/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see .
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
#ifdef USER_MODE
#include
#endif
#include "defs.h"
#include "PHY/defs.h"
#include "filt16_32.h"
//#define DEBUG_CH
int lte_dl_bf_channel_estimation(PHY_VARS_UE *phy_vars_ue,
uint8_t eNB_id,
uint8_t eNB_offset,
unsigned char Ns,
unsigned char p,
unsigned char symbol)
{
unsigned short rb,nb_rb=0;
unsigned char aarx,l,lprime,nsymb,skip_half=0,sss_symb,pss_symb=0,rb_alloc_ind,harq_pid,uespec_pilots=0;
int beamforming_mode, ch_offset;
uint8_t subframe;
int8_t uespec_nushift, uespec_poffset=0, pil_offset=0;
uint8_t pilot0,pilot1,pilot2,pilot3;
short ch[2], *pil, *rxF, *dl_bf_ch, *dl_bf_ch_prev;
short *fl, *fm, *fr, *fl_dc, *fm_dc, *fr_dc, *f1, *f2l, *f2r;
unsigned int *rb_alloc;
int **rxdataF;
int32_t **dl_bf_ch_estimates;
int uespec_pilot[300];
LTE_DL_FRAME_PARMS *frame_parms = &phy_vars_ue->lte_frame_parms;
LTE_UE_DLSCH_t **dlsch_ue = phy_vars_ue->dlsch_ue[eNB_id];
LTE_DL_UE_HARQ_t *dlsch0_harq;
harq_pid = dlsch_ue[0]->current_harq_pid;
dlsch0_harq = dlsch_ue[0]->harq_processes[harq_pid];
rb_alloc = dlsch0_harq->rb_alloc;
rxdataF = phy_vars_ue->lte_ue_common_vars.rxdataF;
dl_bf_ch_estimates = phy_vars_ue->lte_ue_pdsch_vars[eNB_id]->dl_bf_ch_estimates;
beamforming_mode = phy_vars_ue->transmission_mode[eNB_id]>6 ? phy_vars_ue->transmission_mode[eNB_id] : 0;
if (phy_vars_ue->high_speed_flag == 0) // use second channel estimate position for temporary storage
ch_offset = frame_parms->ofdm_symbol_size;
else
ch_offset = frame_parms->ofdm_symbol_size*symbol;
uespec_nushift = frame_parms->Nid_cell%3;
subframe = Ns>>1;
//generate ue specific pilots
lprime = symbol/3-1;
lte_dl_ue_spec_rx(phy_vars_ue,uespec_pilot,Ns,5,lprime,0,dlsch0_harq->nb_rb);
write_output("uespec_pilot_rx.m","uespec_pilot",uespec_pilot,300,1,1);
if (frame_parms->Ncp==0){
if (symbol==3 || symbol==6 || symbol==9 || symbol==12)
uespec_pilots = 1;
} else{
if (symbol==4 || symbol==7 || symbol==10)
uespec_pilots = 1;
}
if ((frame_parms->Ncp==0 && (symbol==6 ||symbol ==12)) || (frame_parms->Ncp==1 && symbol==7))
uespec_poffset = 2;
if (phy_vars_ue->lte_frame_parms.Ncp == 0) { // normal prefix
pilot0 = 3;
pilot1 = 6;
pilot2 = 9;
pilot3 = 12;
} else { // extended prefix
pilot0 = 4;
pilot1 = 7;
pilot2 = 10;
}
//define the filter
pil_offset = (uespec_nushift+uespec_poffset)%3;
// printf("symbol=%d,pil_offset=%d\n",symbol,pil_offset);
switch (pil_offset) {
case 0:
fl = filt16_l0;
fm = filt16_m0;
fr = filt16_r0;
fl_dc = filt16_l0;
fm_dc = filt16_m0;
fr_dc = filt16_r0;
f1 = filt16_1;
f2l = filt16_2l0;
f2r = filt16_2r0;
break;
case 1:
fl = filt16_l1;
fm = filt16_m1;
fr = filt16_r1;
fl_dc = filt16_l1;
fm_dc = filt16_m1;
fr_dc = filt16_r1;
f1 = filt16_1;
f2l = filt16_2l1;
f2r = filt16_2r1;
break;
case 2:
fl = filt16_l2;
fm = filt16_m2;
fr = filt16_r2;
fl_dc = filt16_l2;
fm_dc = filt16_m2;
fr_dc = filt16_r2;
