proto.h 99.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.0  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

/*! \file PHY/LTE_TRANSPORT/proto.h
 * \brief Function prototypes for PHY physical/transport channel processing and generation V8.6 2009-03
 * \author R. Knopp, F. Kaltenberger
 * \date 2011
 * \version 0.1
 * \company Eurecom
 * \email: knopp@eurecom.fr
 * \note
 * \warning
 */
#ifndef __LTE_TRANSPORT_PROTO__H__
#define __LTE_TRANSPORT_PROTO__H__
#include "PHY/defs.h"
#include <math.h>

// Functions below implement 36-211 and 36-212

/** @addtogroup _PHY_TRANSPORT_
 * @{
 */

43
/** \fn free_eNB_dlsch(LTE_eNB_DLSCH_t *dlsch,unsigned char N_RB_DL)
44 45 46 47 48
    \brief This function frees memory allocated for a particular DLSCH at eNB
    @param dlsch Pointer to DLSCH to be removed
*/
void free_eNB_dlsch(LTE_eNB_DLSCH_t *dlsch);

49
void clean_eNb_dlsch(LTE_eNB_DLSCH_t *dlsch);
50

51
/** \fn new_eNB_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint32_t Nsoft,uint8_t abstraction_flag, LTE_DL_FRAME_PARMS* frame_parms)
52 53 54 55
    \brief This function allocates structures for a particular DLSCH at eNB
    @returns Pointer to DLSCH to be removed
    @param Kmimo Kmimo factor from 36-212/36-213
    @param Mdlharq Maximum number of HARQ rounds (36-212/36-213)
56
    @param Nsoft Soft-LLR buffer size from UE-Category
57 58
    @params N_RB_DL total number of resource blocks (determine the operating BW)
    @param abstraction_flag Flag to indicate abstracted interface
59
    @param frame_parms Pointer to frame descriptor structure
60
*/
61
LTE_eNB_DLSCH_t *new_eNB_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint32_t Nsoft,uint8_t N_RB_DL, uint8_t abstraction_flag, LTE_DL_FRAME_PARMS* frame_parms);
62 63 64 65 66 67 68

/** \fn free_ue_dlsch(LTE_UE_DLSCH_t *dlsch)
    \brief This function frees memory allocated for a particular DLSCH at UE
    @param dlsch Pointer to DLSCH to be removed
*/
void free_ue_dlsch(LTE_UE_DLSCH_t *dlsch);

69 70 71 72 73 74 75 76 77 78
/** \fn new_ue_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint32_t Nsoft,uint8_t abstraction_flag)
    \brief This function allocates structures for a particular DLSCH at eNB
    @returns Pointer to DLSCH to be removed
    @param Kmimo Kmimo factor from 36-212/36-213
    @param Mdlharq Maximum number of HARQ rounds (36-212/36-213)
    @param Nsoft Soft-LLR buffer size from UE-Category
    @params N_RB_DL total number of resource blocks (determine the operating BW)
    @param abstraction_flag Flag to indicate abstracted interface
*/
LTE_UE_DLSCH_t *new_ue_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint32_t Nsoft,uint8_t max_turbo_iterations,uint8_t N_RB_DL, uint8_t abstraction_flag);
79 80


81
void clean_eNb_ulsch(LTE_eNB_ULSCH_t *ulsch);
82 83 84

void free_ue_ulsch(LTE_UE_ULSCH_t *ulsch);

85
LTE_eNB_ULSCH_t *new_eNB_ulsch(uint8_t max_turbo_iterations,uint8_t N_RB_UL, uint8_t abstraction_flag);
86

87
LTE_UE_ULSCH_t *new_ue_ulsch(unsigned char N_RB_UL, uint8_t abstraction_flag);
88

89 90
/** \fn dlsch_encoding(PHY_VARS_eNB *eNB,
    uint8_t *input_buffer,
91 92 93 94 95 96 97 98 99 100 101
    LTE_DL_FRAME_PARMS *frame_parms,
    uint8_t num_pdcch_symbols,
    LTE_eNB_DLSCH_t *dlsch,
    int frame,
    uint8_t subframe)
    \brief This function performs a subset of the bit-coding functions for LTE as described in 36-212, Release 8.Support is limited to turbo-coded channels (DLSCH/ULSCH). The implemented functions are:
    - CRC computation and addition
    - Code block segmentation and sub-block CRC addition
    - Channel coding (Turbo coding)
    - Rate matching (sub-block interleaving, bit collection, selection and transmission
    - Code block concatenation
102
    @param eNB Pointer to eNB PHY context
103 104 105 106 107 108 109 110 111 112 113
    @param input_buffer Pointer to input buffer for sub-frame
    @param frame_parms Pointer to frame descriptor structure
    @param num_pdcch_symbols Number of PDCCH symbols in this subframe
    @param dlsch Pointer to dlsch to be encoded
    @param frame Frame number
    @param subframe Subframe number
    @param rm_stats Time statistics for rate-matching
    @param te_stats Time statistics for turbo-encoding
    @param i_stats Time statistics for interleaving
    @returns status
*/
Florian Kaltenberger's avatar
Florian Kaltenberger committed
114
int32_t dlsch_encoding(PHY_VARS_eNB *eNB,
115
                       uint8_t *a,
116 117 118 119 120 121 122
                       uint8_t num_pdcch_symbols,
                       LTE_eNB_DLSCH_t *dlsch,
                       int frame,
                       uint8_t subframe,
                       time_stats_t *rm_stats,
                       time_stats_t *te_stats,
                       time_stats_t *i_stats);
123

124 125 126 127 128 129 130 131 132 133 134 135
int32_t dlsch_encoding_SIC(PHY_VARS_UE *ue,
                       uint8_t *a,
                       uint8_t num_pdcch_symbols,
                       LTE_eNB_DLSCH_t *dlsch,
                       int frame,
                       uint8_t subframe,
                       time_stats_t *rm_stats,
                       time_stats_t *te_stats,
                       time_stats_t *i_stats);



136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/** \fn dlsch_encoding_2threads(PHY_VARS_eNB *eNB,
    uint8_t *input_buffer,
    uint8_t num_pdcch_symbols,
    LTE_eNB_DLSCH_t *dlsch,
    int frame,
    uint8_t subframe)
    \brief This function performs a subset of the bit-coding functions for LTE as described in 36-212, Release 8.Support is limited to turbo-coded channels (DLSCH/ULSCH). This version spawns 1 worker thread. The implemented functions are:
    - CRC computation and addition
    - Code block segmentation and sub-block CRC addition
    - Channel coding (Turbo coding)
    - Rate matching (sub-block interleaving, bit collection, selection and transmission
    - Code block concatenation
    @param eNB Pointer to eNB PHY context
    @param input_buffer Pointer to input buffer for sub-frame
    @param num_pdcch_symbols Number of PDCCH symbols in this subframe
    @param dlsch Pointer to dlsch to be encoded
    @param frame Frame number
    @param subframe Subframe number
    @param rm_stats Time statistics for rate-matching
    @param te_stats Time statistics for turbo-encoding
    @param i_stats Time statistics for interleaving
    @returns status
*/
int32_t dlsch_encoding_2threads(PHY_VARS_eNB *eNB,
160 161 162 163 164 165 166 167
                                uint8_t *a,
                                uint8_t num_pdcch_symbols,
                                LTE_eNB_DLSCH_t *dlsch,
                                int frame,
                                uint8_t subframe,
                                time_stats_t *rm_stats,
                                time_stats_t *te_stats,
                                time_stats_t *i_stats);
168

169
void dlsch_encoding_emul(PHY_VARS_eNB *phy_vars_eNB,
170 171
                         uint8_t *DLSCH_pdu,
                         LTE_eNB_DLSCH_t *dlsch);
172 173 174 175


// Functions below implement 36-211

176
/** \fn allocate_REs_in_RB(int32_t **txdataF,
177
    uint32_t *jj,
178
    uint32_t *jj2,
179 180
    uint16_t re_offset,
    uint32_t symbol_offset,
181 182
    LTE_DL_eNB_HARQ_t *dlsch0_harq,
    LTE_DL_eNB_HARQ_t *dlsch1_harq,
183
    uint8_t pilots,
184
    int16_t amp,
185 186 187 188 189 190 191 192 193
    int16_t *qam_table_s,
    uint32_t *re_allocated,
    uint8_t skip_dc,
    uint8_t skip_half,
    uint8_t use2ndpilots,
    LTE_DL_FRAME_PARMS *frame_parms);

