lte_ue_measurements.c 31.7 KB
Newer Older
ghaddab's avatar
ghaddab committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*******************************************************************************
    OpenAirInterface 
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is 
   included in this distribution in the file called "COPYING". If not, 
   see <http://www.gnu.org/licenses/>.

  Contact Information
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
  OpenAirInterface Dev  : openair4g-devel@eurecom.fr
  
ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
ghaddab's avatar
ghaddab committed
27 28

 *******************************************************************************/
29 30 31 32 33 34
// this function fills the PHY_vars->PHY_measurement structure

#include "PHY/defs.h"
#include "PHY/extern.h"
#include "SCHED/defs.h"
#include "SCHED/extern.h"
35
#include "log.h"
36
#include "PHY/sse_intrin.h"
37 38 39 40 41

//#define k1 1000
#define k1 ((long long int) 1000)
#define k2 ((long long int) (1024-k1))

knopp's avatar
 
knopp committed
42
//#define DEBUG_MEAS
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

#ifdef USER_MODE
void print_shorts(char *s,__m128i *x) {

  short *tempb = (short *)x;

  printf("%s  : %d,%d,%d,%d,%d,%d,%d,%d\n",s,
         tempb[0],tempb[1],tempb[2],tempb[3],tempb[4],tempb[5],tempb[6],tempb[7]
         );

}
void print_ints(char *s,__m128i *x) {

  int *tempb = (int *)x;

  printf("%s  : %d,%d,%d,%d\n",s,
         tempb[0],tempb[1],tempb[2],tempb[3]
         );

}
#endif

__m128i pmi128_re __attribute__ ((aligned(16)));
__m128i pmi128_im __attribute__ ((aligned(16)));
__m128i mmtmpPMI0 __attribute__ ((aligned(16)));
__m128i mmtmpPMI1 __attribute__ ((aligned(16)));
__m128i mmtmpPMI2 __attribute__ ((aligned(16)));
__m128i mmtmpPMI3 __attribute__ ((aligned(16)));

knopp's avatar
 
knopp committed
72
int16_t get_PL(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index) {
73

knopp's avatar
 
knopp committed
74
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
75 76 77 78 79 80 81
  int RSoffset;
    
  
  if (phy_vars_ue->lte_frame_parms.mode1_flag == 1)
    RSoffset = 6;
  else
    RSoffset = 3;
knopp's avatar
 
knopp committed
82
  
83 84 85 86
  
  LOG_D(PHY,"get_PL : Frame %d : rsrp %f dBm/RE (%f), eNB power %d dBm/RE\n", phy_vars_ue->frame_rx,
	(1.0*dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_index])-(10.0*phy_vars_ue->rx_total_gain_dB))/10.0,
	10*log10((double)phy_vars_ue->PHY_measurements.rsrp[eNB_index]),
knopp's avatar
 
knopp committed
87 88 89
	phy_vars_ue->lte_frame_parms.pdsch_config_common.referenceSignalPower);
  	
  return((int16_t)(((10*phy_vars_ue->rx_total_gain_dB) - 
90 91
		    dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_index])+
		    //		    dB_fixed_times10(RSoffset*12*PHY_vars_UE_g[Mod_id][CC_id]->lte_frame_parms.N_RB_DL) + 
knopp's avatar
 
knopp committed
92
		    (phy_vars_ue->lte_frame_parms.pdsch_config_common.referenceSignalPower*10))/10));
93 94
}

95

knopp's avatar
 
knopp committed
96
uint8_t get_n_adj_cells (uint8_t Mod_id,uint8_t CC_id){
97

knopp's avatar
 
knopp committed
98
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
99 100 101 102 103 104
  if (phy_vars_ue)  
    return phy_vars_ue->PHY_measurements.n_adj_cells;
  else 
    return 0;
}

105
uint32_t get_rx_total_gain_dB (uint8_t Mod_id,uint8_t CC_id){
106

knopp's avatar
 
knopp committed
107
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
108 109
  if (phy_vars_ue)  
    return phy_vars_ue->rx_total_gain_dB;
110
  return 0xFFFFFFFF;
111
}
112
uint32_t get_RSSI (uint8_t Mod_id,uint8_t CC_id){
113

knopp's avatar
 
knopp committed
114
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
115 116
  if (phy_vars_ue)  
    return phy_vars_ue->PHY_measurements.rssi;
117
  return 0xFFFFFFFF;
118
}
119
uint32_t get_RSRP(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index) {
120
  
knopp's avatar
 
knopp committed
121
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
122 123
  if (phy_vars_ue)
    return phy_vars_ue->PHY_measurements.rsrp[eNB_index];
124
  return 0xFFFFFFFF;
125 126
}