f1 = filt16_1;
f2l = filt16_2l0;
f2r = filt16_2r0;
break;
case 3:
fl = filt16_l3;
fm = filt16_m3;
fr = filt16_r3;
fl_dc = filt16_l3;
fm_dc = filt16_m3;
fr_dc = filt16_r3;
f1 = filt16_1;
f2l = filt16_2l1;
f2r = filt16_2r1;
break;
}
// beamforming mode extension
/* }
else if (beamforming_mode==0)
msg("lte_dl_bf_channel_estimation:No beamforming is performed.\n");
else
msg("lte_dl_bf_channel_estimation:Beamforming mode not supported yet.\n");*/
l=symbol;
nsymb = (frame_parms->Ncp==NORMAL) ? 14:12;
if (frame_parms->frame_type == TDD) { //TDD
sss_symb = nsymb-1;
pss_symb = 2;
} else {
sss_symb = (nsymb>>1)-2;
pss_symb = (nsymb>>1)-1;
}
for (aarx=0; aarxnb_antennas_rx; aarx++) {
rxF = (short *)&rxdataF[aarx][pil_offset + frame_parms->first_carrier_offset + symbol*frame_parms->ofdm_symbol_size];
pil = (short *)uespec_pilot;
dl_bf_ch = (short *)&dl_bf_ch_estimates[aarx][ch_offset];
memset(dl_bf_ch,0,4*(frame_parms->ofdm_symbol_size));
//memset(dl_bf_ch,0,2*(frame_parms->ofdm_symbol_size));
if (phy_vars_ue->high_speed_flag==0) {
// multiply previous channel estimate by ch_est_alpha
if (frame_parms->Ncp==0){
multadd_complex_vector_real_scalar(dl_bf_ch-(frame_parms->ofdm_symbol_size<<1),
phy_vars_ue->ch_est_alpha,dl_bf_ch-(frame_parms->ofdm_symbol_size<<1),
1,frame_parms->ofdm_symbol_size);
} else {
msg("lte_dl_bf_channel_estimation: beamforming channel estimation not supported for TM7 Extended CP.\n"); // phy_vars_ue->ch_est_beta should be defined equaling 1/3
}
}
//estimation and interpolation
if ((frame_parms->N_RB_DL&1) == 0) // even number of RBs
for (rb=0; rbN_RB_DL; rb++) {
if (rb < 32)
rb_alloc_ind = (rb_alloc[0]>>rb) & 1;
else if (rb < 64)
rb_alloc_ind = (rb_alloc[1]>>(rb-32)) & 1;
else if (rb < 96)
rb_alloc_ind = (rb_alloc[2]>>(rb-64)) & 1;
else if (rb < 100)
rb_alloc_ind = (rb_alloc[3]>>(rb-96)) & 1;
else
rb_alloc_ind = 0;
// For second half of RBs skip DC carrier
if (rb==(frame_parms->N_RB_DL>>1)) {
rxF = (short *)&rxdataF[aarx][(1 + (symbol*(frame_parms->ofdm_symbol_size)))];
}
if (rb_alloc_ind==1) {
if (uespec_pilots==1) {
if (beamforming_mode==7) {
if (frame_parms->Ncp==0) {
ch[0] = (short)(((int)pil[0]*rxF[0] - (int)pil[1]*rxF[1])>>15);
ch[1] = (short)(((int)pil[0]*rxF[1] + (int)pil[1]*rxF[0])>>15);
multadd_real_vector_complex_scalar(fl,ch,dl_bf_ch,16);
ch[0] = (short)(((int)pil[0]*rxF[8] - (int)pil[1]*rxF[9])>>15);
ch[1] = (short)(((int)pil[0]*rxF[9] + (int)pil[1]*rxF[8])>>15);
multadd_real_vector_complex_scalar(fm,ch,dl_bf_ch,16);
ch[0] = (short)(((int)pil[0]*rxF[16] - (int)pil[1]*rxF[17])>>15);
ch[1] = (short)(((int)pil[0]*rxF[17] + (int)pil[1]*rxF[16])>>15);
multadd_real_vector_complex_scalar(fr,ch,dl_bf_ch,16);
}
} else {
msg("lte_dl_bf_channel_estimation(lte_dl_bf_channel_estimation.c):TM7 beamgforming channel estimation not supported for extented CP\n");
exit(-1);
}
} else {
msg("lte_dl_bf_channel_estimation(lte_dl_bf_channel_estimation.c): transmission mode not supported.\n");