    \brief Fills RB with data
    \param txdataF pointer to output data (frequency domain signal)
194
    \param jj index to output (from CW 1)
195
    \param jj2 index to output (from CW 2)
196 197
    \param re_offset index of the first RE of the RB
    \param symbol_offset index to the OFDM symbol
198 199
    \param dlsch0_harq Pointer to Transport block 0 HARQ structure
    \param dlsch0_harq Pointer to Transport block 1 HARQ structure
200 201
    \param pilots =1 if symbol_offset is an OFDM symbol that contains pilots, 0 otherwise
    \param amp Amplitude for symbols
202 203
    \param qam_table_s0 pointer to scaled QAM table for Transport Block 0 (by rho_a or rho_b)
    \param qam_table_s1 pointer to scaled QAM table for Transport Block 1 (by rho_a or rho_b)
204 205 206
    \param re_allocated pointer to allocation counter
    \param skip_dc offset for positive RBs
    \param skip_half indicate that first or second half of RB must be skipped for PBCH/PSS/SSS
207
    \param ue_spec_rs UE specific RS indicator
208
    \param nb_antennas_tx_phy Physical antenna elements which can be different with antenna port number, especially in beamforming case
209 210 211 212 213 214
    \param use2ndpilots Set to use the pilots from antenna port 1 for PDSCH
    \param frame_parms Frame parameter descriptor
*/

// Functions below implement 36-211

215
/** \fn allocate_REs_in_RB(int32_t **txdataF,
216
    uint32_t *jj,
217
    uint32_t *jj2,
218 219
    uint16_t re_offset,
    uint32_t symbol_offset,
220 221
    LTE_DL_eNB_HARQ_t *dlsch0_harq,
    LTE_DL_eNB_HARQ_t *dlsch1_harq,
222
    uint8_t pilots,
223
    int16_t amp,
224 225 226 227 228 229 230 231 232
    int16_t *qam_table_s,
    uint32_t *re_allocated,
    uint8_t skip_dc,
    uint8_t skip_half,
    uint8_t use2ndpilots,
    LTE_DL_FRAME_PARMS *frame_parms);

    \brief Fills RB with data
    \param txdataF pointer to output data (frequency domain signal)
233 234
    \param jj index to output (from CW 1)
    \param jj index to output (from CW 2)
235 236
    \param re_offset index of the first RE of the RB
    \param symbol_offset index to the OFDM symbol
237 238
    \param dlsch0_harq Pointer to Transport block 0 HARQ structure
    \param dlsch0_harq Pointer to Transport block 1 HARQ structure
239 240
    \param pilots =1 if symbol_offset is an OFDM symbol that contains pilots, 0 otherwise
    \param amp Amplitude for symbols
241 242
    \param qam_table_s0 pointer to scaled QAM table for Transport Block 0 (by rho_a or rho_b)
    \param qam_table_s1 pointer to scaled QAM table for Transport Block 1 (by rho_a or rho_b)
243 244 245 246 247 248 249
    \param re_allocated pointer to allocation counter
    \param skip_dc offset for positive RBs
    \param skip_half indicate that first or second half of RB must be skipped for PBCH/PSS/SSS
    \param use2ndpilots Set to use the pilots from antenna port 1 for PDSCH
    \param frame_parms Frame parameter descriptor
*/

250
int32_t allocate_REs_in_RB(PHY_VARS_eNB* phy_vars_eNB,
251
                           int32_t **txdataF,
252 253 254 255 256 257 258 259 260 261 262 263 264
                           uint32_t *jj,
                           uint32_t *jj2,
                           uint16_t re_offset,
                           uint32_t symbol_offset,
                           LTE_DL_eNB_HARQ_t *dlsch0_harq,
                           LTE_DL_eNB_HARQ_t *dlsch1_harq,
                           uint8_t pilots,
                           int16_t amp,
                           uint8_t precoder_index,
                           int16_t *qam_table_s0,
                           int16_t *qam_table_s1,
                           uint32_t *re_allocated,
                           uint8_t skip_dc,
knopp's avatar
knopp committed
265
                           uint8_t skip_half,
266 267 268 269 270
                           uint8_t lprime,
                           uint8_t mprime,
                           uint8_t Ns,
                           int *P1_SHIFT,
                           int *P2_SHIFT);
271

272

273
/** \fn int32_t dlsch_modulation(int32_t **txdataF,
274
    int16_t amp,
275 276 277 278 279
    uint32_t sub_frame_offset,
    LTE_DL_FRAME_PARMS *frame_parms,
    uint8_t num_pdcch_symbols,
    LTE_eNB_DLSCH_t *dlsch);

280
    \brief This function is the top-level routine for generation of the sub-frame signal (frequency-domain) for DLSCH.
281 282 283 284 285
    @param txdataF Table of pointers for frequency-domain TX signals
    @param amp Amplitude of signal
    @param sub_frame_offset Offset of this subframe in units of subframes (usually 0)
    @param frame_parms Pointer to frame descriptor
    @param num_pdcch_symbols Number of PDCCH symbols in this subframe
286 287
    @param dlsch0 Pointer to Transport Block 0 DLSCH descriptor for this allocation
    @param dlsch1 Pointer to Transport Block 0 DLSCH descriptor for this allocation
288
*/
289
int32_t dlsch_modulation(PHY_VARS_eNB* phy_vars_eNB,
290
                         int32_t **txdataF,
291 292 293 294 295
                         int16_t amp,
                         uint32_t sub_frame_offset,
                         uint8_t num_pdcch_symbols,
                         LTE_eNB_DLSCH_t *dlsch0,
                         LTE_eNB_DLSCH_t *dlsch1);
296

297
int32_t dlsch_modulation_SIC(int32_t **sic_buffer,
298 299 300 301
                         uint32_t sub_frame_offset,
                         LTE_DL_FRAME_PARMS *frame_parms,
                         uint8_t num_pdcch_symbols,
                         LTE_eNB_DLSCH_t *dlsch0,
302
                         int G);
303
/*
304
  \brief This function is the top-level routine for generation of the sub-frame signal (frequency-domain) for MCH.
305 306 307 308 309 310
  @param txdataF Table of pointers for frequency-domain TX signals
  @param amp Amplitude of signal
  @param subframe_offset Offset of this subframe in units of subframes (usually 0)
  @param frame_parms Pointer to frame descriptor
  @param dlsch Pointer to DLSCH descriptor for this allocation
*/
311
int mch_modulation(int32_t **txdataF,
312 313 314 315
                   int16_t amp,
                   uint32_t subframe_offset,
                   LTE_DL_FRAME_PARMS *frame_parms,
                   LTE_eNB_DLSCH_t *dlsch);
316 317 318 319

/** \brief Top-level generation function for eNB TX of MBSFN
    @param phy_vars_eNB Pointer to eNB variables
    @param a Pointer to transport block
320
    @param abstraction_flag
321

322
*/
323
void generate_mch(PHY_VARS_eNB *phy_vars_eNB,eNB_rxtx_proc_t *proc,uint8_t *a);
324 325 326

/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
    @param phy_vars_eNB Pointer to eNB variables
knopp's avatar
knopp committed
327
    @param proc Pointer to RXn-TXnp4 proc information
328
    @param mcs MCS for MBSFN
329 330
    @param ndi new data indicator
    @param rdvix
331
*/
332
void fill_eNB_dlsch_MCH(PHY_VARS_eNB *phy_vars_eNB,int mcs,int ndi,int rvidx);
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
    @param phy_vars_ue Pointer to UE variables
    @param mcs MCS for MBSFN
    @param eNB_id index of eNB in ue variables
*/
void fill_UE_dlsch_MCH(PHY_VARS_UE *phy_vars_ue,int mcs,int ndi,int rvidx,int eNB_id);

/** \brief Receiver processing for MBSFN, symbols can be done separately for time/CPU-scheduling purposes
    @param phy_vars_ue Pointer to UE variables
    @param eNB_id index of eNB in ue variables
    @param subframe Subframe index of PMCH
    @param symbol Symbol index on which to act
*/
int rx_pmch(PHY_VARS_UE *phy_vars_ue,
348 349 350
            unsigned char eNB_id,
            uint8_t subframe,
            unsigned char symbol);
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

/** \brief Dump OCTAVE/MATLAB files for PMCH debugging
    @param phy_vars_ue Pointer to UE variables
    @param eNB_id index of eNB in ue variables
    @param coded_bits_per_codeword G from 36.211
    @param subframe Index of subframe
    @returns 0 on success
*/
void dump_mch(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint16_t coded_bits_per_codeword,int subframe);


/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
    for N subframes.
    @param phy_vars_eNB Pointer to eNB variables
    @param txdataF Table of pointers for frequency-domain TX signals
    @param amp Amplitude of signal
    @param N Number of sub-frames to generate
*/
void generate_pilots(PHY_VARS_eNB *phy_vars_eNB,
370
                     int32_t **txdataF,
371 372
                     int16_t amp,
                     uint16_t N);
373 374 375 376 377 378 379 380 381

/**
   \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals) for one slot only
   @param phy_vars_eNB Pointer to eNB variables
   @param txdataF Table of pointers for frequency-domain TX signals
   @param amp Amplitude of signal
   @param slot index (0..19)
   @param first_pilot_only (0 no)
*/
382
int32_t generate_pilots_slot(PHY_VARS_eNB *phy_vars_eNB,
383
                             int32_t **txdataF,
384 385 386 387
                             int16_t amp,
                             uint16_t slot,
                             int first_pilot_only);

