lte_sync_time.c 19.5 KB
Newer Older
ghaddab's avatar
ghaddab committed
1
/*******************************************************************************
2
    OpenAirInterface
ghaddab's avatar
ghaddab committed
3 4 5 6 7 8 9 10 11 12 13 14 15 16
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
17 18
    along with OpenAirInterface.The full GNU General Public License is
   included in this distribution in the file called "COPYING". If not,
ghaddab's avatar
ghaddab committed
19 20 21 22 23 24
   see <http://www.gnu.org/licenses/>.

  Contact Information
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
  OpenAirInterface Dev  : openair4g-devel@eurecom.fr
25

ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
ghaddab's avatar
ghaddab committed
27 28

 *******************************************************************************/
29 30 31
/* file: lte_sync_time.c
   purpose: coarse timing synchronization for LTE (using PSS)
   author: florian.kaltenberger@eurecom.fr, oscar.tonelli@yahoo.it
32
   date: 22.10.2009
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
*/

//#include <string.h>
#include "defs.h"
#include "PHY/defs.h"
#include "PHY/extern.h"
#include "SCHED/extern.h"
#include "MAC_INTERFACE/defs.h"
#include "MAC_INTERFACE/extern.h"
#include <math.h>

#ifdef OPENAIR2
#include "LAYER2/MAC/defs.h"
#include "LAYER2/MAC/extern.h"
#include "RRC/LITE/extern.h"
#include "PHY_INTERFACE/extern.h"
#endif
//#define DEBUG_PHY

int* sync_corr_ue0 = NULL;
int* sync_corr_ue1 = NULL;
int* sync_corr_ue2 = NULL;
int sync_tmp[2048*4] __attribute__((aligned(16)));
short syncF_tmp[2048*2] __attribute__((aligned(16)));



60 61
int lte_sync_time_init(LTE_DL_FRAME_PARMS *frame_parms )   // LTE_UE_COMMON *common_vars
{
62 63 64 65 66 67 68

  int i,k;
  //unsigned short ds = frame_parms->log2_symbol_size - 7;

  sync_corr_ue0 = (int *)malloc16(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*sizeof(int)*frame_parms->samples_per_tti);
  sync_corr_ue1 = (int *)malloc16(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*sizeof(int)*frame_parms->samples_per_tti);
  sync_corr_ue2 = (int *)malloc16(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*sizeof(int)*frame_parms->samples_per_tti);
69

70 71 72 73 74
  if (sync_corr_ue0) {
#ifdef DEBUG_PHY
    msg("[openair][LTE_PHY][SYNC] sync_corr_ue allocated at %p\n", sync_corr_ue0);
#endif
    //common_vars->sync_corr = sync_corr;
75
  } else {
76 77 78 79 80 81 82 83 84
    msg("[openair][LTE_PHY][SYNC] sync_corr_ue0 not allocated\n");
    return(-1);
  }

  if (sync_corr_ue1) {
#ifdef DEBUG_PHY
    msg("[openair][LTE_PHY][SYNC] sync_corr_ue allocated at %p\n", sync_corr_ue1);
#endif
    //common_vars->sync_corr = sync_corr;
85
  } else {
86 87 88 89 90 91 92 93 94
    msg("[openair][LTE_PHY][SYNC] sync_corr_ue1 not allocated\n");
    return(-1);
  }

  if (sync_corr_ue2) {
#ifdef DEBUG_PHY
    msg("[openair][LTE_PHY][SYNC] sync_corr_ue allocated at %p\n", sync_corr_ue2);
#endif
    //common_vars->sync_corr = sync_corr;
95
  } else {
96 97 98 99 100
    msg("[openair][LTE_PHY][SYNC] sync_corr_ue2 not allocated\n");
    return(-1);
  }

  //  primary_synch0_time = (int *)malloc16((frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples)*sizeof(int));
101
  primary_synch0_time = (int16_t *)malloc16((frame_parms->ofdm_symbol_size)*sizeof(int16_t)*2);
102