127
uint32_t get_RSRQ(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index) {
128

knopp's avatar
 
knopp committed
129
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
130 131
  if (phy_vars_ue)
    return phy_vars_ue->PHY_measurements.rsrq[eNB_index];
132
  return 0xFFFFFFFF;
133 134
}

knopp's avatar
 
knopp committed
135
int8_t set_RSRP_filtered(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index,float rsrp) {
136
  
knopp's avatar
 
knopp committed
137
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
138 139 140 141 142 143 144 145
  if (phy_vars_ue){
    phy_vars_ue->PHY_measurements.rsrp_filtered[eNB_index]=rsrp;
    return 0;
  }
  LOG_W(PHY,"[UE%d] could not set the rsrp\n",Mod_id);
  return -1;
}

knopp's avatar
 
knopp committed
146
int8_t set_RSRQ_filtered(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index,float rsrq) {
147

knopp's avatar
 
knopp committed
148
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
149 150
  if (phy_vars_ue){
    phy_vars_ue->PHY_measurements.rsrq_filtered[eNB_index]=rsrq;
151
    return 0; 
152 153 154 155 156
  }
  LOG_W(PHY,"[UE%d] could not set the rsrq\n",Mod_id);
  return -1;
  
}
157 158
 
void ue_rrc_measurements(PHY_VARS_UE *phy_vars_ue,
gauthier's avatar
gauthier committed
159 160
			 uint8_t slot,
			 uint8_t abstraction_flag) {
161

162
  int aarx,rb;
163
  int16_t *rxF,*rxF_pss,*rxF_sss;
164

gauthier's avatar
gauthier committed
165 166 167
  uint16_t Nid_cell = phy_vars_ue->lte_frame_parms.Nid_cell;
  uint8_t eNB_offset,nu,l,nushift,k;
  uint16_t off;
168 169 170 171


  for (eNB_offset = 0;eNB_offset<1+phy_vars_ue->PHY_measurements.n_adj_cells;eNB_offset++) {

172
    if (eNB_offset==0) {
173
      phy_vars_ue->PHY_measurements.rssi = 0;
174 175
      phy_vars_ue->PHY_measurements.n0_power_tot = 0;

knopp's avatar
 
knopp committed
176 177 178
      if (abstraction_flag == 0) {
	if ((phy_vars_ue->lte_frame_parms.frame_type == FDD) && 
	    ((slot == 0) || (slot == 10))) {  // FDD PSS/SSS, compute noise in DTX REs
179

knopp's avatar
 
knopp committed
180 181 182 183 184 185 186 187
	  if (phy_vars_ue->lte_frame_parms.Ncp==NORMAL) {
	    for (aarx=0;aarx<phy_vars_ue->lte_frame_parms.nb_antennas_rx;aarx++) {
	      
	      rxF_sss = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(5*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)];
	      rxF_pss = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(6*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)];
	      
	      
	      //-ve spectrum from SSS
188 189 190 191 192
	      phy_vars_ue->PHY_measurements.n0_power[aarx] = (((int32_t)rxF_pss[-72]*rxF_pss[-72])+((int32_t)rxF_pss[-71]*rxF_pss[-71]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-70]*rxF_pss[-70])+((int32_t)rxF_pss[-69]*rxF_pss[-69]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-68]*rxF_pss[-68])+((int32_t)rxF_pss[-67]*rxF_pss[-67]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-66]*rxF_pss[-66])+((int32_t)rxF_pss[-65]*rxF_pss[-65]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-64]*rxF_pss[-64])+((int32_t)rxF_pss[-63]*rxF_pss[-63]));
knopp's avatar
 
knopp committed
193
	      //+ve spectrum from SSS
194 195 196 197 198
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_sss[2+72]*rxF_sss[2+72])+((int32_t)rxF_sss[2+71]*rxF_sss[2+71]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_sss[2+70]*rxF_sss[2+70])+((int32_t)rxF_sss[2+69]*rxF_sss[2+69]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_sss[2+68]*rxF_sss[2+68])+((int32_t)rxF_sss[2+67]*rxF_sss[2+67]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_sss[2+66]*rxF_sss[2+66])+((int32_t)rxF_sss[2+65]*rxF_sss[2+65]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_sss[2+64]*rxF_sss[2+64])+((int32_t)rxF_sss[2+63]*rxF_sss[2+63]));
knopp's avatar
 
knopp committed
199
	      //+ve spectrum from PSS
200 201 202 203 204
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[2+72]*rxF_pss[2+72])+((int32_t)rxF_pss[2+71]*rxF_pss[2+71]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[2+70]*rxF_pss[2+70])+((int32_t)rxF_pss[2+69]*rxF_pss[2+69]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[2+68]*rxF_pss[2+68])+((int32_t)rxF_pss[2+67]*rxF_pss[2+67]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[2+66]*rxF_pss[2+66])+((int32_t)rxF_pss[2+65]*rxF_pss[2+65]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[2+64]*rxF_pss[2+64])+((int32_t)rxF_pss[2+63]*rxF_pss[2+63]));	  
knopp's avatar
 