388
int32_t generate_mbsfn_pilot(PHY_VARS_eNB *phy_vars_eNB,
knopp's avatar
knopp committed
389
                             eNB_rxtx_proc_t *proc,
390
                             int32_t **txdataF,
391
                             int16_t amp);
392

393 394
void generate_ue_spec_pilots(PHY_VARS_eNB *phy_vars_eNB,
                             uint8_t UE_id,
395
                             int32_t **txdataF,
396 397
                             int16_t amp,
                             uint16_t Ntti,
398
                             uint8_t beamforming_mode);
399

400
int32_t generate_pss(int32_t **txdataF,
401 402 403 404
                     int16_t amp,
                     LTE_DL_FRAME_PARMS *frame_parms,
                     uint16_t l,
                     uint16_t Ns);
405

406
int32_t generate_pss_emul(PHY_VARS_eNB *phy_vars_eNB,uint8_t sect_id);
407

408
int32_t generate_sss(int32_t **txdataF,
409 410 411 412
                     short amp,
                     LTE_DL_FRAME_PARMS *frame_parms,
                     unsigned short symbol,
                     unsigned short slot_offset);
413

414
int32_t generate_pbch(LTE_eNB_PBCH *eNB_pbch,
415
                      int32_t **txdataF,
416 417 418 419
                      int32_t amp,
                      LTE_DL_FRAME_PARMS *frame_parms,
                      uint8_t *pbch_pdu,
                      uint8_t frame_mod4);
420

421
int32_t generate_pbch_emul(PHY_VARS_eNB *phy_vars_eNB,uint8_t *pbch_pdu);
422 423 424 425 426 427 428

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/QPSK reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
429
void qpsk_qpsk(int16_t *stream0_in,
430 431 432 433
               int16_t *stream1_in,
               int16_t *stream0_out,
               int16_t *rho01,
               int32_t length);
434 435 436 437 438 439 440 441 442 443 444 445

/** \brief This function perform LLR computation for dual-stream (QPSK/QPSK) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr*/
446
int32_t dlsch_qpsk_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
447 448 449 450 451 452 453 454 455
                            int32_t **rxdataF_comp,
                            int32_t **rxdataF_comp_i,
                            int32_t **rho_i,
                            int16_t *dlsch_llr,
                            uint8_t symbol,
                            uint8_t first_symbol_flag,
                            uint16_t nb_rb,
                            uint16_t pbch_pss_sss_adj,
                            int16_t **llr128p);
456 457 458 459 460 461 462 463

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/16QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
464 465
void qpsk_qam16(int16_t *stream0_in,
                int16_t *stream1_in,
466
                short *ch_mag_i,
467 468 469
                int16_t *stream0_out,
                int16_t *rho01,
                int32_t length);
470 471 472 473 474 475 476 477 478 479 480 481

/** \brief This function perform LLR computation for dual-stream (QPSK/16QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr*/
482
int32_t dlsch_qpsk_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
483 484 485 486 487 488 489 490 491 492
                             int32_t **rxdataF_comp,
                             int32_t **rxdataF_comp_i,
                             int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
                             int32_t **rho_i,
                             int16_t *dlsch_llr,
                             uint8_t symbol,
                             uint8_t first_symbol_flag,
                             uint16_t nb_rb,
                             uint16_t pbch_pss_sss_adj,
                             int16_t **llr128p);
493 494 495 496 497 498 499 500

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
501 502
void qpsk_qam64(int16_t *stream0_in,
                int16_t *stream1_in,
503
                short *ch_mag_i,
504 505 506
                int16_t *stream0_out,
                int16_t *rho01,
                int32_t length);
507 508 509 510 511 512 513 514 515 516 517 518

/** \brief This function perform LLR computation for dual-stream (QPSK/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr*/
519
int32_t dlsch_qpsk_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
520 521 522 523 524 525 526 527 528 529
                             int32_t **rxdataF_comp,
                             int32_t **rxdataF_comp_i,
                             int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
                             int32_t **rho_i,
                             int16_t *dlsch_llr,
                             uint8_t symbol,
                             uint8_t first_symbol_flag,
                             uint16_t nb_rb,
                             uint16_t pbch_pss_sss_adj,
                             int16_t **llr128p);
530 531 532 533 534 535 536 537 538 539 540 541 542 543


/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/QPSK reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam16_qpsk(short *stream0_in,
                short *stream1_in,
                short *ch_mag,
                short *stream0_out,
                short *rho01,
544
                int length);
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
/** \brief This function perform LLR computation for dual-stream (16QAM/QPSK) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
                         int **rxdataF_comp,
                         int **rxdataF_comp_i,
                         int **dl_ch_mag,   //|h_0|^2*(2/sqrt{10})
                         int **rho_i,
                         short *dlsch_llr,
                         unsigned char symbol,
                         unsigned char first_symbol_flag,
                         unsigned short nb_rb,
                         uint16_t pbch_pss_sss_adjust,
                         short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/16QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam16_qam16(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (16QAM/16QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,   //|h_0|^2*(2/sqrt{10})
                          int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam16_qam64(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (16QAM/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,   //|h_0|^2*(2/sqrt{10})
                          int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam64_qpsk(short *stream0_in,
                short *stream1_in,
                short *ch_mag,
                short *stream0_out,
                short *rho01,
                int length);

/** \brief This function perform LLR computation for dual-stream (64QAM/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
                         int **rxdataF_comp,
                         int **rxdataF_comp_i,
                         int **dl_ch_mag,
                         int **rho_i,
                         short *dlsch_llr,
                         unsigned char symbol,
                         unsigned char first_symbol_flag,
                         unsigned short nb_rb,
                         uint16_t pbch_pss_sss_adjust,
                         short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/16QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam64_qam16(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/16QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam64_qam16_avx2(short *stream0_in,
                      short *stream1_in,
                      short *ch_mag,
                      short *ch_mag_i,
                      short *stream0_out,
                      short *rho01,
                      int length);

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
/** \brief This function perform LLR computation for dual-stream (64QAM/16QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,
                          int **dl_ch_mag_i,
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam64_qam64(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam64_qam64_avx2(int32_t *stream0_in,
                      int32_t *stream1_in,
                      int32_t *ch_mag,
                      int32_t *ch_mag_i,
                      int16_t *stream0_out,
                      int32_t *rho01,
                      int length);

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
/** \brief This function perform LLR computation for dual-stream (64QAM/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,
                          int **dl_ch_mag_i,
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);


/** \brief This function generates log-likelihood ratios (decoder input) for single-stream QPSK received waveforms.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
813
    @param first_symbol_flag
814 815 816
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr
817
    @param beamforming_mode beamforming mode
818
*/
819
int32_t dlsch_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
820 821 822 823 824 825
                       int32_t **rxdataF_comp,
                       int16_t *dlsch_llr,
                       uint8_t symbol,
                       uint8_t first_symbol_flag,
                       uint16_t nb_rb,
                       uint16_t pbch_pss_sss_adj,
826 827
                       int16_t **llr128p,
                       uint8_t beamforming_mode);
828 829 830 831 832 833 834 835 836 837 838 839

/**
   \brief This function generates log-likelihood ratios (decoder input) for single-stream 16QAM received waveforms
   @param frame_parms Frame descriptor structure
   @param rxdataF_comp Compensated channel output
   @param dlsch_llr llr output
   @param dl_ch_mag Squared-magnitude of channel in each resource element position corresponding to allocation and weighted for mid-point in 16QAM constellation
   @param symbol OFDM symbol index in sub-frame
   @param first_symbol_flag
   @param nb_rb number of RBs for this allocation
   @param pbch_pss_sss_adjust  Adjustment factor in RE for PBCH/PSS/SSS allocations
   @param llr128p pointer to pointer to symbol in dlsch_llr
840
   @param beamforming_mode beamforming mode
841 842
*/

843
int32_t dlsch_qpsk_llr_SIC(LTE_DL_FRAME_PARMS *frame_parms,
844 845 846 847 848 849 850
                           int **rxdataF_comp,
                           int32_t **sic_buffer,
                           int **rho_i,
                           short *dlsch_llr,
                           uint8_t num_pdcch_symbols,
                           uint16_t nb_rb,
                           uint8_t subframe,
Elena Lukashova's avatar
Elena Lukashova committed
851
                           uint16_t mod_order_0,
852
                           uint32_t rb_alloc);
853