}
nb_rb++;
}
rxF+=24;
dl_bf_ch+=24;
}
else { // Odd number of RBs
for (rb=0; rbN_RB_DL>>1; rb++) {
skip_half=0;
if (rb < 32)
rb_alloc_ind = (rb_alloc[0]>>rb) & 1;
else if (rb < 64)
rb_alloc_ind = (rb_alloc[1]>>(rb-32)) & 1;
else if (rb < 96)
rb_alloc_ind = (rb_alloc[2]>>(rb-64)) & 1;
else if (rb < 100)
rb_alloc_ind = (rb_alloc[3]>>(rb-96)) & 1;
else
rb_alloc_ind = 0;
// PBCH
if ((subframe==0) && (rb>((frame_parms->N_RB_DL>>1)-3)) && (rb<((frame_parms->N_RB_DL>>1)+3)) && (l>=(nsymb>>1)) && (l<((nsymb>>1) + 4))) {
rb_alloc_ind = 0;
}
//PBCH subframe 0, symbols nsymb>>1 ... nsymb>>1 + 3
if ((subframe==0) && (rb==((frame_parms->N_RB_DL>>1)-3)) && (l>=(nsymb>>1)) && (l<((nsymb>>1) + 4)))
skip_half=1;
else if ((subframe==0) && (rb==((frame_parms->N_RB_DL>>1)+3)) && (l>=(nsymb>>1)) && (l<((nsymb>>1) + 4)))
skip_half=2;
//SSS
if (((subframe==0)||(subframe==5)) &&
(rb>((frame_parms->N_RB_DL>>1)-3)) &&
(rb<((frame_parms->N_RB_DL>>1)+3)) &&
(l==sss_symb) ) {
rb_alloc_ind = 0;
}
//SSS
if (((subframe==0)||(subframe==5)) &&
(rb==((frame_parms->N_RB_DL>>1)-3)) &&
(l==sss_symb))
skip_half=1;
else if (((subframe==0)||(subframe==5)) &&
(rb==((frame_parms->N_RB_DL>>1)+3)) &&
(l==sss_symb))
skip_half=2;
//PSS in subframe 0/5 if FDD
if (frame_parms->frame_type == FDD) { //FDD
if (((subframe==0)||(subframe==5)) && (rb>((frame_parms->N_RB_DL>>1)-3)) && (rb<((frame_parms->N_RB_DL>>1)+3)) && (l==pss_symb) ) {
rb_alloc_ind = 0;
}
if (((subframe==0)||(subframe==5)) && (rb==((frame_parms->N_RB_DL>>1)-3)) && (l==pss_symb))
skip_half=1;
else if (((subframe==0)||(subframe==5)) && (rb==((frame_parms->N_RB_DL>>1)+3)) && (l==pss_symb))
skip_half=2;
}
if ((frame_parms->frame_type == TDD) && ((subframe==1)||(subframe==6))) { //TDD Subframe 1 and 6
if ((rb>((frame_parms->N_RB_DL>>1)-3)) && (rb<((frame_parms->N_RB_DL>>1)+3)) && (l==pss_symb) ) {
rb_alloc_ind = 0;
}
if ((rb==((frame_parms->N_RB_DL>>1)-3)) && (l==pss_symb))
skip_half=1;
else if ((rb==((frame_parms->N_RB_DL>>1)+3)) && (l==pss_symb))
skip_half=2;
}
//printf("symbol=%d,pil_offset=%d\ni,rb_alloc_ind=%d,uespec_pilots=%d,beamforming_mode=%d,Ncp=%d,skip_half=%d\n",symbol,pil_offset,rb_alloc_ind,uespec_pilots,beamforming_mode,frame_parms->Ncp,skip_half);
if (rb_alloc_ind==1) {
if (uespec_pilots==1) {
if (beamforming_mode==7) {
if (frame_parms->Ncp==0) {
if (skip_half==1) {
if (pil_offset<2) {
ch[0] = (short)(((int)pil[0]*rxF[0] - (int)pil[1]*rxF[1])>>15);
ch[1] = (short)(((int)pil[0]*rxF[1] + (int)pil[1]*rxF[0])>>15);
multadd_real_vector_complex_scalar(f2l,ch,dl_bf_ch,16);
pil+=2;
ch[0] = (short)(((int)pil[0]*rxF[8] - (int)pil[1]*rxF[9])>>15);
ch[1] = (short)(((int)pil[0]*rxF[9] + (int)pil[1]*rxF[8])>>15);
multadd_real_vector_complex_scalar(f2r,ch,dl_bf_ch,16);
pil+=2;
} else {
ch[0] = (short)(((int)pil[0]*rxF[0] - (int)pil[1]*rxF[1])>>15);
ch[1] = (short)(((int)pil[0]*rxF[1] + (int)pil[1]*rxF[0])>>15);