knopp committed
205 206
	      //-ve spectrum from PSS
	      rxF_pss = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(7*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)];
207 208 209 210 211
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-72]*rxF_pss[-72])+((int32_t)rxF_pss[-71]*rxF_pss[-71]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-70]*rxF_pss[-70])+((int32_t)rxF_pss[-69]*rxF_pss[-69]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-68]*rxF_pss[-68])+((int32_t)rxF_pss[-67]*rxF_pss[-67]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-66]*rxF_pss[-66])+((int32_t)rxF_pss[-65]*rxF_pss[-65]));
	      phy_vars_ue->PHY_measurements.n0_power[aarx] += (((int32_t)rxF_pss[-64]*rxF_pss[-64])+((int32_t)rxF_pss[-63]*rxF_pss[-63]));
knopp's avatar
 
knopp committed
212 213 214 215 216 217 218 219
	      phy_vars_ue->PHY_measurements.n0_power_dB[aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power[aarx]/10);
	      phy_vars_ue->PHY_measurements.n0_power_tot +=  phy_vars_ue->PHY_measurements.n0_power[aarx];
	    }
	    phy_vars_ue->PHY_measurements.n0_power_tot_dB = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power_tot/20);
	    phy_vars_ue->PHY_measurements.n0_power_tot_dBm = phy_vars_ue->PHY_measurements.n0_power_tot_dB - phy_vars_ue->rx_total_gain_dB;
	    
	  }
	} 
220 221
      }
    }
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

    // recompute nushift with eNB_offset corresponding to adjacent eNB on which to perform channel estimation
    //    printf("[PHY][UE %d] Frame %d slot %d Doing ue_rrc_measurements rsrp/rssi (Nid_cell %d, Nid2 %d, nushift %d, eNB_offset %d)\n",phy_vars_ue->Mod_id,phy_vars_ue->frame,slot,Nid_cell,Nid2,nushift,eNB_offset);
    if (eNB_offset > 0)
      Nid_cell = phy_vars_ue->PHY_measurements.adj_cell_id[eNB_offset-1];


    nushift =  Nid_cell%6;



    phy_vars_ue->PHY_measurements.rsrp[eNB_offset] = 0;


    if (abstraction_flag == 0) {
      
      // compute RSRP using symbols 0 and 4-frame_parms->Ncp

      for (l=0,nu=0;l<=(4-phy_vars_ue->lte_frame_parms.Ncp);l+=(4-phy_vars_ue->lte_frame_parms.Ncp),nu=3) {
	k = (nu + nushift)%6;
#ifdef DEBUG_MEAS
243
	LOG_D(PHY,"[UE %d] Frame %d slot %d Doing ue_rrc_measurements rsrp/rssi (Nid_cell %d, nushift %d, eNB_offset %d, k %d, l %d)\n",phy_vars_ue->Mod_id,phy_vars_ue->frame_rx,slot,Nid_cell,nushift,eNB_offset,k,l);
244 245
#endif
	for (aarx=0;aarx<phy_vars_ue->lte_frame_parms.nb_antennas_rx;aarx++) {
gauthier's avatar
gauthier committed
246
	  rxF = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(l*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)];
247 248
	  off  = (phy_vars_ue->lte_frame_parms.first_carrier_offset+k)<<1;

knopp's avatar
 
knopp committed
249
	  if (l==(4-phy_vars_ue->lte_frame_parms.Ncp)) {
250 251 252 253
	    for (rb=0;rb<phy_vars_ue->lte_frame_parms.N_RB_DL;rb++) {
		
		//	  printf("rb %d, off %d, off2 %d\n",rb,off,off2);
		
254 255
	      phy_vars_ue->PHY_measurements.rsrp[eNB_offset] += (((int32_t)(rxF[off])*rxF[off])+((int32_t)(rxF[off+1])*rxF[off+1]));
	      //	      printf("rb %d, off %d : %d\n",rb,off,((((int32_t)rxF[off])*rxF[off])+((int32_t)(rxF[off+1])*rxF[off+1])));
256 257 258 259
		/*		if ((phy_vars_ue->frame_rx&0x3ff) == 0)
		  printf("rb %d, off %d : %d\n",rb,off,((rxF[off]*rxF[off])+(rxF[off+1]*rxF[off+1])));
		