854
void dlsch_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
855 856 857 858 859 860 861
                     int32_t **rxdataF_comp,
                     int16_t *dlsch_llr,
                     int32_t **dl_ch_mag,
                     uint8_t symbol,
                     uint8_t first_symbol_flag,
                     uint16_t nb_rb,
                     uint16_t pbch_pss_sss_adjust,
862 863
                     int16_t **llr128p,
                     uint8_t beamforming_mode);
864 865 866 867 868 869 870 871 872 873 874
/**
   \brief This function generates log-likelihood ratios (decoder input) for single-stream 16QAM received waveforms
   @param frame_parms Frame descriptor structure
   @param rxdataF_comp Compensated channel output
   @param dlsch_llr llr output
   @param dl_ch_mag Squared-magnitude of channel in each resource element position corresponding to allocation, weighted by first mid-point of 64-QAM constellation
   @param dl_ch_magb Squared-magnitude of channel in each resource element position corresponding to allocation, weighted by second mid-point of 64-QAM constellation
   @param symbol OFDM symbol index in sub-frame
   @param first_symbol_flag
   @param nb_rb number of RBs for this allocation
   @param pbch_pss_sss_adjust PBCH/PSS/SSS RE adjustment (in REs)
875
   @param beamforming_mode beamforming mode
876
*/
877 878
void dlsch_16qam_llr_SIC (LTE_DL_FRAME_PARMS *frame_parms,
                          int32_t **rxdataF_comp,
879 880 881 882 883 884 885
                          int32_t **sic_buffer,  //Q15
                          int32_t **rho_i,
                          int16_t *dlsch_llr,
                          uint8_t num_pdcch_symbols,
                          int32_t **dl_ch_mag,
                          uint16_t nb_rb,
                          uint8_t subframe,
Elena Lukashova's avatar
Elena Lukashova committed
886
                          uint16_t mod_order_0,
887
                          uint32_t rb_alloc);
888

889
void dlsch_64qam_llr_SIC(LTE_DL_FRAME_PARMS *frame_parms,
890
                         int32_t **rxdataF_comp,
891 892 893 894 895 896 897 898
                         int32_t **sic_buffer,  //Q15
                         int32_t **rho_i,
                         int16_t *dlsch_llr,
                         uint8_t num_pdcch_symbols,
                         int32_t **dl_ch_mag,
                         int32_t **dl_ch_magb,
                         uint16_t nb_rb,
                         uint8_t subframe,
Elena Lukashova's avatar
Elena Lukashova committed
899
                         uint16_t mod_order_0,
900
                         uint32_t rb_alloc);
901

902

903
void dlsch_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
904 905 906 907 908 909 910 911
                     int32_t **rxdataF_comp,
                     int16_t *dlsch_llr,
                     int32_t **dl_ch_mag,
                     int32_t **dl_ch_magb,
                     uint8_t symbol,
                     uint8_t first_symbol_flag,
                     uint16_t nb_rb,
                     uint16_t pbch_pss_sss_adjust,
912
                     int16_t **llr_save,
913
                     uint8_t beamforming_mode);
914

915

916
/** \fn dlsch_siso(LTE_DL_FRAME_PARMS *frame_parms,
917 918
    int32_t **rxdataF_comp,
    int32_t **rxdataF_comp_i,
919 920 921 922 923 924 925 926 927 928 929
    uint8_t l,
    uint16_t nb_rb)
    \brief This function does the first stage of llr computation for SISO, by just extracting the pilots, PBCH and primary/secondary synchronization sequences.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param l symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
*/

void dlsch_siso(LTE_DL_FRAME_PARMS *frame_parms,
930 931 932 933
                int32_t **rxdataF_comp,
                int32_t **rxdataF_comp_i,
                uint8_t l,
                uint16_t nb_rb);
934 935

/** \fn dlsch_alamouti(LTE_DL_FRAME_PARMS *frame_parms,
936 937 938
    int32_t **rxdataF_comp,
    int32_t **dl_ch_mag,
    int32_t **dl_ch_magb,
939 940 941 942 943 944 945 946 947 948 949
    uint8_t symbol,
    uint16_t nb_rb)
    \brief This function does Alamouti combining on RX and prepares LLR inputs by skipping pilots, PBCH and primary/secondary synchronization signals.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param symbol Symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
*/
void dlsch_alamouti(LTE_DL_FRAME_PARMS *frame_parms,
950 951 952 953 954
                    int32_t **rxdataF_comp,
                    int32_t **dl_ch_mag,
                    int32_t **dl_ch_magb,
                    uint8_t symbol,
                    uint16_t nb_rb);
955 956

/** \fn dlsch_antcyc(LTE_DL_FRAME_PARMS *frame_parms,
957 958 959
    int32_t **rxdataF_comp,
    int32_t **dl_ch_mag,
    int32_t **dl_ch_magb,
960 961 962 963 964 965 966 967 968 969 970
    uint8_t symbol,
    uint16_t nb_rb)
    \brief This function does antenna selection (based on antenna cycling pattern) on RX and prepares LLR inputs by skipping pilots, PBCH and primary/secondary synchronization signals.  Note that this is not LTE, it is just included for comparison purposes.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param symbol Symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
*/
void dlsch_antcyc(LTE_DL_FRAME_PARMS *frame_parms,
971 972 973 974 975
                  int32_t **rxdataF_comp,
                  int32_t **dl_ch_mag,
                  int32_t **dl_ch_magb,
                  uint8_t symbol,
                  uint16_t nb_rb);
976 977

/** \fn dlsch_detection_mrc(LTE_DL_FRAME_PARMS *frame_parms,
978 979 980 981 982 983
    int32_t **rxdataF_comp,
    int32_t **rxdataF_comp_i,
    int32_t **rho,
    int32_t **rho_i,
    int32_t **dl_ch_mag,
    int32_t **dl_ch_magb,
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    uint8_t symbol,
    uint16_t nb_rb,
    uint8_t dual_stream_UE)

    \brief This function does maximal-ratio combining for dual-antenna receivers.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho Cross correlation between spatial channels
    @param rho_i Cross correlation between signal and inteference channels
    @param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param symbol Symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
    @param dual_stream_UE Flag to indicate dual-stream detection
*/
void dlsch_detection_mrc(LTE_DL_FRAME_PARMS *frame_parms,
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
                         int32_t **rxdataF_comp,
                         int32_t **rxdataF_comp_i,
                         int32_t **rho,
                         int32_t **rho_i,
                         int32_t **dl_ch_mag,
                         int32_t **dl_ch_magb,
                         int32_t **dl_ch_mag_i,
                         int32_t **dl_ch_magb_i,
                         uint8_t symbol,
                         uint16_t nb_rb,
                         uint8_t dual_stream_UE);
1012

1013
void dlsch_detection_mrc_TM34(LTE_DL_FRAME_PARMS *frame_parms,
1014 1015 1016 1017 1018 1019
                              LTE_UE_PDSCH *lte_ue_pdsch_vars,
                              int harq_pid,
                              int round,
                              unsigned char symbol,
                              unsigned short nb_rb,
                              unsigned char dual_stream_UE);
1020

1021 1022 1023 1024
/** \fn dlsch_extract_rbs_single(int32_t **rxdataF,
    int32_t **dl_ch_estimates,
    int32_t **rxdataF_ext,
    int32_t **dl_ch_estimates_ext,
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
    uint16_t pmi,
    uint8_t *pmi_ext,
    uint32_t *rb_alloc,
    uint8_t symbol,
    uint8_t subframe,
    LTE_DL_FRAME_PARMS *frame_parms)
    \brief This function extracts the received resource blocks, both channel estimates and data symbols,
    for the current allocation and for single antenna eNB transmission.
    @param rxdataF Raw FFT output of received signal
    @param dl_ch_estimates Channel estimates of current slot
    @param rxdataF_ext FFT output for RBs in this allocation
    @param dl_ch_estimates_ext Channel estimates for RBs in this allocation
    @param pmi subband Precoding matrix indicator
    @param pmi_ext Extracted PMI for chosen RBs
    @param rb_alloc RB allocation vector
    @param symbol Symbol to extract
    @param subframe Subframe number
1042
    @param vrb_type Flag to indicate distributed VRB type
1043
    @param high_speed_flag
1044 1045
    @param frame_parms Pointer to frame descriptor
*/
1046
uint16_t dlsch_extract_rbs_single(int32_t **rxdataF,
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
                                  int32_t **dl_ch_estimates,
                                  int32_t **rxdataF_ext,
                                  int32_t **dl_ch_estimates_ext,
                                  uint16_t pmi,
                                  uint8_t *pmi_ext,
                                  uint32_t *rb_alloc,
                                  uint8_t symbol,
                                  uint8_t subframe,
                                  uint32_t high_speed_flag,
                                  LTE_DL_FRAME_PARMS *frame_parms);
1057