103 104
  if (primary_synch0_time) {
    //    bzero(primary_synch0_time,(frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples)*sizeof(int));
105
    bzero(primary_synch0_time,(frame_parms->ofdm_symbol_size)*sizeof(int16_t)*2);
106 107 108
#ifdef DEBUG_PHY
    msg("[openair][LTE_PHY][SYNC] primary_synch0_time allocated at %p\n", primary_synch0_time);
#endif
109
  } else {
110 111 112 113 114
    msg("[openair][LTE_PHY][SYNC] primary_synch0_time not allocated\n");
    return(-1);
  }

  //  primary_synch1_time = (int *)malloc16((frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples)*sizeof(int));
115
  primary_synch1_time = (int16_t *)malloc16((frame_parms->ofdm_symbol_size)*sizeof(int16_t)*2);
116

117 118
  if (primary_synch1_time) {
    //    bzero(primary_synch1_time,(frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples)*sizeof(int));
119
    bzero(primary_synch1_time,(frame_parms->ofdm_symbol_size)*sizeof(int16_t)*2);
120 121 122
#ifdef DEBUG_PHY
    msg("[openair][LTE_PHY][SYNC] primary_synch1_time allocated at %p\n", primary_synch1_time);
#endif
123
  } else {
124 125 126 127 128
    msg("[openair][LTE_PHY][SYNC] primary_synch1_time not allocated\n");
    return(-1);
  }

  //  primary_synch2_time = (int *)malloc16((frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples)*sizeof(int));
129
  primary_synch2_time = (int16_t *)malloc16((frame_parms->ofdm_symbol_size)*sizeof(int16_t)*2);
130

131 132
  if (primary_synch2_time) {
    //    bzero(primary_synch2_time,(frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples)*sizeof(int));
133
    bzero(primary_synch2_time,(frame_parms->ofdm_symbol_size)*sizeof(int16_t)*2);
134 135 136
#ifdef DEBUG_PHY
    msg("[openair][LTE_PHY][SYNC] primary_synch2_time allocated at %p\n", primary_synch2_time);
#endif
137
  } else {
138 139 140 141 142 143 144
    msg("[openair][LTE_PHY][SYNC] primary_synch2_time not allocated\n");
    return(-1);
  }


  // generate oversampled sync_time sequences
  k=frame_parms->ofdm_symbol_size-36;
145

146 147 148 149
  for (i=0; i<72; i++) {
    syncF_tmp[2*k] = primary_synch0[2*i]>>2;  //we need to shift input to avoid overflow in fft
    syncF_tmp[2*k+1] = primary_synch0[2*i+1]>>2;
    k++;
150

151 152 153 154 155 156
    if (k >= frame_parms->ofdm_symbol_size) {
      k++;  // skip DC carrier
      k-=frame_parms->ofdm_symbol_size;
    }
  }

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
  switch (frame_parms->N_RB_DL) {
  case 6:
    idft128((short*)syncF_tmp,          /// complex input
	   (short*)sync_tmp, /// complex output
	   1);
    break;
  case 25:
    idft512((short*)syncF_tmp,          /// complex input
	   (short*)sync_tmp, /// complex output
	   1);
    break;
  case 50:
    idft1024((short*)syncF_tmp,          /// complex input
	    (short*)sync_tmp, /// complex output
	    1);
    break;
    
  case 75:
    idft1536((short*)syncF_tmp,          /// complex input
	    (short*)sync_tmp); /// complex output
    break;
  case 100:
    idft2048((short*)syncF_tmp,          /// complex input
	    (short*)sync_tmp, /// complex output
	    1);
    break;
  default:
    LOG_E(PHY,"Unsupported N_RB_DL %d\n",frame_parms->N_RB_DL);
    break;
  }
  /*
188 189 190 191 192
      frame_parms->twiddle_ifft,    /// complex twiddle factors
      frame_parms->rev,             /// bit reversed permutation vector
      frame_parms->log2_symbol_size,/// log2(FFT_SIZE)
      (frame_parms->log2_symbol_size/2),
      0);                            /// 0 - input is in complex Q1.15 format, 1 - input is in complex redundant Q1.15 format)
193
  */
194 195