multadd_real_vector_complex_scalar(f1,ch,dl_bf_ch,16);
pil+=2;
}
} else if (skip_half==2) {
if (pil_offset<2) {
ch[0] = (short)(((int)pil[0]*rxF[16] - (int)pil[1]*rxF[17])>>15);
ch[1] = (short)(((int)pil[0]*rxF[17] + (int)pil[1]*rxF[16])>>15);
multadd_real_vector_complex_scalar(f1,ch,dl_bf_ch,16);
pil+=2;
} else {
ch[0] = (short)(((int)pil[0]*rxF[8] - (int)pil[1]*rxF[9])>>15);
ch[1] = (short)(((int)pil[0]*rxF[9] + (int)pil[1]*rxF[8])>>15);
multadd_real_vector_complex_scalar(f2l,ch,dl_bf_ch,16);
pil+=2;
ch[0] = (short)(((int)pil[0]*rxF[16] - (int)pil[1]*rxF[17])>>15);
ch[1] = (short)(((int)pil[0]*rxF[17] + (int)pil[1]*rxF[16])>>15);
multadd_real_vector_complex_scalar(f2r,ch,dl_bf_ch,16);
pil+=2;
}
} else {
ch[0] = (short)(((int)pil[0]*rxF[0] - (int)pil[1]*rxF[1])>>15);
ch[1] = (short)(((int)pil[0]*rxF[1] + (int)pil[1]*rxF[0])>>15);
multadd_real_vector_complex_scalar(fl,ch,dl_bf_ch,16);
//printf("symbol=%d,rxF[%d]=(%d,%d),pil=(%d,%d),ch=(%d,%d)\n",symbol,pil_offset,rxF[0],rxF[1],pil[0],pil[1],ch[0],ch[1]);
pil+=2;
ch[0] = (short)(((int)pil[0]*rxF[8] - (int)pil[1]*rxF[9])>>15);
ch[1] = (short)(((int)pil[0]*rxF[9] + (int)pil[1]*rxF[8])>>15);
multadd_real_vector_complex_scalar(fm,ch,dl_bf_ch,16);
//printf("symbol=%d,rxF[%d]=(%d,%d),pil=(%d,%d),ch=(%d,%d)\n",symbol,pil_offset,rxF[8],rxF[9],pil[0],pil[1],ch[0],ch[1]);
pil+=2;
ch[0] = (short)(((int)pil[0]*rxF[16] - (int)pil[1]*rxF[17])>>15);
ch[1] = (short)(((int)pil[0]*rxF[17] + (int)pil[1]*rxF[16])>>15);
multadd_real_vector_complex_scalar(fr,ch,dl_bf_ch,16);
//printf("symbol=%d,rxF[%d]=(%d,%d),pil=(%d,%d),ch=(%d,%d)\n",symbol,pil_offset,rxF[16],rxF[17],pil[0],pil[1],ch[0],ch[1]);
pil+=2;
}
} else {
msg("lte_dl_bf_channel_estimation(lte_dl_bf_channel_estimation.c):TM7 beamgforming channel estimation not supported for extented CP\n");
exit(-1);
}
} else {
msg("lte_dl_bf_channel_estimation(lte_dl_bf_channel_estimation.c):transmission mode not supported.\n");
}
}
nb_rb++;
}
rxF+=24;
dl_bf_ch+=24;
} // first half loop
// Do middle RB (around DC)
if (rb < 32)
rb_alloc_ind = (rb_alloc[0]>>rb) & 1;
else if (rb < 64)
rb_alloc_ind = (rb_alloc[1]>>(rb-32)) & 1;
else if (rb < 96)
rb_alloc_ind = (rb_alloc[2]>>(rb-64)) & 1;
else if (rb < 100)
rb_alloc_ind = (rb_alloc[3]>>(rb-96)) & 1;
else
rb_alloc_ind = 0;
// PBCH
if ((subframe==0) && (rb>=((frame_parms->N_RB_DL>>1)-3)) && (rb<((frame_parms->N_RB_DL>>1)+3)) && (l>=(nsymb>>1)) && (l<((nsymb>>1) + 4))) {
rb_alloc_ind = 0;
}
//SSS
if (((subframe==0)||(subframe==5)) && (rb>=((frame_parms->N_RB_DL>>1)-3)) && (rb<((frame_parms->N_RB_DL>>1)+3)) && (l==sss_symb) ) {
rb_alloc_ind = 0;
}
if (frame_parms->frame_type == FDD) {
//PSS
if (((subframe==0)||(subframe==5)) && (rb>=((frame_parms->N_RB_DL>>1)-3)) && (rb<((frame_parms->N_RB_DL>>1)+3)) && (l==pss_symb) ) {
rb_alloc_ind = 0;
}
}
if ((frame_parms->frame_type == TDD) && ((subframe==1)||(subframe==6))) {
//PSS