1058 1059 1060 1061
/** \fn dlsch_extract_rbs_dual(int32_t **rxdataF,
    int32_t **dl_ch_estimates,
    int32_t **rxdataF_ext,
    int32_t **dl_ch_estimates_ext,
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    uint16_t pmi,
    uint8_t *pmi_ext,
    uint32_t *rb_alloc,
    uint8_t symbol,
    LTE_DL_FRAME_PARMS *frame_parms)
    \brief This function extracts the received resource blocks, both channel estimates and data symbols,
    for the current allocation and for dual antenna eNB transmission.
    @param rxdataF Raw FFT output of received signal
    @param dl_ch_estimates Channel estimates of current slot
    @param rxdataF_ext FFT output for RBs in this allocation
    @param dl_ch_estimates_ext Channel estimates for RBs in this allocation
    @param pmi subband Precoding matrix indicator
    @param pmi_ext Extracted PMI for chosen RBs
    @param rb_alloc RB allocation vector
    @param symbol Symbol to extract
    @param subframe Subframe index
1078
    @param high_speed_flag
1079 1080
    @param frame_parms Pointer to frame descriptor
*/
1081
uint16_t dlsch_extract_rbs_dual(int32_t **rxdataF,
1082 1083 1084 1085 1086 1087 1088 1089 1090
                                int32_t **dl_ch_estimates,
                                int32_t **rxdataF_ext,
                                int32_t **dl_ch_estimates_ext,
                                uint16_t pmi,
                                uint8_t *pmi_ext,
                                uint32_t *rb_alloc,
                                uint8_t symbol,
                                uint8_t subframe,
                                uint32_t high_speed_flag,
1091 1092
                                LTE_DL_FRAME_PARMS *frame_parms,
                                MIMO_mode_t mimo_mode);
1093

Xiwen JIANG's avatar
Xiwen JIANG committed
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
/** \fn dlsch_extract_rbs_TM7(int32_t **rxdataF,
    int32_t **dl_bf_ch_estimates,
    int32_t **rxdataF_ext,
    int32_t **dl_bf_ch_estimates_ext,
    uint32_t *rb_alloc,
    uint8_t symbol,
    uint8_t subframe,
    uint32_t high_speed_flag,
    LTE_DL_FRAME_PARMS *frame_parms)
    \brief This function extracts the received resource blocks, both channel estimates and data symbols,
    for the current allocation and for single antenna eNB transmission.
    @param rxdataF Raw FFT output of received signal
    @param dl_bf_ch_estimates Beamforming channel estimates of current slot
    @param rxdataF_ext FFT output for RBs in this allocation
    @param dl_bf_ch_estimates_ext Beamforming channel estimates for RBs in this allocation
    @param rb_alloc RB allocation vector
    @param symbol Symbol to extract
    @param subframe Subframe number
    @param high_speed_flag
    @param frame_parms Pointer to frame descriptor
*/
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
uint16_t dlsch_extract_rbs_TM7(int32_t **rxdataF,
                               int32_t **dl_bf_ch_estimates,
                               int32_t **rxdataF_ext,
                               int32_t **dl_bf_ch_estimates_ext,
                               uint32_t *rb_alloc,
                               uint8_t symbol,
                               uint8_t subframe,
                               uint32_t high_speed_flag,
                               LTE_DL_FRAME_PARMS *frame_parms);

1125 1126 1127 1128 1129
/** \brief This function performs channel compensation (matched filtering) on the received RBs for this allocation.  In addition, it computes the squared-magnitude of the channel with weightings for 16QAM/64QAM detection as well as dual-stream detection (cross-correlation)
    @param rxdataF_ext Frequency-domain received signal in RBs to be demodulated
    @param dl_ch_estimates_ext Frequency-domain channel estimates in RBs to be demodulated
    @param dl_ch_mag First Channel magnitudes (16QAM/64QAM)
    @param dl_ch_magb Second weighted Channel magnitudes (64QAM)
1130
    @param rxdataF_comp Compensated received waveform
1131 1132 1133 1134 1135 1136 1137 1138 1139
    @param rho Cross-correlation between two spatial channels on each RX antenna
    @param frame_parms Pointer to frame descriptor
    @param symbol Symbol on which to operate
    @param first_symbol_flag set to 1 on first DLSCH symbol
    @param mod_order Modulation order of allocation
    @param nb_rb Number of RBs in allocation
    @param output_shift Rescaling for compensated output (should be energy-normalizing)
    @param phy_measurements Pointer to UE PHY measurements
*/
1140
void dlsch_channel_compensation(int32_t **rxdataF_ext,
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
                                int32_t **dl_ch_estimates_ext,
                                int32_t **dl_ch_mag,
                                int32_t **dl_ch_magb,
                                int32_t **rxdataF_comp,
                                int32_t **rho,
                                LTE_DL_FRAME_PARMS *frame_parms,
                                uint8_t symbol,
                                uint8_t first_symbol_flag,
                                uint8_t mod_order,
                                uint16_t nb_rb,
                                uint8_t output_shift,
                                PHY_MEASUREMENTS *phy_measurements);
1153 1154 1155 1156 1157 1158 1159 1160 1161

void dlsch_dual_stream_correlation(LTE_DL_FRAME_PARMS *frame_parms,
                                   unsigned char symbol,
                                   unsigned short nb_rb,
                                   int **dl_ch_estimates_ext,
                                   int **dl_ch_estimates_ext_i,
                                   int **dl_ch_rho_ext,
                                   unsigned char output_shift);

1162 1163 1164 1165 1166 1167 1168
void dlsch_dual_stream_correlationTM34(LTE_DL_FRAME_PARMS *frame_parms,
                                   unsigned char symbol,
                                   unsigned short nb_rb,
                                   int **dl_ch_estimates_ext,
                                   int **dl_ch_estimates_ext_i,
                                   int **dl_ch_rho_ext,
                                   unsigned char output_shift0,
1169
                                   unsigned char output_shift1);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
//This function is used to compute multiplications in Hhermitian * H matrix
void conjch0_mult_ch1(int *ch0,
                      int *ch1,
                      int32_t *ch0conj_ch1,
                      unsigned short nb_rb,
                      unsigned char output_shift0);

void construct_HhH_elements(int *ch0conj_ch0,
                         int *ch1conj_ch1,
                         int *ch2conj_ch2,
                         int *ch3conj_ch3,
                         int *ch0conj_ch1,
                         int *ch1conj_ch0,
                         int *ch2conj_ch3,
                         int *ch3conj_ch2,
                         int32_t *after_mf_00,
                         int32_t *after_mf_01,
                         int32_t *after_mf_10,
                         int32_t *after_mf_11,
                         unsigned short nb_rb);

void squared_matrix_element(int32_t *Hh_h_00,
                            int32_t *Hh_h_00_sq,
                            unsigned short nb_rb);

void dlsch_channel_level_TM34_meas(int *ch00,
                                   int *ch01,
                                   int *ch10,
                                   int *ch11,
                                   int *avg_0,
                                   int *avg_1,
                                   unsigned short nb_rb);

void det_HhH(int32_t *after_mf_00,
             int32_t *after_mf_01,
             int32_t *after_mf_10,
             int32_t *after_mf_11,
             int32_t *det_fin_128,
             unsigned short nb_rb);

void numer(int32_t *Hh_h_00_sq,
           int32_t *Hh_h_01_sq,
           int32_t *Hh_h_10_sq,
           int32_t *Hh_h_11_sq,
           int32_t *num_fin,
           unsigned short nb_rb);

1217 1218 1219 1220 1221
uint8_t rank_estimation_tm3_tm4(int *dl_ch_estimates_00,
                                int *dl_ch_estimates_01,
                                int *dl_ch_estimates_10,
                                int *dl_ch_estimates_11,
                                unsigned short nb_rb);
1222

1223
void dlsch_channel_compensation_TM56(int **rxdataF_ext,
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
                                     int **dl_ch_estimates_ext,
                                     int **dl_ch_mag,
                                     int **dl_ch_magb,
                                     int **rxdataF_comp,
                                     unsigned char *pmi_ext,
                                     LTE_DL_FRAME_PARMS *frame_parms,
                                     PHY_MEASUREMENTS *phy_measurements,
                                     int eNB_id,
                                     unsigned char symbol,
                                     unsigned char mod_order,
                                     unsigned short nb_rb,
                                     unsigned char output_shift,
                                     unsigned char dl_power_off);
1237 1238


1239
void dlsch_channel_compensation_TM34(LTE_DL_FRAME_PARMS *frame_parms,
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
                                    LTE_UE_PDSCH *lte_ue_pdsch_vars,
                                    PHY_MEASUREMENTS *phy_measurements,
                                    int eNB_id,
                                    unsigned char symbol,
                                    unsigned char mod_order0,
                                    unsigned char mod_order1,
                                    int harq_pid,
                                    int round,
                                    MIMO_mode_t mimo_mode,
                                    unsigned short nb_rb,
                                    unsigned char output_shift0,
                                    unsigned char output_shift1);
1252 1253


1254 1255 1256 1257 1258 1259 1260
/** \brief This function computes the average channel level over all allocated RBs and antennas (TX/RX) in order to compute output shift for compensated signal
    @param dl_ch_estimates_ext Channel estimates in allocated RBs
    @param frame_parms Pointer to frame descriptor
    @param avg Pointer to average signal strength
    @param pilots_flag Flag to indicate pilots in symbol
    @param nb_rb Number of allocated RBs
*/
1261
void dlsch_channel_level(int32_t **dl_ch_estimates_ext,
1262 1263 1264 1265
                         LTE_DL_FRAME_PARMS *frame_parms,
                         int32_t *avg,
                         uint8_t pilots_flag,
                         uint16_t nb_rb);
1266 1267