  for (i=0; i<frame_parms->ofdm_symbol_size; i++)
196
    ((int32_t*)primary_synch0_time)[i] = sync_tmp[i];
197 198

  k=frame_parms->ofdm_symbol_size-36;
199

200 201 202 203
  for (i=0; i<72; i++) {
    syncF_tmp[2*k] = primary_synch1[2*i]>>2;  //we need to shift input to avoid overflow in fft
    syncF_tmp[2*k+1] = primary_synch1[2*i+1]>>2;
    k++;
204

205 206 207 208 209 210
    if (k >= frame_parms->ofdm_symbol_size) {
      k++;  // skip DC carrier
      k-=frame_parms->ofdm_symbol_size;
    }
  }

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
  switch (frame_parms->N_RB_DL) {
  case 6:
    idft128((short*)syncF_tmp,          /// complex input
	   (short*)sync_tmp, /// complex output
	   1);
    break;
  case 25:
    idft512((short*)syncF_tmp,          /// complex input
	   (short*)sync_tmp, /// complex output
	   1);
    break;
  case 50:
    idft1024((short*)syncF_tmp,          /// complex input
	    (short*)sync_tmp, /// complex output
	    1);
    break;
    
  case 75:
    idft1536((short*)syncF_tmp,          /// complex input
	    (short*)sync_tmp /// complex output
	    );
    break;
  case 100:
    idft2048((short*)syncF_tmp,          /// complex input
	    (short*)sync_tmp, /// complex output
	    1);
    break;
  default:
    LOG_E(PHY,"Unsupported N_RB_DL %d\n",frame_parms->N_RB_DL);
    break;
  }
242 243

  for (i=0; i<frame_parms->ofdm_symbol_size; i++)
244
    ((int32_t*)primary_synch1_time)[i] = sync_tmp[i];
245 246

  k=frame_parms->ofdm_symbol_size-36;
247

248 249 250 251
  for (i=0; i<72; i++) {
    syncF_tmp[2*k] = primary_synch2[2*i]>>2;  //we need to shift input to avoid overflow in fft
    syncF_tmp[2*k+1] = primary_synch2[2*i+1]>>2;
    k++;
252

253 254 255 256 257 258
    if (k >= frame_parms->ofdm_symbol_size) {
      k++;  // skip DC carrier
      k-=frame_parms->ofdm_symbol_size;
    }
  }

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
  switch (frame_parms->N_RB_DL) {
  case 6:
    idft128((short*)syncF_tmp,          /// complex input
	   (short*)sync_tmp, /// complex output
	   1);
    break;
  case 25:
    idft512((short*)syncF_tmp,          /// complex input
	   (short*)sync_tmp, /// complex output
	   1);
    break;
  case 50:
    idft1024((short*)syncF_tmp,          /// complex input
	    (short*)sync_tmp, /// complex output
	    1);
    break;
    
  case 75:
    idft1536((short*)syncF_tmp,          /// complex input
	    (short*)sync_tmp /// complex output
	    );
    break;
  case 100:
    idft2048((short*)syncF_tmp,          /// complex input
	    (short*)sync_tmp, /// complex output
	    1);
    break;
  default:
    LOG_E(PHY,"Unsupported N_RB_DL %d\n",frame_parms->N_RB_DL);
    break;
  }
290 291

  for (i=0; i<frame_parms->ofdm_symbol_size; i++)
292
    ((int32_t*)primary_synch2_time)[i] = sync_tmp[i];
293 294 295 296 297 298 299 300 301 302 303 304 305