if ((rb>((frame_parms->N_RB_DL>>1)-3)) && (rb<((frame_parms->N_RB_DL>>1)+3)) && (l==pss_symb) ) {
rb_alloc_ind = 0;
}
}
//printf("DC rb %d (%p)\n",rb,rxF);
if (rb_alloc_ind==1) {
if (pil_offset<2) {
ch[0] = (short)(((int)pil[0]*rxF[0] - (int)pil[1]*rxF[1])>>15);
ch[1] = (short)(((int)pil[0]*rxF[1] + (int)pil[1]*rxF[0])>>15);
multadd_real_vector_complex_scalar(fl_dc,ch,dl_bf_ch,16);
//printf("symbol=%d,rxF[%d]=(%d,%d),pil=(%d,%d),ch=(%d,%d)\n",symbol,pil_offset,rxF[0],rxF[1],pil[0],pil[1],ch[0],ch[1]);
pil+=2;;
ch[0] = (short)(((int)pil[0]*rxF[8] - (int)pil[1]*rxF[9])>>15);
ch[1] = (short)(((int)pil[0]*rxF[9] + (int)pil[1]*rxF[8])>>15);
multadd_real_vector_complex_scalar(fm_dc,ch,dl_bf_ch,16);
//printf("symbol=%d,rxF[%d]=(%d,%d),pil=(%d,%d),ch=(%d,%d)\n",symbol,pil_offset,rxF[8],rxF[9],pil[0],pil[1],ch[0],ch[1]);
pil+=2;;
rxF = (short *)&rxdataF[aarx][symbol*(frame_parms->ofdm_symbol_size)];
ch[0] = (short)(((int)pil[0]*rxF[6] - (int)pil[1]*rxF[7])>>15);
ch[1] = (short)(((int)pil[0]*rxF[7] + (int)pil[1]*rxF[6])>>15);
multadd_real_vector_complex_scalar(fr_dc,ch,dl_bf_ch,16);
//printf("symbol=%d,rxF[%d]=(%d,%d),pil=(%d,%d),ch=(%d,%d)\n",symbol,pil_offset,rxF[6],rxF[7],pil[0],pil[1],ch[0],ch[1]);
pil+=2;;
} else {
ch[0] = (short)(((int)pil[0]*rxF[0] - (int)pil[1]*rxF[1])>>15);
ch[1] = (short)(((int)pil[0]*rxF[1] + (int)pil[1]*rxF[0])>>15);
multadd_real_vector_complex_scalar(fl_dc,ch,dl_bf_ch,16);
//printf("symbol=%d,rxF[%d]=(%d,%d),pil=(%d,%d),ch=(%d,%d)\n",symbol,pil_offset,rxF[0],rxF[1],pil[0],pil[1],ch[0],ch[1]);
pil+=2;;
rxF = (short *)&rxdataF[aarx][symbol*(frame_parms->ofdm_symbol_size)];
ch[0] = (short)(((int)pil[0]*rxF[2] - (int)pil[1]*rxF[3])>>15);
ch[1] = (short)(((int)pil[0]*rxF[3] + (int)pil[1]*rxF[2])>>15);
multadd_real_vector_complex_scalar(fm_dc,ch,dl_bf_ch,16);
//printf("symbol=%d,rxF[%d]=(%d,%d),pil=(%d,%d),ch=(%d,%d)\n",symbol,pil_offset,rxF[2],rxF[3],pil[0],pil[1],ch[0],ch[1]);
pil+=2;;
ch[0] = (short)(((int)pil[0]*rxF[10] - (int)pil[1]*rxF[11])>>15);
ch[1] = (short)(((int)pil[0]*rxF[11] + (int)pil[1]*rxF[10])>>15);
multadd_real_vector_complex_scalar(fr_dc,ch,dl_bf_ch,16);
//printf("symbol=%d,rxF[%d]=(%d,%d),pil=(%d,%d),ch=(%d,%d)\n",symbol,pil_offset,rxF[10],rxF[11],pil[0],pil[1],ch[0],ch[1]);
pil+=2;;
}
} // rballoc==1
else {
rxF = (short *)&rxdataF[aarx][pil_offset+((symbol*(frame_parms->ofdm_symbol_size)))];
}
rxF+=14+2*pil_offset;
dl_bf_ch+=24;
rb++;
for (; rbN_RB_DL; rb++) {
skip_half=0;
if (rb < 32)
rb_alloc_ind = (rb_alloc[0]>>rb) & 1;
else if (rb < 64)
rb_alloc_ind = (rb_alloc[1]>>(rb-32)) & 1;
else if (rb < 96)
rb_alloc_ind = (rb_alloc[2]>>(rb-64)) & 1;
else if (rb < 100)
rb_alloc_ind = (rb_alloc[3]>>(rb-96)) & 1;
else
rb_alloc_ind = 0;
// PBCH
if ((subframe==0) && (rb>((frame_parms->N_RB_DL>>1)-3)) && (rb<((frame_parms->N_RB_DL>>1)+3)) && (l>=nsymb>>1) && (l<((nsymb>>1) + 4))) {
rb_alloc_ind = 0;
}
//PBCH subframe 0, symbols nsymb>>1 ... nsymb>>1 + 3