1268
void dlsch_channel_level_TM34(int **dl_ch_estimates_ext,
1269 1270 1271 1272 1273 1274 1275
                              LTE_DL_FRAME_PARMS *frame_parms,
                              unsigned char *pmi_ext,
                              int *avg_0,
                              int *avg_1,
                              uint8_t symbol,
                              unsigned short nb_rb,
                              MIMO_mode_t mimo_mode);
1276 1277 1278


void dlsch_channel_level_TM56(int32_t **dl_ch_estimates_ext,
1279 1280
                              LTE_DL_FRAME_PARMS *frame_parms,
                              unsigned char *pmi_ext,
1281
                              int32_t *avg,
1282 1283 1284
                              uint8_t symbol_mod,
                              uint16_t nb_rb);

1285 1286 1287 1288 1289 1290
void dlsch_channel_level_TM7(int32_t **dl_bf_ch_estimates_ext,
                         LTE_DL_FRAME_PARMS *frame_parms,
                         int32_t *avg,
                         uint8_t pilots_flag,
                         uint16_t nb_rb);

1291
void dlsch_scale_channel(int32_t **dl_ch_estimates_ext,
1292 1293 1294 1295 1296 1297
                         LTE_DL_FRAME_PARMS *frame_parms,
                         LTE_UE_DLSCH_t **dlsch_ue,
                         uint8_t symbol_mod,
                         uint16_t nb_rb);

/** \brief This is the top-level entry point for DLSCH decoding in UE.  It should be replicated on several
1298
    threads (on multi-core machines) corresponding to different HARQ processes. The routine first
1299 1300 1301 1302 1303 1304 1305 1306 1307
    computes the segmentation information, followed by rate dematching and sub-block deinterleaving the of the
    received LLRs computed by dlsch_demodulation for each transport block segment. It then calls the
    turbo-decoding algorithm for each segment and stops after either after unsuccesful decoding of at least
    one segment or correct decoding of all segments.  Only the segment CRCs are check for the moment, the
    overall CRC is ignored.  Finally transport block reassembly is performed.
    @param phy_vars_ue Pointer to ue variables
    @param dlsch_llr Pointer to LLR values computed by dlsch_demodulation
    @param lte_frame_parms Pointer to frame descriptor
    @param dlsch Pointer to DLSCH descriptor
1308
    @param frame Frame number
1309 1310 1311 1312 1313 1314 1315
    @param subframe Subframe number
    @param num_pdcch_symbols Number of PDCCH symbols
    @param is_crnti indicates if PDSCH belongs to a CRNTI (necessary for parallelizing decoding threads)
    @param llr8_flag If 1, indicate that the 8-bit turbo decoder should be used
    @returns 0 on success, 1 on unsuccessful decoding
*/
uint32_t dlsch_decoding(PHY_VARS_UE *phy_vars_ue,
1316 1317 1318 1319
                        int16_t *dlsch_llr,
                        LTE_DL_FRAME_PARMS *lte_frame_parms,
                        LTE_UE_DLSCH_t *dlsch,
                        LTE_DL_UE_HARQ_t *harq_process,
1320
                        uint32_t frame,
1321 1322 1323 1324
                        uint8_t subframe,
                        uint8_t harq_pid,
                        uint8_t is_crnti,
                        uint8_t llr8_flag);
1325 1326

uint32_t dlsch_decoding_emul(PHY_VARS_UE *phy_vars_ue,
1327
                             uint8_t subframe,
1328
                             PDSCH_t dlsch_id,
1329
                             uint8_t eNB_id);
1330 1331 1332 1333 1334 1335 1336

/** \brief This function is the top-level entry point to PDSCH demodulation, after frequency-domain transformation and channel estimation.  It performs
    - RB extraction (signal and channel estimates)
    - channel compensation (matched filtering)
    - RE extraction (pilot, PBCH, synch. signals)
    - antenna combining (MRC, Alamouti, cycling)
    - LLR computation
1337
    This function supports TM1, 2, 3, 5, and 6.
1338 1339 1340 1341 1342 1343 1344
    @param phy_vars_ue Pointer to PHY variables
    @param type Type of PDSCH (SI_PDSCH,RA_PDSCH,PDSCH,PMCH)
    @param eNB_id eNb index (Nid1) 0,1,2
    @param eNB_id_i Interfering eNB index (Nid1) 0,1,2, or 3 in case of MU-MIMO IC receiver
    @param subframe Subframe number
    @param symbol Symbol on which to act (within sub-frame)
    @param first_symbol_flag set to 1 on first DLSCH symbol
1345
    @param rx_type. rx_type=RX_IC_single_stream will enable interference cancellation of a second stream when decoding the first stream. In case of TM1, 2, 5, and this can cancel interference from a neighbouring cell given by eNB_id_i. In case of TM5, eNB_id_i should be set to n_connected_eNB to perform multi-user interference cancellation. In case of TM3, eNB_id_i should be set to eNB_id to perform co-channel interference cancellation; this option should be used together with an interference cancellation step [...]. In case of TM3, if rx_type=RX_IC_dual_stream, both streams will be decoded by applying the IC single stream receiver twice.
1346 1347
    @param i_mod Modulation order of the interfering stream
*/
1348
int32_t rx_pdsch(PHY_VARS_UE *phy_vars_ue,
1349 1350 1351
                 PDSCH_t type,
                 uint8_t eNB_id,
                 uint8_t eNB_id_i,
1352
                 uint32_t frame,
1353 1354 1355
                 uint8_t subframe,
                 uint8_t symbol,
                 uint8_t first_symbol_flag,
1356
                 RX_type_t rx_type,
1357 1358
                 uint8_t i_mod,
                 uint8_t harq_pid);
1359

Bilel's avatar
Bilel committed
1360
int32_t rx_pdcch(PHY_VARS_UE *ue,
1361
                 uint32_t frame,
1362 1363 1364 1365 1366
                 uint8_t subframe,
                 uint8_t eNB_id,
                 MIMO_mode_t mimo_mode,
                 uint32_t high_speed_flag,
                 uint8_t is_secondary_ue);
1367 1368 1369 1370 1371 1372 1373 1374 1375

/*! \brief Extract PSS and SSS resource elements
  @param phy_vars_ue Pointer to UE variables
  @param[out] pss_ext contain the PSS signals after the extraction
  @param[out] sss_ext contain the SSS signals after the extraction
  @returns 0 on success
*/
int pss_sss_extract(PHY_VARS_UE *phy_vars_ue,
                    int32_t pss_ext[4][72],
1376
                    int32_t sss_ext[4][72],
1377
                                        uint8_t subframe);
1378 1379 1380 1381 1382 1383 1384

/*! \brief Extract only PSS resource elements
  @param phy_vars_ue Pointer to UE variables
  @param[out] pss_ext contain the PSS signals after the extraction
  @returns 0 on success
*/
int pss_only_extract(PHY_VARS_UE *phy_vars_ue,
Bilel's avatar
Bilel committed
1385 1386
                    int32_t pss_ext[4][72],
                    uint8_t subframe);
1387 1388 1389 1390 1391 1392 1393

/*! \brief Extract only SSS resource elements
  @param phy_vars_ue Pointer to UE variables
  @param[out] sss_ext contain the SSS signals after the extraction
  @returns 0 on success
*/
int sss_only_extract(PHY_VARS_UE *phy_vars_ue,
Bilel's avatar
Bilel committed
1394 1395
                    int32_t sss_ext[4][72],
                    uint8_t subframe);
1396

1397 1398 1399 1400 1401 1402 1403 1404
/*! \brief Performs detection of SSS to find cell ID and other framing parameters (FDD/TDD, normal/extended prefix)
  @param phy_vars_ue Pointer to UE variables
  @param tot_metric Pointer to variable containing maximum metric under framing hypothesis (to be compared to other hypotheses
  @param flip_max Pointer to variable indicating if start of frame is in second have of RX buffer (i.e. PSS/SSS is flipped)
  @param phase_max Pointer to variable (0 ... 6) containing rought phase offset between PSS and SSS (can be used for carrier
  frequency adjustment. 0 means -pi/3, 6 means pi/3.
  @returns 0 on success
*/
1405
int rx_sss(PHY_VARS_UE *phy_vars_ue,int32_t *tot_metric,uint8_t *flip_max,uint8_t *phase_max);
1406 1407 1408 1409 1410

/*! \brief receiver for the PBCH
  \returns number of tx antennas or -1 if error
*/
uint16_t rx_pbch(LTE_UE_COMMON *lte_ue_common_vars,
1411 1412 1413 1414 1415 1416
                 LTE_UE_PBCH *lte_ue_pbch_vars,
                 LTE_DL_FRAME_PARMS *frame_parms,
                 uint8_t eNB_id,
                 MIMO_mode_t mimo_mode,
                 uint32_t high_speed_flag,
                 uint8_t frame_mod4);
1417 1418

uint16_t rx_pbch_emul(PHY_VARS_UE *phy_vars_ue,
1419 1420
                      uint8_t eNB_id,
                      uint8_t pbch_phase);
1421 1422 1423 1424