#ifdef DEBUG_PHY
  write_output("primary_sync0.m","psync0",primary_synch0_time,frame_parms->ofdm_symbol_size,1,1);
  write_output("primary_sync1.m","psync1",primary_synch1_time,frame_parms->ofdm_symbol_size,1,1);
  write_output("primary_sync2.m","psync2",primary_synch2_time,frame_parms->ofdm_symbol_size,1,1);
#endif
  return (1);
}


306 307
void lte_sync_time_free(void)
{
308

309

310 311 312 313
  if (sync_corr_ue0) {
    msg("Freeing sync_corr_ue (%p)...\n",sync_corr_ue0);
    free(sync_corr_ue0);
  }
314

315 316 317 318
  if (sync_corr_ue1) {
    msg("Freeing sync_corr_ue (%p)...\n",sync_corr_ue1);
    free(sync_corr_ue1);
  }
319

320 321 322 323
  if (sync_corr_ue2) {
    msg("Freeing sync_corr_ue (%p)...\n",sync_corr_ue2);
    free(sync_corr_ue2);
  }
324

325 326 327 328
  if (primary_synch0_time) {
    msg("Freeing primary_sync0_time ...\n");
    free(primary_synch0_time);
  }
329

330 331 332 333
  if (primary_synch1_time) {
    msg("Freeing primary_sync1_time ...\n");
    free(primary_synch1_time);
  }
334

335 336 337 338
  if (primary_synch2_time) {
    msg("Freeing primary_sync2_time ...\n");
    free(primary_synch2_time);
  }
339

340 341 342
  sync_corr_ue0 = NULL;
  sync_corr_ue1 = NULL;
  sync_corr_ue2 = NULL;
gauthier's avatar
gauthier committed
343 344 345
  primary_synch0_time = NULL;
  primary_synch1_time = NULL;
  primary_synch2_time = NULL;
346 347
}

348 349
static inline int abs32(int x)
{
350 351 352
  return (((int)((short*)&x)[0])*((int)((short*)&x)[0]) + ((int)((short*)&x)[1])*((int)((short*)&x)[1]));
}

353
#ifdef DEBUG_PHY
354
int debug_cnt=0;
355 356
#endif

357
int lte_sync_time(int **rxdata, ///rx data in time domain
358 359 360
                  LTE_DL_FRAME_PARMS *frame_parms,
                  int *eNB_id)
{
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376



  // perform a time domain correlation using the oversampled sync sequence

  unsigned int n, ar, s, peak_pos, peak_val, sync_source;
  int result,result2;
  int sync_out[3] = {0,0,0},sync_out2[3] = {0,0,0};
  int tmp[3] = {0,0,0};
  int length =   LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*frame_parms->samples_per_tti>>1;

  //msg("[SYNC TIME] Calling sync_time.\n");
  if (sync_corr_ue0 == NULL) {
    msg("[SYNC TIME] sync_corr_ue0 not yet allocated! Exiting.\n");
    return(-1);
  }
377

378 379 380 381
  if (sync_corr_ue1 == NULL) {
    msg("[SYNC TIME] sync_corr_ue1 not yet allocated! Exiting.\n");
    return(-1);
  }
382

383 384 385 386 387 388 389 390 391
  if (sync_corr_ue2 == NULL) {
    msg("[SYNC TIME] sync_corr_ue2 not yet allocated! Exiting.\n");
    return(-1);
  }

  peak_val = 0;
  peak_pos = 0;
  sync_source = 0;

392

393 394 395
  for (n=0; n<length; n+=4) {

#ifdef RTAI_ENABLED
396

397 398 399 400 401 402 403
    // This is necessary since the sync takes a long time and it seems to block all other threads thus screwing up RTAI. If we pause it for a little while during its execution we give RTAI a chance to catch up with its other tasks.
    if ((n%frame_parms->samples_per_tti == 0) && (n>0) && (openair_daq_vars.sync_state==0)) {
#ifdef DEBUG_PHY
      msg("[SYNC TIME] pausing for 1000ns, n=%d\n",n);
#endif
      rt_sleep(nano2count(1000));
    }
404