		*/
260 261 262
		off+=12;
		if (off>=(phy_vars_ue->lte_frame_parms.ofdm_symbol_size<<1))
		  off = (1+k)<<1;
263 264
		phy_vars_ue->PHY_measurements.rsrp[eNB_offset] += (((int32_t)(rxF[off])*rxF[off])+((int32_t)(rxF[off+1])*rxF[off+1]));
		//		printf("rb %d, off %d : %d\n",rb,off,(((int32_t)(rxF[off])*rxF[off])+((int32_t)(rxF[off+1])*rxF[off+1])));
265 266 267 268
		/*
		  if ((phy_vars_ue->frame_rx&0x3ff) == 0)
		  printf("rb %d, off %d : %d\n",rb,off,((rxF[off]*rxF[off])+(rxF[off+1]*rxF[off+1])));
		*/
269 270 271
		off+=12;
		if (off>=(phy_vars_ue->lte_frame_parms.ofdm_symbol_size<<1))
		  off = (1+k)<<1;
272

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
	      }
	  
	      /*
	      if ((eNB_offset==0)&&(l==0)) {
		for (i=0;i<6;i++,off2+=4)
		  phy_vars_ue->PHY_measurements.rssi += ((rxF[off2]*rxF[off2])+(rxF[off2+1]*rxF[off2+1]));
		if (off2==(phy_vars_ue->lte_frame_parms.ofdm_symbol_size<<2))
		  off2=4;
		for (i=0;i<6;i++,off2+=4)
		  phy_vars_ue->PHY_measurements.rssi += ((rxF[off2]*rxF[off2])+(rxF[off2+1]*rxF[off2+1]));
	      }
	      */
	      //	  printf("slot %d, rb %d => rsrp %d, rssi %d\n",slot,rb,phy_vars_ue->PHY_measurements.rsrp[eNB_offset],phy_vars_ue->PHY_measurements.rssi);
	    }
	}
      }

290

291
      // 2 RE per PRB
292
      //      phy_vars_ue->PHY_measurements.rsrp[eNB_offset]/=(24*phy_vars_ue->lte_frame_parms.N_RB_DL);
293 294
      phy_vars_ue->PHY_measurements.rsrp[eNB_offset]/=(2*phy_vars_ue->lte_frame_parms.N_RB_DL*phy_vars_ue->lte_frame_parms.ofdm_symbol_size);
      LOG_D(PHY,"eNB: %d, RSRP: %d \n",eNB_offset,phy_vars_ue->PHY_measurements.rsrp[eNB_offset]);     
295

knopp's avatar
 
knopp committed
296
 
297 298 299
      if (eNB_offset == 0) {
	//	phy_vars_ue->PHY_measurements.rssi/=(24*phy_vars_ue->lte_frame_parms.N_RB_DL);
	//	phy_vars_ue->PHY_measurements.rssi*=rx_power_correction;
300 301
	//	phy_vars_ue->PHY_measurements.rssi=phy_vars_ue->PHY_measurements.rsrp[0]*24/2;
	phy_vars_ue->PHY_measurements.rssi=phy_vars_ue->PHY_measurements.rsrp[0]*(12*phy_vars_ue->lte_frame_parms.N_RB_DL);
302 303 304 305 306 307 308 309 310 311
      }
      if (phy_vars_ue->PHY_measurements.rssi>0)
	phy_vars_ue->PHY_measurements.rsrq[eNB_offset] = 100*phy_vars_ue->PHY_measurements.rsrp[eNB_offset]*phy_vars_ue->lte_frame_parms.N_RB_DL/phy_vars_ue->PHY_measurements.rssi;
      else
	phy_vars_ue->PHY_measurements.rsrq[eNB_offset] = -12000;
      
      //((200*phy_vars_ue->PHY_measurements.rsrq[eNB_offset]) + ((1024-200)*100*phy_vars_ue->PHY_measurements.rsrp[eNB_offset]*phy_vars_ue->lte_frame_parms.N_RB_DL/phy_vars_ue->PHY_measurements.rssi))>>10;
    }
    else {   // Do abstraction of RSRP and RSRQ
      phy_vars_ue->PHY_measurements.rssi = phy_vars_ue->PHY_measurements.rx_power_avg[0];
312 313 314
      // dummay value for the moment
      phy_vars_ue->PHY_measurements.rsrp[eNB_offset] = -93 ;     
      phy_vars_ue->PHY_measurements.rsrq[eNB_offset] = 3;
315 316

    }
317 318 319 320
  
#ifdef DEBUG_MEAS
    if (slot == 0) {
    
321
    if (eNB_offset == 0)
322 323 324 325 326 327 328 329 330 331 332 333 334
      LOG_D(PHY,"[UE %d] Frame %d, slot %d RRC Measurements => rssi %3.1f dBm (digital: %3.1f dB, gain %d), N0 %d dBm\n",phy_vars_ue->Mod_id,
      phy_vars_ue->frame_rx,slot,10*log10(phy_vars_ue->PHY_measurements.rssi)-phy_vars_ue->rx_total_gain_dB,
      10*log10(phy_vars_ue->PHY_measurements.rssi),
      phy_vars_ue->rx_total_gain_dB,
      phy_vars_ue->PHY_measurements.n0_power_tot_dBm);