if ((subframe==0) && (rb==((frame_parms->N_RB_DL>>1)-3)) && (l>=(nsymb>>1)) && (l<((nsymb>>1) + 4)))
skip_half=1;
else if ((subframe==0) && (rb==((frame_parms->N_RB_DL>>1)+3)) && (l>=(nsymb>>1)) && (l<((nsymb>>1) + 4)))
skip_half=2;
//SSS
if (((subframe==0)||(subframe==5)) && (rb>((frame_parms->N_RB_DL>>1)-3)) && (rb<((frame_parms->N_RB_DL>>1)+3)) && (l==sss_symb) ) {
rb_alloc_ind = 0;
}
//SSS
if (((subframe==0)||(subframe==5)) && (rb==((frame_parms->N_RB_DL>>1)-3)) && (l==sss_symb))
skip_half=1;
else if (((subframe==0)||(subframe==5)) && (rb==((frame_parms->N_RB_DL>>1)+3)) && (l==sss_symb))
skip_half=2;
if (frame_parms->frame_type == FDD) {
//PSS
if (((subframe==0)||(subframe==5)) && (rb>((frame_parms->N_RB_DL>>1)-3)) && (rb<((frame_parms->N_RB_DL>>1)+3)) && (l==pss_symb) ) {
rb_alloc_ind = 0;
}
//PSS
if (((subframe==0)||(subframe==5)) && (rb==((frame_parms->N_RB_DL>>1)-3)) && (l==pss_symb))
skip_half=1;
else if (((subframe==0)||(subframe==5)) && (rb==((frame_parms->N_RB_DL>>1)+3)) && (l==pss_symb))
skip_half=2;
}
if ((frame_parms->frame_type == TDD) && ((subframe==1)||(subframe==6))) { //TDD Subframe 1 and 6
if ((rb>((frame_parms->N_RB_DL>>1)-3)) && (rb<((frame_parms->N_RB_DL>>1)+3)) && (l==pss_symb) ) {
rb_alloc_ind = 0;
}
if ((rb==((frame_parms->N_RB_DL>>1)-3)) && (l==pss_symb))
skip_half=1;
else if ((rb==((frame_parms->N_RB_DL>>1)+3)) && (l==pss_symb))
skip_half=2;
}
if (rb_alloc_ind==1) {
if (uespec_pilots==1) {
if (beamforming_mode==7) {
if (frame_parms->Ncp==0) {
if (skip_half==1) {
if (pil_offset<2) {
ch[0] = (short)(((int)pil[0]*rxF[0] - (int)pil[1]*rxF[1])>>15);
ch[1] = (short)(((int)pil[0]*rxF[1] + (int)pil[1]*rxF[0])>>15);
multadd_real_vector_complex_scalar(f2l,ch,dl_bf_ch,16);
pil+=2;
ch[0] = (short)(((int)pil[0]*rxF[8] - (int)pil[1]*rxF[9])>>15);
ch[1] = (short)(((int)pil[0]*rxF[9] + (int)pil[1]*rxF[8])>>15);
multadd_real_vector_complex_scalar(f2r,ch,dl_bf_ch,16);
pil+=2;
} else {
ch[0] = (short)(((int)pil[0]*rxF[0] - (int)pil[1]*rxF[1])>>15);
ch[1] = (short)(((int)pil[0]*rxF[1] + (int)pil[1]*rxF[0])>>15);
multadd_real_vector_complex_scalar(f1,ch,dl_bf_ch,16);
pil+=2;
}
} else if (skip_half==2) {
if (pil_offset<2) {
ch[0] = (short)(((int)pil[0]*rxF[16] - (int)pil[1]*rxF[17])>>15);
ch[1] = (short)(((int)pil[0]*rxF[17] + (int)pil[1]*rxF[16])>>15);
multadd_real_vector_complex_scalar(f1,ch,dl_bf_ch,16);
pil+=2;
} else {
ch[0] = (short)(((int)pil[0]*rxF[8] - (int)pil[1]*rxF[9])>>15);
ch[1] = (short)(((int)pil[0]*rxF[9] + (int)pil[1]*rxF[8])>>15);
multadd_real_vector_complex_scalar(f2l,ch,dl_bf_ch,16);
pil+=2;
ch[0] = (short)(((int)pil[0]*rxF[16] - (int)pil[1]*rxF[17])>>15);
ch[1] = (short)(((int)pil[0]*rxF[17] + (int)pil[1]*rxF[16])>>15);
multadd_real_vector_complex_scalar(f2r,ch,dl_bf_ch,16);
pil+=2;
}
} else {
ch[0] = (short)(((int)pil[0]*rxF[0] - (int)pil[1]*rxF[1])>>15);
ch[1] = (short)(((int)pil[0]*rxF[1] + (int)pil[1]*rxF[0])>>15);
multadd_real_vector_complex_scalar(fl,ch,dl_bf_ch,16);