405 406 407 408 409 410 411 412
#endif

    sync_corr_ue0[n] = 0;
    sync_corr_ue0[n+length] = 0;
    sync_corr_ue1[n] = 0;
    sync_corr_ue1[n+length] = 0;
    sync_corr_ue2[n] = 0;
    sync_corr_ue2[n+length] = 0;
413 414

    for (s=0; s<3; s++) {
415 416 417
      sync_out[s]=0;
      sync_out2[s]=0;
    }
418

419 420 421 422
    //    if (n<(length-frame_parms->ofdm_symbol_size-frame_parms->nb_prefix_samples)) {
    if (n<(length-frame_parms->ofdm_symbol_size)) {

      //calculate dot product of primary_synch0_time and rxdata[ar][n] (ar=0..nb_ant_rx) and store the sum in temp[n];
423 424 425 426 427 428 429 430 431 432 433 434 435
      for (ar=0; ar<frame_parms->nb_antennas_rx; ar++) {

        result  = dot_product((short*)primary_synch0_time, (short*) &(rxdata[ar][n]), frame_parms->ofdm_symbol_size, 15);
        result2 = dot_product((short*)primary_synch0_time, (short*) &(rxdata[ar][n+length]), frame_parms->ofdm_symbol_size, 15);

        ((short*)sync_corr_ue0)[2*n] += ((short*) &result)[0];
        ((short*)sync_corr_ue0)[2*n+1] += ((short*) &result)[1];
        ((short*)sync_corr_ue0)[2*(length+n)] += ((short*) &result2)[0];
        ((short*)sync_corr_ue0)[(2*(length+n))+1] += ((short*) &result2)[1];
        ((short*)sync_out)[0] += ((short*) &result)[0];
        ((short*)sync_out)[1] += ((short*) &result)[1];
        ((short*)sync_out2)[0] += ((short*) &result2)[0];
        ((short*)sync_out2)[1] += ((short*) &result2)[1];
436
      }
437 438 439 440 441 442 443 444 445 446 447 448 449

      for (ar=0; ar<frame_parms->nb_antennas_rx; ar++) {
        result = dot_product((short*)primary_synch1_time, (short*) &(rxdata[ar][n]), frame_parms->ofdm_symbol_size, 15);
        result2 = dot_product((short*)primary_synch1_time, (short*) &(rxdata[ar][n+length]), frame_parms->ofdm_symbol_size, 15);
        ((short*)sync_corr_ue1)[2*n] += ((short*) &result)[0];
        ((short*)sync_corr_ue1)[2*n+1] += ((short*) &result)[1];
        ((short*)sync_corr_ue1)[2*(length+n)] += ((short*) &result2)[0];
        ((short*)sync_corr_ue1)[(2*(length+n))+1] += ((short*) &result2)[1];

        ((short*)sync_out)[2] += ((short*) &result)[0];
        ((short*)sync_out)[3] += ((short*) &result)[1];
        ((short*)sync_out2)[2] += ((short*) &result2)[0];
        ((short*)sync_out2)[3] += ((short*) &result2)[1];
450 451
      }

452 453 454 455 456 457 458 459 460 461 462 463
      for (ar=0; ar<frame_parms->nb_antennas_rx; ar++) {

        result = dot_product((short*)primary_synch2_time, (short*) &(rxdata[ar][n]), frame_parms->ofdm_symbol_size, 15);
        result2 = dot_product((short*)primary_synch2_time, (short*) &(rxdata[ar][n+length]), frame_parms->ofdm_symbol_size, 15);
        ((short*)sync_corr_ue2)[2*n] += ((short*) &result)[0];
        ((short*)sync_corr_ue2)[2*n+1] += ((short*) &result)[1];
        ((short*)sync_corr_ue2)[2*(length+n)] += ((short*) &result2)[0];
        ((short*)sync_corr_ue2)[(2*(length+n))+1] += ((short*) &result2)[1];
        ((short*)sync_out)[4] += ((short*) &result)[0];
        ((short*)sync_out)[5] += ((short*) &result)[1];
        ((short*)sync_out2)[4] += ((short*) &result2)[0];
        ((short*)sync_out2)[5] += ((short*) &result2)[1];
464
      }
465