    LOG_D(PHY,"[UE %d] Frame %d, slot %d RRC Measurements (idx %d, Cell id %d) => rsrp: %3.1f dBm/RE (%d), rsrq: %3.1f dB\n",
      phy_vars_ue->Mod_id,
      phy_vars_ue->frame_rx,slot,eNB_offset,
      (eNB_offset>0) ? phy_vars_ue->PHY_measurements.adj_cell_id[eNB_offset-1] : phy_vars_ue->lte_frame_parms.Nid_cell,
	      10*log10(phy_vars_ue->PHY_measurements.rsrp[eNB_offset])-phy_vars_ue->rx_total_gain_dB,
	      phy_vars_ue->PHY_measurements.rsrp[eNB_offset],
	      (10*log10(phy_vars_ue->PHY_measurements.rsrq[eNB_offset])));
335
	//LOG_D(PHY,"RSRP_total_dB: %3.2f \n",(dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_offset])/10.0)-phy_vars_ue->rx_total_gain_dB-dB_fixed(phy_vars_ue->lte_frame_parms.N_RB_DL*12));
336

337 338 339
    //LOG_D(PHY,"RSRP_dB: %3.2f \n",(dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_offset])/10.0));
    //LOG_D(PHY,"gain_loss_dB: %d \n",phy_vars_ue->rx_total_gain_dB);
    //LOG_D(PHY,"gain_fixed_dB: %d \n",dB_fixed(phy_vars_ue->lte_frame_parms.N_RB_DL*12));
340

341
  }
342 343 344
#endif
  }

345 346 347 348 349 350 351 352
}

void lte_ue_measurements(PHY_VARS_UE *phy_vars_ue,
			   unsigned int subframe_offset,
			   unsigned char N0_symbol,
			   unsigned char abstraction_flag){


knopp's avatar
 
knopp committed
353
    int aarx,aatx,eNB_id=0,gain_offset=0;
354 355 356 357 358 359
    //int rx_power[NUMBER_OF_CONNECTED_eNB_MAX];
    int i;
    unsigned int limit,subband;
    __m128i *dl_ch0_128,*dl_ch1_128;
    int *dl_ch0,*dl_ch1;
    LTE_DL_FRAME_PARMS *frame_parms = &phy_vars_ue->lte_frame_parms;
knopp's avatar
 
knopp committed
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    int nb_subbands,subband_size,last_subband_size;
    int N_RB_DL = frame_parms->N_RB_DL;

    switch (N_RB_DL) {
    case 6:
      nb_subbands = 6;
      subband_size = 12;
      last_subband_size = 0;
      break;
    default:
    case 25:
      nb_subbands = 7;
      subband_size = 4*12;
      last_subband_size = 12;
      break;
    case 50:
      nb_subbands = 9;
      subband_size = 6*12;
      last_subband_size = 2*12;
      break;
    case 100:
      nb_subbands = 13;
      subband_size = 8*12;
      last_subband_size = 4*12;
      break;
385
    }
386
    /*  // DONE NOW in ue_rrc_measurements
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
    if (abstraction_flag!=0) {
      phy_vars_ue->PHY_measurements.n0_power_tot = 0;
      for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
	phy_vars_ue->PHY_measurements.n0_power[aarx] = pow(10.0,phy_vars_ue->N0/10.0)*pow(10.0,((double)phy_vars_ue->rx_total_gain_dB)/10.0);
	phy_vars_ue->PHY_measurements.n0_power_dB[aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power[aarx]);
	phy_vars_ue->PHY_measurements.n0_power_tot +=  phy_vars_ue->PHY_measurements.n0_power[aarx];
      } 
      phy_vars_ue->PHY_measurements.n0_power_tot_dB = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power_tot);
      phy_vars_ue->PHY_measurements.n0_power_tot_dBm = phy_vars_ue->PHY_measurements.n0_power_tot_dB - phy_vars_ue->rx_total_gain_dB;
    }
    else if (N0_symbol != 0) {
      phy_vars_ue->PHY_measurements.n0_power_tot = 0;
      for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
#ifndef HW_PREFIX_REMOVAL
	phy_vars_ue->PHY_measurements.n0_power[aarx] = signal_energy(&phy_vars_ue->lte_ue_common_vars.rxdata[aarx][subframe_offset+frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples0],frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples);
#else
	phy_vars_ue->PHY_measurements.n0_power[aarx] = signal_energy(&phy_vars_ue->lte_ue_common_vars.rxdata[aarx][subframe_offset+frame_parms->ofdm_symbol_size],frame_parms->ofdm_symbol_size);
#endif
	phy_vars_ue->PHY_measurements.n0_power_dB[aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power[aarx]);
	phy_vars_ue->PHY_measurements.n0_power_tot +=  phy_vars_ue->PHY_measurements.n0_power[aarx];
      }