/*! \brief PBCH scrambling. Applies 36.211 PBCH scrambling procedure.
  \param frame_parms Pointer to frame descriptor
  \param coded_data Output of the coding and rate matching
1425
  \param length Length of the sequence*/
1426
void pbch_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
1427 1428
                     uint8_t* coded_data,
                     uint32_t length);
1429 1430 1431 1432 1433 1434

/*! \brief PBCH unscrambling
  This is similar to pbch_scrabling with the difference that inputs are signed s16s (llr values) and instead of flipping bits we change signs.
  \param frame_parms Pointer to frame descriptor
  \param llr Output of the demodulator
  \param length Length of the sequence
1435
  \param frame_mod4 Frame number modulo 4*/
1436
void pbch_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
1437 1438 1439
                       int8_t* llr,
                       uint32_t length,
                       uint8_t frame_mod4);
1440 1441 1442 1443 1444 1445

/*! \brief DCI Encoding. This routine codes an arbitrary DCI PDU after appending the 8-bit 3GPP CRC.  It then applied sub-block interleaving and rate matching.
  \param a Pointer to DCI PDU (coded in bytes)
  \param A Length of DCI PDU in bits
  \param E Length of DCI PDU in coded bits
  \param e Pointer to sequence
1446
  \param rnti RNTI for CRC scrambling*/
1447
void dci_encoding(uint8_t *a,
1448 1449 1450 1451
                  uint8_t A,
                  uint16_t E,
                  uint8_t *e,
                  uint16_t rnti);
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462

/*! \brief Top-level DCI entry point. This routine codes an set of DCI PDUs and performs PDCCH modulation, interleaving and mapping.
  \param num_ue_spec_dci  Number of UE specific DCI pdus to encode
  \param num_common_dci Number of Common DCI pdus to encode
  \param dci_alloc Allocation vectors for each DCI pdu
  \param n_rnti n_RNTI (see )
  \param amp Amplitude of QPSK symbols
  \param frame_parms Pointer to DL Frame parameter structure
  \param txdataF Pointer to tx signal buffers
  \param sub_frame_offset subframe offset in frame
  @returns Number of PDCCH symbols
1463
*/
1464
uint8_t generate_dci_top(uint8_t num_ue_spec_dci,
1465 1466 1467 1468 1469
                         uint8_t num_common_dci,
                         DCI_ALLOC_t *dci_alloc,
                         uint32_t n_rnti,
                         int16_t amp,
                         LTE_DL_FRAME_PARMS *frame_parms,
1470
                         int32_t **txdataF,
1471
                         uint32_t sub_frame_offset);
1472 1473

uint8_t generate_dci_top_emul(PHY_VARS_eNB *phy_vars_eNB,
1474 1475 1476 1477
                              uint8_t num_ue_spec_dci,
                              uint8_t num_common_dci,
                              DCI_ALLOC_t *dci_alloc,
                              uint8_t subframe);
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489


void generate_64qam_table(void);
void generate_16qam_table(void);

uint16_t extract_crc(uint8_t *dci,uint8_t DCI_LENGTH);

/*! \brief LLR from two streams. This function takes two streams (qpsk modulated) and calculates the LLR, considering one stream as interference.
  \param stream0_in pointer to first stream0
  \param stream1_in pointer to first stream1
  \param stream0_out pointer to output stream
  \param rho01 pointer to correlation matrix
1490
  \param length*/
1491
void qpsk_qpsk_TM3456(short *stream0_in,
1492 1493 1494 1495 1496
                      short *stream1_in,
                      short *stream0_out,
                      short *rho01,
                      int length
                     );
1497 1498 1499 1500 1501 1502 1503 1504

/** \brief Attempt decoding of a particular DCI with given length and format.
    @param DCI_LENGTH length of DCI in bits
    @param DCI_FMT Format of DCI
    @param e e-sequence (soft bits)
    @param decoded_output Output of Viterbi decoder
*/
void dci_decoding(uint8_t DCI_LENGTH,
1505 1506 1507
                  uint8_t DCI_FMT,
                  int8_t *e,
                  uint8_t *decoded_output);
1508 1509 1510 1511 1512

/** \brief Do 36.213 DCI decoding procedure by searching different RNTI options and aggregation levels.  Currently does
    not employ the complexity reducing procedure based on RNTI.
    @param phy_vars_ue UE variables
    @param dci_alloc Pointer to DCI_ALLOC_t array to store results for DLSCH/ULSCH programming
1513
    @param do_common If 1 perform search in common search-space else ue-specific search-space
1514 1515 1516 1517 1518
    @param eNB_id eNB Index on which to act
    @param subframe Index of subframe
    @returns bitmap of occupied CCE positions (i.e. those detected)
*/
uint16_t dci_decoding_procedure(PHY_VARS_UE *phy_vars_ue,
1519 1520 1521 1522
                                DCI_ALLOC_t *dci_alloc,
                                int do_common,
                                int16_t eNB_id,
                                uint8_t subframe);
1523

1524 1525 1526 1527 1528 1529
uint16_t dci_CRNTI_decoding_procedure(PHY_VARS_UE *ue,
                                DCI_ALLOC_t *dci_alloc,
                                uint8_t DCIFormat,
                                uint8_t agregationLevel,
                                int16_t eNB_id,
                                uint8_t subframe);
1530 1531

uint16_t dci_decoding_procedure_emul(LTE_UE_PDCCH **lte_ue_pdcch_vars,
1532 1533 1534 1535 1536
                                     uint8_t num_ue_spec_dci,
                                     uint8_t num_common_dci,
                                     DCI_ALLOC_t *dci_alloc_tx,
                                     DCI_ALLOC_t *dci_alloc_rx,
                                     int16_t eNB_id);
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557

/** \brief Compute Q (modulation order) based on I_MCS PDSCH.  Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS */
uint8_t get_Qm(uint8_t I_MCS);

/** \brief Compute Q (modulation order) based on I_MCS for PUSCH.  Implements table 8.6.1-1 from 36.213.
    @param I_MCS */
uint8_t get_Qm_ul(uint8_t I_MCS);

/** \brief Compute I_TBS (transport-block size) based on I_MCS for PDSCH.  Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS */
uint8_t get_I_TBS(uint8_t I_MCS);

/** \brief Compute I_TBS (transport-block size) based on I_MCS for PUSCH.  Implements table 8.6.1-1 from 36.213.
    @param I_MCS */
unsigned char get_I_TBS_UL(unsigned char I_MCS);

/** \brief Compute Q (modulation order) based on downlink I_MCS. Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS
    @param nb_rb
    @return Transport block size */
1558
uint32_t get_TBS_DL(uint8_t mcs, uint16_t nb_rb);
1559 1560 1561 1562 1563

/** \brief Compute Q (modulation order) based on uplink I_MCS. Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS
    @param nb_rb
    @return Transport block size */
1564
uint32_t get_TBS_UL(uint8_t mcs, uint16_t nb_rb);
1565 1566

/* \brief Return bit-map of resource allocation for a given DCI rballoc (RIV format) and vrb type
1567 1568 1569 1570 1571 1572 1573
   @param N_RB_DL number of PRB on DL
   @param indicator for even/odd slot
   @param vrb vrb index
   @param Ngap Gap indicator
*/
uint32_t get_prb(int N_RB_DL,int odd_slot,int vrb,int Ngap);

1574
/* \brief Return prb for a given vrb index
1575 1576 1577
   @param vrb_type VRB type (0=localized,1=distributed)
   @param rb_alloc_dci rballoc field from DCI
*/
1578
uint32_t get_rballoc(vrb_t vrb_type,uint16_t rb_alloc_dci);
1579

1580

1581 1582 1583
/* \brief Return bit-map of resource allocation for a given DCI rballoc (RIV format) and vrb type
   @returns Transmission mode (1-7)
*/
1584
uint8_t get_transmission_mode(module_id_t Mod_id, uint8_t CC_id, rnti_t rnti);
1585

1586

1587
/* \brief
1588
   @param ra_header Header of resource allocation (0,1) (See sections 7.1.6.1/7.1.6.2 of 36.213 Rel8.6)
1589
   @param rb_alloc Bitmap allocation from DCI (format 1,2)
1590 1591 1592 1593
   @returns number of physical resource blocks
*/
uint32_t conv_nprb(uint8_t ra_header,uint32_t rb_alloc,int N_RB_DL);