//printf("symbol=%d,rxF[%d]=(%d,%d),pil=(%d,%d),ch=(%d,%d)\n",symbol,pil_offset,rxF[0],rxF[1],pil[0],pil[1],ch[0],ch[1]);
pil+=2;
ch[0] = (short)(((int)pil[0]*rxF[8] - (int)pil[1]*rxF[9])>>15);
ch[1] = (short)(((int)pil[0]*rxF[9] + (int)pil[1]*rxF[8])>>15);
multadd_real_vector_complex_scalar(fm,ch,dl_bf_ch,16);
//printf("symbol=%d,rxF[%d]=(%d,%d),pil=(%d,%d),ch=(%d,%d)\n",symbol,pil_offset,rxF[8],rxF[9],pil[0],pil[1],ch[0],ch[1]);
pil+=2;
ch[0] = (short)(((int)pil[0]*rxF[16] - (int)pil[1]*rxF[17])>>15);
ch[1] = (short)(((int)pil[0]*rxF[17] + (int)pil[1]*rxF[16])>>15);
multadd_real_vector_complex_scalar(fr,ch,dl_bf_ch,16);
//printf("symbol=%d,rxF[%d]=(%d,%d),pil=(%d,%d),ch=(%d,%d)\n",symbol,pil_offset,rxF[16],rxF[17],pil[0],pil[1],ch[0],ch[1]);
pil+=2;
}
} else {
msg("lte_dl_bf_channel_estimation(lte_dl_bf_channel_estimation.c):TM7 beamgforming channel estimation not supported for extented CP\n");
exit(-1);
}
} else {
msg("lte_dl_bf_channel_estimation(lte_dl_bf_channel_estimation.c):transmission mode not supported.\n");
}
}
nb_rb++;
}
rxF+=24;
dl_bf_ch+=24;
} // second half of RBs
} // odd number of RBs
// Temporal Interpolation
if (phy_vars_ue->perfect_ce == 0) {
dl_bf_ch = (short *)&dl_bf_ch_estimates[aarx][ch_offset];
//printf("dlsch_bf_ch_est.c:symbol %d, dl_bf_ch (%d,%d)\n",symbol,dl_bf_ch[0],dl_bf_ch[1]);
if (phy_vars_ue->high_speed_flag == 0) {
multadd_complex_vector_real_scalar(dl_bf_ch,
32767-phy_vars_ue->ch_est_alpha,
dl_bf_ch-(frame_parms->ofdm_symbol_size<<1),0,frame_parms->ofdm_symbol_size);
//printf("dlsch_bf_ch_est.c:symbol %d,dl_bf_ch (%d,%d)\n",symbol,*(dl_bf_ch-512*2),*(dl_bf_ch-512*2+1));
} else { // high_speed_flag == 1
if (beamforming_mode==7) {
if (frame_parms->Ncp==0) {
if (symbol == pilot0) {
// printf("Interpolating %d->0\n",4-phy_vars_ue->lte_frame_parms.Ncp);
// dl_bf_ch_prev = (short *)&dl_bf_ch_estimates[aarx][(4-phy_vars_ue->lte_frame_parms.Ncp)*(frame_parms->ofdm_symbol_size)];
dl_bf_ch_prev = (short *)&dl_bf_ch_estimates[aarx][pilot3*(frame_parms->ofdm_symbol_size)];
// pilot spacing 5 symbols (1/5,2/5,3/5,4/5 combination)
multadd_complex_vector_real_scalar(dl_bf_ch_prev,26214,dl_bf_ch_prev+(2*(frame_parms->ofdm_symbol_size)),1,frame_parms->ofdm_symbol_size);
multadd_complex_vector_real_scalar(dl_bf_ch,6554,dl_bf_ch_prev+(2*(frame_parms->ofdm_symbol_size)),0,frame_parms->ofdm_symbol_size);
multadd_complex_vector_real_scalar(dl_bf_ch_prev,19661,dl_bf_ch-(3*2*(frame_parms->ofdm_symbol_size)),1,frame_parms->ofdm_symbol_size);
multadd_complex_vector_real_scalar(dl_bf_ch,13107,dl_bf_ch-(3*2*(frame_parms->ofdm_symbol_size)),0,frame_parms->ofdm_symbol_size);
multadd_complex_vector_real_scalar(dl_bf_ch_prev,13107,dl_bf_ch-(2*((frame_parms->ofdm_symbol_size)<<1)),1,frame_parms->ofdm_symbol_size);
multadd_complex_vector_real_scalar(dl_bf_ch,19661,dl_bf_ch-(2*((frame_parms->ofdm_symbol_size)<<1)),0,frame_parms->ofdm_symbol_size);