      phy_vars_ue->PHY_measurements.n0_power_tot_dB = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power_tot);
      phy_vars_ue->PHY_measurements.n0_power_tot_dBm = phy_vars_ue->PHY_measurements.n0_power_tot_dB - phy_vars_ue->rx_total_gain_dB + gain_offset;
      //    printf("PHY measurements UE %d: n0_power %d (%d)\n",phy_vars_ue->Mod_id,phy_vars_ue->PHY_measurements.n0_power_tot_dBm,phy_vars_ue->PHY_measurements.n0_power_tot_dB);
    }
    else {
      phy_vars_ue->PHY_measurements.n0_power_tot_dBm = phy_vars_ue->PHY_measurements.n0_power_tot_dB - phy_vars_ue->rx_total_gain_dB + gain_offset;
    }
416
    */
417 418 419 420 421 422
    // signal measurements  
    for (eNB_id=0;eNB_id<phy_vars_ue->n_connected_eNB;eNB_id++) {
      for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
	for (aatx=0; aatx<frame_parms->nb_antennas_tx_eNB; aatx++) {
	  phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx] = 
	    (signal_energy_nodc(&phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][(aatx<<1) + aarx][0],
knopp's avatar
 
knopp committed
423
				(N_RB_DL*12)));
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	    //- phy_vars_ue->PHY_measurements.n0_power[aarx];
	
	  if (phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx]<0)
	    phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx] = 0; //phy_vars_ue->PHY_measurements.n0_power[aarx];
	
	  phy_vars_ue->PHY_measurements.rx_spatial_power_dB[eNB_id][aatx][aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx]);
	
	  if (aatx==0)
	    phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx] = phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx];
	  else
	    phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx] += phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx];
	} //aatx

	phy_vars_ue->PHY_measurements.rx_power_dB[eNB_id][aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx]);

	if (aarx==0)
	  phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id] = phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx];
	else
	  phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id] += phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx];
      } //aarx

      phy_vars_ue->PHY_measurements.rx_power_tot_dB[eNB_id] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id]);

    } //eNB_id

    // filter to remove jitter
    if (phy_vars_ue->init_averaging == 0) {
      for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++)
	phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id] = (int) 
	  (((k1*((long long int)(phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id]))) + 
	    (k2*((long long int)(phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id]))))>>10);
      phy_vars_ue->PHY_measurements.n0_power_avg = (int)
	(((k1*((long long int) (phy_vars_ue->PHY_measurements.n0_power_avg))) + 
	  (k2*((long long int) (phy_vars_ue->PHY_measurements.n0_power_tot))))>>10);
    }
    else {
      for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++)
	phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id] = phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id];
      phy_vars_ue->PHY_measurements.n0_power_avg = phy_vars_ue->PHY_measurements.n0_power_tot;
      phy_vars_ue->init_averaging = 0;
    }

    for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++) {
      phy_vars_ue->PHY_measurements.rx_power_avg_dB[eNB_id] = dB_fixed( phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id]);
      phy_vars_ue->PHY_measurements.wideband_cqi_tot[eNB_id] = dB_fixed2(phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id],phy_vars_ue->PHY_measurements.n0_power_tot);
      phy_vars_ue->PHY_measurements.wideband_cqi_avg[eNB_id] = dB_fixed2(phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id],phy_vars_ue->PHY_measurements.n0_power_avg);
470
      phy_vars_ue->PHY_measurements.rx_rssi_dBm[eNB_id] = phy_vars_ue->PHY_measurements.rx_power_avg_dB[eNB_id] - phy_vars_ue->rx_total_gain_dB;
knopp's avatar
 
knopp committed
471
#ifdef DEBUG_MEAS
472
      LOG_D(PHY,"[eNB %d] lte_ue_measurements: RSSI %d dBm, RSSI (digital) %d dB\n",
knopp's avatar
 
knopp committed
473 474 475
	     eNB_id,phy_vars_ue->PHY_measurements.rx_rssi_dBm[eNB_id],
	     phy_vars_ue->PHY_measurements.rx_power_avg_dB[eNB_id]);
#endif
476 477 478 479 480 481 482 483 484 485 486
    }
    phy_vars_ue->PHY_measurements.n0_power_avg_dB = dB_fixed( phy_vars_ue->PHY_measurements.n0_power_avg);

    for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++) {
      if (frame_parms->mode1_flag==0) {
	// cqi/pmi information
      
	for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
	  dl_ch0    = &phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][aarx][4];
	  dl_ch1    = &phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][2+aarx][4];
	
knopp's avatar
 
knopp committed
487
	  for (subband=0;subband<nb_subbands;subband++) {
488 489 490 491 492
	  