1594
int get_G(LTE_DL_FRAME_PARMS *frame_parms,uint16_t nb_rb,uint32_t *rb_alloc,uint8_t mod_order,uint8_t Nl,uint8_t num_pdcch_symbols,int frame,uint8_t subframe, uint8_t beamforming_mode);
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620

int adjust_G(LTE_DL_FRAME_PARMS *frame_parms,uint32_t *rb_alloc,uint8_t mod_order,uint8_t subframe);
int adjust_G2(LTE_DL_FRAME_PARMS *frame_parms,uint32_t *rb_alloc,uint8_t mod_order,uint8_t subframe,uint8_t symbol);


#ifndef modOrder
#define modOrder(I_MCS,I_TBS) ((I_MCS-I_TBS)*2+2) // Find modulation order from I_TBS and I_MCS
#endif

/** \fn uint8_t I_TBS2I_MCS(uint8_t I_TBS);
    \brief This function maps I_tbs to I_mcs according to Table 7.1.7.1-1 in 3GPP TS 36.213 V8.6.0. Where there is two supported modulation orders for the same I_TBS then either high or low modulation is chosen by changing the equality of the two first comparisons in the if-else statement.
    \param I_TBS Index of Transport Block Size
    \return I_MCS given I_TBS
*/
uint8_t I_TBS2I_MCS(uint8_t I_TBS);

/** \fn uint8_t SE2I_TBS(float SE,
    uint8_t N_PRB,
    uint8_t symbPerRB);
    \brief This function maps a requested throughput in number of bits to I_tbs. The throughput is calculated as a function of modulation order, RB allocation and number of symbols per RB. The mapping orginates in the "Transport block size table" (Table 7.1.7.2.1-1 in 3GPP TS 36.213 V8.6.0)
    \param SE Spectral Efficiency (before casting to integer, multiply by 1024, remember to divide result by 1024!)
    \param N_PRB Number of PhysicalResourceBlocks allocated \sa lte_frame_parms->N_RB_DL
    \param symbPerRB Number of symbols per resource block allocated to this channel
    \return I_TBS given an SE and an N_PRB
*/
uint8_t SE2I_TBS(float SE,
1621 1622
                 uint8_t N_PRB,
                 uint8_t symbPerRB);
1623 1624 1625 1626 1627
/** \brief This function generates the sounding reference symbol (SRS) for the uplink according to 36.211 v8.6.0. If IFFT_FPGA is defined, the SRS is quantized to a QPSK sequence.
    @param frame_parms LTE DL Frame Parameters
    @param soundingrs_ul_config_dedicated Dynamic configuration from RRC during Connection Establishment
    @param txdataF pointer to the frequency domain TX signal
    @returns 0 on success*/
1628 1629 1630 1631 1632
int generate_srs(LTE_DL_FRAME_PARMS *frame_parms,
		 SOUNDINGRS_UL_CONFIG_DEDICATED *soundingrs_ul_config_dedicated,
		 int *txdataF,
		 int16_t amp,
		 uint32_t subframe);
1633

1634
int32_t generate_srs_tx_emul(PHY_VARS_UE *phy_vars_ue,
1635
                             uint8_t subframe);
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645

/*!
  \brief This function is similar to generate_srs_tx but generates a conjugate sequence for channel estimation. If IFFT_FPGA is defined, the SRS is quantized to a QPSK sequence.
  @param phy_vars_ue Pointer to PHY_VARS structure
  @param eNB_id Index of destination eNB for this SRS
  @param amp Linear amplitude of SRS
  @param subframe Index of subframe on which to act
  @returns 0 on success, -1 on error with message
*/

1646
int32_t generate_srs_tx(PHY_VARS_UE *phy_vars_ue,
1647 1648 1649
                        uint8_t eNB_id,
                        int16_t amp,
                        uint32_t subframe);
1650 1651 1652 1653 1654

/*!
  \brief This function generates the downlink reference signal for the PUSCH according to 36.211 v8.6.0. The DRS occuies the RS defined by rb_alloc and the symbols 2 and 8 for extended CP and 3 and 10 for normal CP.
*/

1655
int32_t generate_drs_pusch(PHY_VARS_UE *phy_vars_ue,
1656
                           UE_rxtx_proc_t *proc,
1657 1658 1659 1660 1661 1662
                           uint8_t eNB_id,
                           int16_t amp,
                           uint32_t subframe,
                           uint32_t first_rb,
                           uint32_t nb_rb,
                           uint8_t ant);
1663 1664 1665 1666 1667 1668

/*!
  \brief This function initializes the Group Hopping, Sequence Hopping and nPRS sequences for PUCCH/PUSCH according to 36.211 v8.6.0. It should be called after configuration of UE (reception of SIB2/3) and initial configuration of eNB (or after reconfiguration of cell-specific parameters).
  @param frame_parms Pointer to a LTE_DL_FRAME_PARMS structure (eNB or UE)*/
void init_ul_hopping(LTE_DL_FRAME_PARMS *frame_parms);

1669 1670 1671 1672 1673 1674 1675 1676

/*!
  \brief This function implements the initialization of paging parameters for UE (See Section 7, 36.304).It must be called after setting IMSImod1024 during UE startup and after receiving SIB2
  @param ue Pointer to UE context
  @param defaultPagingCycle T from 36.304 (0=32,1=64,2=128,3=256)
  @param nB nB from 36.304 (0=4T,1=2T,2=T,3=T/2,4=T/4,5=T/8,6=T/16,7=T/32*/
int init_ue_paging_info(PHY_VARS_UE *ue, long defaultPagingCycle, long nB);

1677
int32_t compareints (const void * a, const void * b);
1678 1679


1680
void ulsch_modulation(int32_t **txdataF,
1681 1682 1683 1684 1685
                      int16_t amp,
                      frame_t frame,
                      uint32_t subframe,
                      LTE_DL_FRAME_PARMS *frame_parms,
                      LTE_UE_ULSCH_t *ulsch);
1686 1687


1688
void ulsch_extract_rbs_single(int32_t **rxdataF,
1689 1690 1691 1692 1693 1694
                              int32_t **rxdataF_ext,
                              uint32_t first_rb,
                              uint32_t nb_rb,
                              uint8_t l,
                              uint8_t Ns,
                              LTE_DL_FRAME_PARMS *frame_parms);
1695

1696
uint8_t subframe2harq_pid(LTE_DL_FRAME_PARMS *frame_parms,frame_t frame,uint8_t subframe);
1697 1698
uint8_t subframe2harq_pid_eNBrx(LTE_DL_FRAME_PARMS *frame_parms,uint8_t subframe);

1699
int generate_ue_dlsch_params_from_dci(int frame,
1700
                                      uint8_t subframe,
1701
                                      void *dci_pdu,
1702
                                      rnti_t rnti,
1703 1704 1705 1706 1707 1708
                                      DCI_format_t dci_format,
                                      LTE_UE_DLSCH_t **dlsch,
                                      LTE_DL_FRAME_PARMS *frame_parms,
                                      PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
                                      uint16_t si_rnti,
                                      uint16_t ra_rnti,
1709
                                      uint16_t p_rnti,
1710 1711
                                      uint8_t beamforming_mode,
                                      uint16_t tc_rnti);
1712

1713 1714
int32_t generate_eNB_dlsch_params_from_dci(int frame,
    uint8_t subframe,
1715 1716 1717 1718 1719 1720 1721 1722 1723
    void *dci_pdu,
    rnti_t rnti,
    DCI_format_t dci_format,
    LTE_eNB_DLSCH_t **dlsch_eNB,
    LTE_DL_FRAME_PARMS *frame_parms,
    PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
    uint16_t si_rnti,
    uint16_t ra_rnti,
    uint16_t p_rnti,
1724 1725
    uint16_t DL_pmi_single,
    uint8_t beamforming_mode);
1726

1727
int32_t generate_eNB_ulsch_params_from_rar(uint8_t *rar_pdu,
1728 1729 1730 1731
    frame_t frame,
    uint8_t subframe,
    LTE_eNB_ULSCH_t *ulsch,
    LTE_DL_FRAME_PARMS *frame_parms);
1732 1733

int generate_ue_ulsch_params_from_dci(void *dci_pdu,
1734
                                      rnti_t rnti,
1735 1736 1737
                                      uint8_t subframe,
                                      DCI_format_t dci_format,
                                      PHY_VARS_UE *phy_vars_ue,
1738
                                      UE_rxtx_proc_t *proc,
1739
                                      uint16_t si_rnti,
1740 1741 1742 1743 1744
                                      uint16_t ra_rnti,
                                      uint16_t p_rnti,
                                      uint16_t cba_rnti,
                                      uint8_t eNB_id,
                                      uint8_t use_srs);
1745

1746
int32_t generate_ue_ulsch_params_from_rar(PHY_VARS_UE *phy_vars_ue,
1747 1748
                                          UE_rxtx_proc_t *proc,
                                          uint8_t eNB_id);
1749
double sinr_eff_cqi_calc(PHY_VARS_UE *phy_vars_ue,
1750
                         uint8_t eNB_id,
1751
                                                 uint8_t subframe);
knopp's avatar
knopp committed
1752 1753 1754

uint8_t sinr2cqi(double sinr,uint8_t trans_mode);

knopp's avatar