI1,dl_ch0_128[0]);
            //  if(eNB_id==0)
            //  print_ints("im",&mmtmpPMI1);
            // mmtmpPMI1 contains imag part of 4 consecutive outputs (32-bit)

            pmi128_re = _mm_add_epi32(pmi128_re,mmtmpPMI0);
            pmi128_im = _mm_add_epi32(pmi128_im,mmtmpPMI1);
            dl_ch0_128++;
            dl_ch1_128++;
          }

          phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx] = (((int *)&pmi128_re)[0] + ((int *)&pmi128_re)[1] + ((int *)&pmi128_re)[2] + ((int *)&pmi128_re)[3])>>2;
          //    if(eNB_id==0)
          // printf("in lte_ue_measurements.c: pmi_re %d\n",phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx]);
          phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx] = (((int *)&pmi128_im)[0] + ((int *)&pmi128_im)[1] + ((int *)&pmi128_im)[2] + ((int *)&pmi128_im)[3])>>2;
          //    if(eNB_id==0)
          // printf("in lte_ue_measurements.c: pmi_im %d\n",phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx]);
          phy_vars_ue->PHY_measurements.wideband_pmi_re[eNB_id][aarx] += phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx];
          phy_vars_ue->PHY_measurements.wideband_pmi_im[eNB_id][aarx] += phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx];
          //      msg("subband_pmi[%d][%d][%d] => (%d,%d)\n",eNB_id,subband,aarx,phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx],phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx]);

        } // subband loop
      } // rx antenna loop
    }  // if frame_parms->mode1_flag == 0
654
    else {
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
      // cqi information only for mode 1
      for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
        dl_ch0    = &phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][aarx][4];

        for (subband=0; subband<7; subband++) {

          // cqi
          if (aarx==0)
            phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband]=0;

          if (subband<6) {
            //      for (i=0;i<48;i++)
            //        printf("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]);
            phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] =
              (signal_energy_nodc(dl_ch0,48) ) - phy_vars_ue->PHY_measurements.n0_power[aarx];

            phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
            phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
                phy_vars_ue->PHY_measurements.n0_power[aarx]);
          } else {
            //      for (i=0;i<12;i++)
            //        printf("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]);
            phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] = (signal_energy_nodc(dl_ch0,12) ) - phy_vars_ue->PHY_measurements.n0_power[aarx];
            phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
            phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
                phy_vars_ue->PHY_measurements.n0_power[aarx]);
          }

          dl_ch1+=48;
          //    msg("subband_cqi[%d][%d][%d] => %d (%d dB)\n",eNB_id,aarx,subband,phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband]);
        }
      }

      for (subband=0; subband<nb_subbands; subband++) {
        phy_vars_ue->PHY_measurements.subband_cqi_tot_dB[eNB_id][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband],phy_vars_ue->PHY_measurements.n0_power_tot);
      }
691 692
    }

693 694 695 696 697 698 699 700 701 702 703 704
    phy_vars_ue->PHY_measurements.rank[eNB_id] = 0;

    for (i=0; i<nb_subbands; i++) {
      phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 0;

      if (frame_parms->nb_antennas_rx>1) {
        if (phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][0][i] >= phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][1][i])
          phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 0;
        else
          phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 1;
      } else
        phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 0;
705 706
    }

707 708 709
    // if(eNB_id==0)
    // printf("in lte_ue_measurements: selected rx_antenna[eNB_id==0]:%u\n", phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i]);
  }  // eNB_id loop
710

711 712
  _mm_empty();
  _m_empty();
713

714
}
715 716


717 718
void lte_ue_measurements_emul(PHY_VARS_UE *phy_vars_ue,uint8_t last_slot,uint8_t eNB_id)
{
719

720 721
  msg("[PHY] EMUL UE lte_ue_measurements_emul last slot %d, eNB_id %d\n",last_slot,eNB_id);
}
722