	    // cqi
	    if (aarx==0)
	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband]=0;
	  
knopp's avatar
 
knopp committed
493 494
	    if ((subband<(nb_subbands-1))||(N_RB_DL==6)) {
	      /*for (i=0;i<48;i++)
495 496 497
		msg("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]);
	      */
	      phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] = 
knopp's avatar
 
knopp committed
498
		(signal_energy_nodc(dl_ch0,subband_size) + signal_energy_nodc(dl_ch1,subband_size));
499 500 501 502 503 504 505 506 507 508 509
	      if ( phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] < 0)
		phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband]=0;
	      /*
	      else
		phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband]-=phy_vars_ue->PHY_measurements.n0_power[aarx];
	      */

	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
	      phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
											      phy_vars_ue->PHY_measurements.n0_power[aarx]);
	    }
knopp's avatar
 
knopp committed
510
	    else {  // this is for the last subband which is smaller in size
511 512
	      //	    for (i=0;i<12;i++)
	      //	      printf("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]); 
knopp's avatar
 
knopp committed
513 514
	      phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] = (signal_energy_nodc(dl_ch0,last_subband_size) + 
										  signal_energy_nodc(dl_ch1,last_subband_size)); // - phy_vars_ue->PHY_measurements.n0_power[aarx];
515 516 517 518
	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
	      phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
											      phy_vars_ue->PHY_measurements.n0_power[aarx]);			
	    }
knopp's avatar
 
knopp committed
519 520
	    dl_ch1+=subband_size;
	    dl_ch0+=subband_size;
521 522 523 524
	    //	  msg("subband_cqi[%d][%d][%d] => %d (%d dB)\n",eNB_id,aarx,subband,phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband]);
	  }
	
	}
knopp's avatar
 
knopp committed
525
	for (subband=0;subband<nb_subbands;subband++) {
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	  phy_vars_ue->PHY_measurements.subband_cqi_tot_dB[eNB_id][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband],phy_vars_ue->PHY_measurements.n0_power_tot);
	  //	  msg("subband_cqi_tot[%d][%d] => %d dB (n0 %d)\n",eNB_id,subband,phy_vars_ue->PHY_measurements.subband_cqi_tot_dB[eNB_id][subband],phy_vars_ue->PHY_measurements.n0_power_tot);
	}	
      
	for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
        // skip the first 4 RE due to interpolation filter length of 5 (not possible to skip 5 due to 128i alignment, must be multiple of 128bit)
	  dl_ch0_128    = (__m128i *)&phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][aarx][4];
	  dl_ch1_128    = (__m128i *)&phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][2+aarx][4];
	  /*
	    #ifdef DEBUG_PHY	
	    if(eNB_id==0){
	    print_shorts("Ch0",dl_ch0_128);
	    print_shorts("Ch1",dl_ch1_128);
	    printf("eNB_ID = %d\n",eNB_id);
	    }
	    #endif
	  */
knopp's avatar
 
knopp committed
543
	  for (subband=0;subband<nb_subbands;subband++) {
544 545 546 547
	  
	  
	    // pmi
	  
548 549
            pmi128_re = _mm_setzero_si128();
            pmi128_im = _mm_setzero_si128();
550 551
	    // limit is the number of groups of 4 REs in a subband (12 = 4 RBs, 3 = 1 RB)
	    // for 5 MHz channelization, there are 7 subbands, 6 of size 4 RBs and 1 of size 1 RB
knopp's avatar
 
knopp committed
552 553 554 555 556
	    if ((N_RB_DL==6) || (subband<(nb_subbands-1)))
	      limit = subband_size>>2;
	    else
	      limit = last_subband_size>>2;

557 558 559 560 561 562 563 564 565
	    for (i=0;i<limit;i++) {
	    
	      // For each RE in subband perform ch0 * conj(ch1)
	      // multiply by conjugated channel
	      // if(eNB_id==0){
	      //print_shorts("ch0",dl_ch0_128);
	      //print_shorts("ch1",dl_ch1_128);
	      // }
	      // if(i==0){
566 567
              mmtmpPMI0 = _mm_setzero_si128();
              mmtmpPMI1 = _mm_setzero_si128();
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
	      //	    }
	      // if(eNB_id==0)
	      // print_ints("Pre_re",&mmtmpPMI0);

	      mmtmpPMI0 = _mm_madd_epi16(dl_ch0_128[0],dl_ch1_128[0]);
	      //  if(eNB_id==0)
	      //  print_ints("re",&mmtmpPMI0);
	    