466
    }
467

468 469 470 471 472 473 474 475 476
    // calculate the absolute value of sync_corr[n]

    sync_corr_ue0[n] = abs32(sync_corr_ue0[n]);
    sync_corr_ue0[n+length] = abs32(sync_corr_ue0[n+length]);
    sync_corr_ue1[n] = abs32(sync_corr_ue1[n]);
    sync_corr_ue1[n+length] = abs32(sync_corr_ue1[n+length]);
    sync_corr_ue2[n] = abs32(sync_corr_ue2[n]);
    sync_corr_ue2[n+length] = abs32(sync_corr_ue2[n+length]);

477
    for (s=0; s<3; s++) {
478
      tmp[s] = (abs32(sync_out[s])>>1) + (abs32(sync_out2[s])>>1);
479

480
      if (tmp[s]>peak_val) {
481 482 483 484 485 486 487 488
        peak_val = tmp[s];
        peak_pos = n;
        sync_source = s;
        /*
        printf("s %d: n %d sync_out %d, sync_out2  %d (sync_corr %d,%d), (%d,%d) (%d,%d)\n",s,n,abs32(sync_out[s]),abs32(sync_out2[s]),sync_corr_ue0[n],
               sync_corr_ue0[n+length],((int16_t*)&sync_out[s])[0],((int16_t*)&sync_out[s])[1],((int16_t*)&sync_out2[s])[0],((int16_t*)&sync_out2[s])[1]);
        */
      }
489 490 491 492
    }
  }

  *eNB_id = sync_source;
493

494 495 496 497
#ifdef DEBUG_PHY
  msg("[PHY][UE] lte_sync_time: Sync source = %d, Peak found at pos %d, val = %d\n",
      sync_source,peak_pos,peak_val);

498

499

500

501
  if (debug_cnt == 0) {
502 503 504 505
    write_output("sync_corr0_ue.m","synccorr0",sync_corr_ue0,2*length,1,2);
    write_output("sync_corr1_ue.m","synccorr1",sync_corr_ue1,2*length,1,2);
    write_output("sync_corr2_ue.m","synccorr2",sync_corr_ue2,2*length,1,2);
    write_output("rxdata0.m","rxd0",rxdata[0],length<<1,1,1);
506
    //    exit(-1);
507
  } else {
508 509
    debug_cnt++;
  }
510

511

512 513 514 515 516 517 518 519 520
#endif


  return(peak_pos);

}

//#define DEBUG_PHY

521
int lte_sync_time_eNB(int32_t **rxdata, ///rx data in time domain
522 523 524 525 526
                      LTE_DL_FRAME_PARMS *frame_parms,
                      uint32_t length,
                      uint32_t *peak_val_out,
                      uint32_t *sync_corr_eNB)
{
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544

  // perform a time domain correlation using the oversampled sync sequence

  unsigned int n, ar, peak_val, peak_pos, mean_val;
  int result;
  short *primary_synch_time;
  int eNB_id = frame_parms->Nid_cell%3;

  // msg("[SYNC TIME] Calling sync_time_eNB(%p,%p,%d,%d)\n",rxdata,frame_parms,eNB_id,length);
  if (sync_corr_eNB == NULL) {
    msg("[SYNC TIME] sync_corr_eNB not yet allocated! Exiting.\n");
    return(-1);
  }

  switch (eNB_id) {
  case 0:
    primary_synch_time = (short*)primary_synch0_time;
    break;
545