multadd_complex_vector_real_scalar(dl_bf_ch_prev,6554,dl_bf_ch-(2*(frame_parms->ofdm_symbol_size)),1,frame_parms->ofdm_symbol_size);
multadd_complex_vector_real_scalar(dl_bf_ch,26214,dl_bf_ch-(2*(frame_parms->ofdm_symbol_size)),0,frame_parms->ofdm_symbol_size);
} else if (symbol == pilot1) {
dl_bf_ch_prev = (short *)&dl_bf_ch_estimates[aarx][pilot0*(frame_parms->ofdm_symbol_size)];
// pilot spacing 3 symbols (1/3,2/3 combination)
multadd_complex_vector_real_scalar(dl_bf_ch_prev,21845,dl_bf_ch_prev+(2*(frame_parms->ofdm_symbol_size)),1,frame_parms->ofdm_symbol_size);
multadd_complex_vector_real_scalar(dl_bf_ch,10923,dl_bf_ch_prev+(2*(frame_parms->ofdm_symbol_size)),0,frame_parms->ofdm_symbol_size);
multadd_complex_vector_real_scalar(dl_bf_ch_prev,10923,dl_bf_ch_prev+(2*((frame_parms->ofdm_symbol_size)<<1)),1,frame_parms->ofdm_symbol_size);
multadd_complex_vector_real_scalar(dl_bf_ch,21845,dl_bf_ch_prev+(2*((frame_parms->ofdm_symbol_size)<<1)),0,frame_parms->ofdm_symbol_size);
} else if (symbol == pilot2) {
dl_bf_ch_prev = (short *)&dl_bf_ch_estimates[aarx][pilot1*(frame_parms->ofdm_symbol_size)];
multadd_complex_vector_real_scalar(dl_bf_ch_prev,21845,dl_bf_ch_prev+(2*(frame_parms->ofdm_symbol_size)),1,frame_parms->ofdm_symbol_size);
multadd_complex_vector_real_scalar(dl_bf_ch,10923,dl_bf_ch_prev+(2*(frame_parms->ofdm_symbol_size)),0,frame_parms->ofdm_symbol_size);
multadd_complex_vector_real_scalar(dl_bf_ch_prev,10923,dl_bf_ch_prev+(2*((frame_parms->ofdm_symbol_size)<<1)),1,frame_parms->ofdm_symbol_size);
multadd_complex_vector_real_scalar(dl_bf_ch,21845,dl_bf_ch_prev+(2*((frame_parms->ofdm_symbol_size)<<1)),0,frame_parms->ofdm_symbol_size);
} else { // symbol == pilot3
// printf("Interpolating 0->%d\n",4-phy_vars_ue->lte_frame_parms.Ncp);
dl_bf_ch_prev = (short *)&dl_bf_ch_estimates[aarx][pilot2*(frame_parms->ofdm_symbol_size)];
// pilot spacing 3 symbols (1/3,2/3 combination)
multadd_complex_vector_real_scalar(dl_bf_ch_prev,21845,dl_bf_ch_prev+(2*(frame_parms->ofdm_symbol_size)),1,frame_parms->ofdm_symbol_size);
multadd_complex_vector_real_scalar(dl_bf_ch,10923,dl_bf_ch_prev+(2*(frame_parms->ofdm_symbol_size)),0,frame_parms->ofdm_symbol_size);
multadd_complex_vector_real_scalar(dl_bf_ch_prev,10923,dl_bf_ch_prev+(2*((frame_parms->ofdm_symbol_size)<<1)),1,frame_parms->ofdm_symbol_size);
multadd_complex_vector_real_scalar(dl_bf_ch,21845,dl_bf_ch_prev+(2*((frame_parms->ofdm_symbol_size)<<1)),0,frame_parms->ofdm_symbol_size);
}
} else {
msg("lte_dl_bf_channel_estimation:temporal interpolation not supported for TM7 extented CP.\n");
}
} else {
msg("lte_dl_bf_channel_estimation:temporal interpolation not supported for this beamforming mode.\n");
}
}
}
} //aarx
//printf("[dlsch bf ch est]: dl_bf_estimates[0][600] %d, %d \n",*(short *)&dl_bf_ch_estimates[0][600],*(short*)&phy_vars_ue->lte_ue_pdsch_vars[eNB_id]->dl_bf_ch_estimates[0][600]);
return(0);
}