	      // mmtmpPMI0 contains real part of 4 consecutive outputs (32-bit)
	      // print_shorts("Ch1",dl_ch1_128);
	    
	      mmtmpPMI1 = _mm_shufflelo_epi16(dl_ch1_128[0],_MM_SHUFFLE(2,3,0,1));//_MM_SHUFFLE(2,3,0,1)
	      // print_shorts("mmtmpPMI1:",&mmtmpPMI1);
	      mmtmpPMI1 = _mm_shufflehi_epi16(mmtmpPMI1,_MM_SHUFFLE(2,3,0,1));
	      // print_shorts("mmtmpPMI1:",&mmtmpPMI1);

	      mmtmpPMI1 = _mm_sign_epi16(mmtmpPMI1,*(__m128i*)&conjugate[0]);
	      // print_shorts("mmtmpPMI1:",&mmtmpPMI1);
	      mmtmpPMI1 = _mm_madd_epi16(mmtmpPMI1,dl_ch0_128[0]);
	      //  if(eNB_id==0)
	      //  print_ints("im",&mmtmpPMI1);
	      // mmtmpPMI1 contains imag part of 4 consecutive outputs (32-bit)
	    
	      pmi128_re = _mm_add_epi32(pmi128_re,mmtmpPMI0);
	      pmi128_im = _mm_add_epi32(pmi128_im,mmtmpPMI1);
	      dl_ch0_128++;
	      dl_ch1_128++;
	    }
	    phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx] = (((int *)&pmi128_re)[0] + ((int *)&pmi128_re)[1] + ((int *)&pmi128_re)[2] + ((int *)&pmi128_re)[3])>>2;
	    //	  if(eNB_id==0)
	    // printf("in lte_ue_measurements.c: pmi_re %d\n",phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx]);
	    phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx] = (((int *)&pmi128_im)[0] + ((int *)&pmi128_im)[1] + ((int *)&pmi128_im)[2] + ((int *)&pmi128_im)[3])>>2;
	    //	  if(eNB_id==0)
	    // printf("in lte_ue_measurements.c: pmi_im %d\n",phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx]);
	    phy_vars_ue->PHY_measurements.wideband_pmi_re[eNB_id][aarx] += phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx];	  phy_vars_ue->PHY_measurements.wideband_pmi_im[eNB_id][aarx] += phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx];
	    //	    msg("subband_pmi[%d][%d][%d] => (%d,%d)\n",eNB_id,subband,aarx,phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx],phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx]);
	  
	  } // subband loop
	} // rx antenna loop  
      }  // if frame_parms->mode1_flag == 0
      else {
	// cqi information only for mode 1
	for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
	  dl_ch0    = &phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][aarx][4];
	
	  for (subband=0;subband<7;subband++) {
	  
	    // cqi
	    if (aarx==0)
	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband]=0;
	  
	    if (subband<6) {
	      //	    for (i=0;i<48;i++)
	      //	      printf("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]);
	      phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] = 
knopp's avatar
 
knopp committed
623
		(signal_energy_nodc(dl_ch0,48) ) - phy_vars_ue->PHY_measurements.n0_power[aarx];
624 625 626 627 628 629 630 631
	    
	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
	      phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
											      phy_vars_ue->PHY_measurements.n0_power[aarx]);
	    }
	    else {
	      //	    for (i=0;i<12;i++)
	      //	      printf("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]); 
knopp's avatar
 
knopp committed
632
	      phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] = (signal_energy_nodc(dl_ch0,12) ) - phy_vars_ue->PHY_measurements.n0_power[aarx];
633 634 635 636 637 638 639 640
	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
	      phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
											      phy_vars_ue->PHY_measurements.n0_power[aarx]);							
	    }
	    dl_ch1+=48;
	    //	  msg("subband_cqi[%d][%d][%d] => %d (%d dB)\n",eNB_id,aarx,subband,phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband]);
	  }
	}
knopp's avatar
 
knopp committed
641
	for (subband=0;subband<nb_subbands;subband++) {
642 643 644 645 646
	  phy_vars_ue->PHY_measurements.subband_cqi_tot_dB[eNB_id][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband],phy_vars_ue->PHY_measurements.n0_power_tot);
	}
      }

      phy_vars_ue->PHY_measurements.rank[eNB_id] = 0;
knopp's avatar
 
knopp committed
647
      for (i=0;i<nb_subbands;i++) {
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
	phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 0;
	if (frame_parms->nb_antennas_rx>1) {
	  if (phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][0][i] >= phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][1][i])
	    phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 0;
	  else
	    phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 1;
	}
	else
	  phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 0;
      }
      // if(eNB_id==0)
      // printf("in lte_ue_measurements: selected rx_antenna[eNB_id==0]:%u\n", phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i]);
    }  // eNB_id loop

    _mm_empty();
    _m_empty();

  }


gauthier's avatar
gauthier committed
668
  void lte_ue_measurements_emul(PHY_VARS_UE *phy_vars_ue,uint8_t last_slot,uint8_t eNB_id) {
669 670 671 672

    msg("[PHY] EMUL UE lte_ue_measurements_emul last slot %d, eNB_id %d\n",last_slot,eNB_id);
  }