546 547 548
  case 1:
    primary_synch_time = (short*)primary_synch1_time;
    break;
549

550 551 552
  case 2:
    primary_synch_time = (short*)primary_synch2_time;
    break;
553

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
  default:
    msg("[SYNC TIME] Illegal eNB_id!\n");
    return (-1);
  }

  peak_val = 0;
  peak_pos = 0;
  mean_val = 0;

  for (n=0; n<length; n+=4) {

    sync_corr_eNB[n] = 0;

    if (n<(length-frame_parms->ofdm_symbol_size-frame_parms->nb_prefix_samples)) {

      //calculate dot product of primary_synch0_time and rxdata[ar][n] (ar=0..nb_ant_rx) and store the sum in temp[n];
570
      for (ar=0; ar<frame_parms->nb_antennas_rx; ar++)  {
571

572 573 574 575
        result = dot_product((short*)primary_synch_time, (short*) &(rxdata[ar][n]), frame_parms->ofdm_symbol_size, 15);
        //((short*)sync_corr)[2*n]   += ((short*) &result)[0];
        //((short*)sync_corr)[2*n+1] += ((short*) &result)[1];
        sync_corr_eNB[n] += abs32(result);
576 577 578 579

      }

    }
580

581 582 583
    /*
    if (eNB_id == 2) {
      printf("sync_time_eNB %d : %d,%d (%d)\n",n,sync_corr_eNB[n],mean_val,
584
       peak_val);
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
    }
    */
    mean_val += (sync_corr_eNB[n]>>10);

    if (sync_corr_eNB[n]>peak_val) {
      peak_val = sync_corr_eNB[n];
      peak_pos = n;
    }
  }

  *peak_val_out = peak_val;

  if (peak_val <= (40*mean_val)) {
#ifdef DEBUG_PHY
    msg("[SYNC TIME] No peak found (%u,%u,%u,%u)\n",peak_pos,peak_val,mean_val,40*mean_val);
#endif
    return(-1);
602
  } else {
603 604 605 606 607 608 609 610 611 612 613 614 615 616
#ifdef DEBUG_PHY
    msg("[SYNC TIME] Peak found at pos %u, val = %u, mean_val = %u\n",peak_pos,peak_val,mean_val);
#endif
    return(peak_pos);
  }

}

#ifdef PHY_ABSTRACTION
#include "SIMULATION/TOOLS/defs.h"
#include "SIMULATION/RF/defs.h"
//extern channel_desc_t *UE2eNB[NUMBER_OF_UE_MAX][NUMBER_OF_eNB_MAX];

int lte_sync_time_eNB_emul(PHY_VARS_eNB *phy_vars_eNB,
617 618 619
                           uint8_t sect_id,
                           int32_t *sync_val)
{
620

621
  uint8_t UE_id;
622
  uint8_t CC_id = phy_vars_eNB->CC_id;
623 624 625

  msg("[PHY] EMUL lte_sync_time_eNB_emul eNB %d, sect_id %d\n",phy_vars_eNB->Mod_id,sect_id);
  *sync_val = 0;
626 627

  for (UE_id=0; UE_id<NB_UE_INST; UE_id++) {
628
    //msg("[PHY] EMUL : eNB %d checking UE %d (PRACH %d) PL %d dB\n",phy_vars_eNB->Mod_id,UE_id,PHY_vars_UE_g[UE_id]->generate_prach,UE2eNB[UE_id][phy_vars_eNB->Mod_id]->path_loss_dB);
629
    if ((PHY_vars_UE_g[UE_id][CC_id]->generate_prach == 1) && (phy_vars_eNB->Mod_id == (UE_id % NB_eNB_INST))) {
630 631 632 633
      *sync_val = 1;
      return(0);
    }
  }
634

635 636 637
  return(-1);
}
#endif