
Using the Open Source ASN.1 Compiler

Lev Walkin <vlm@lionet.info>

March 27, 2013

mailto:vlm@lionet.info?Subject=asn1c

Contents

I Using the ASN.1 Compiler 3

1 Introduction to the ASN.1 Compiler 4
1.1 Quick start with asn1c . 5
1.2 Recognizing compiler output . 6
1.3 Command line options . 7

2 Using the ASN.1 Compiler 9
2.1 Invoking the helper code . 9

2.1.1 Decoding BER . 10
2.1.2 Encoding DER . 13
2.1.3 Encoding XER . 14
2.1.4 Decoding XER . 15
2.1.5 Validating the target structure . 15
2.1.6 Printing the target structure . 16
2.1.7 Freeing the target structure . 16

3 Step by step examples 18
3.1 A “Rectangle” Encoder . 18
3.2 A “Rectangle” Decoder . 20

4 Constraint validation examples 22
4.1 Adding constraints into “Rectangle” type . 22

II ASN.1 Basics 24

5 Abstract Syntax Notation: ASN.1 25
5.1 Some of the ASN.1 Basic Types . 26

1

CONTENTS asn1c-0.9.25

5.1.1 The BOOLEAN type . 26
5.1.2 The INTEGER type . 26
5.1.3 The ENUMERATED type . 27
5.1.4 The OCTET STRING type . 27
5.1.5 The OBJECT IDENTIFIER type . 27
5.1.6 The RELATIVE-OID type . 28

5.2 Some of the ASN.1 String Types . 28
5.2.1 The IA5String type . 28
5.2.2 The UTF8String type . 28
5.2.3 The NumericString type . 29
5.2.4 The PrintableString type . 29
5.2.5 The VisibleString type . 29

5.3 ASN.1 Constructed Types . 29
5.3.1 The SEQUENCE type . 29
5.3.2 The SET type . 30
5.3.3 The CHOICE type . 30
5.3.4 The SEQUENCE OF type . 30
5.3.5 The SET OF type . 31

2

http://lionet.info/asn1c

Part I

Using the ASN.1 Compiler

3

Chapter 1

Introduction to the ASN.1 Compiler

The purpose of the ASN.1 compiler is to convert the specifications in ASN.1 notation into
some other language. At this moment, only C and C++ target languages are supported, the
latter is in upward compatibility mode.

The compiler reads the specification and emits a series of target language structures (C
structs, unions, enums) describing the corresponding ASN.1 types. The compiler also creates
the code which allows automatic serialization and deserialization of these structures using
several standardized encoding rules (BER, DER, XER, PER).

For example, suppose the following ASN.1 module is given1:

RectangleTest DEFINITIONS ::= BEGIN

Rectangle ::= SEQUENCE {
height INTEGER, -- Height of the rectangle
width INTEGER -- Width of the rectangle

}

END

The compiler would read this ASN.1 definition and produce the following C type:

typedef struct Rectangle_s {
long height;
long width;

} Rectangle_t;

1Part II on page 24 provides a quick reference on the ASN.1 notation.

4

CHAPTER 1. INTRODUCTION TO THE ASN.1 COMPILER asn1c-0.9.25

It would also create the code for converting this structure into platform-independent wire
representation (a serializer API) and the decoder of such wire representation back into local,
machine-specific type (a deserializer API).

1.1 Quick start with asn1c

After building and installing the compiler, the asn1c command may be used to compile the
ASN.1 modules2:

asn1c <modules.asn1>

If several ASN.1 modules contain interdependencies, all of the files must be specified alto-
gether:

asn1c <module1.asn1> <module2.asn1> ...

The compiler -E and -EF options are used for testing the parser and the semantic fixer, re-
spectively. These options will instruct the compiler to dump out the parsed (and fixed, if -F
is involved) ASN.1 specification as it was understood by the compiler. It might be useful to
check whether a particular syntactic construct is properly supported by the compiler.

asn1c -EF <module-to-test.asn1>

The -P option is used to dump the compiled output on the screen instead of creating a bunch
of .c and .h files on disk in the current directory. You would probably want to start with -P
option instead of creating a mess in your current directory. Another option, -R, asks compiler
to only generate the files which need to be generated, and supress linking in the numerous
support files.

Print the compiled output instead of creating multiple source files:

asn1c -P <module-to-compile-and-print.asn1>

2This is probably not what you want to try out right now. Read through the rest of this chapter and check
the Section 1.3 on page 7 to find out about -P and -R options.

5

http://lionet.info/asn1c

CHAPTER 1. INTRODUCTION TO THE ASN.1 COMPILER asn1c-0.9.25

1.2 Recognizing compiler output

The asn1c compiler produces a number of files:

• A set of .c and .h files for each type defined in the ASN.1 specification. These files will be
named similarly to the ASN.1 types (Rectangle.c and Rectangle.h for the RectangleTest
ASN.1 module defined in the beginning of this document).

• A set of helper .c and .h files which contain the generic encoders, decoders and other
useful routines. There will be quite a few of them, some of them are not even always
necessary, but the overall amount of code after compilation will be rather small anyway.

• A converter-sample.c file containing the int main() function with a fully functioning de-
coder. It can convert a given PDU between BER, XER and possibly PER (if -gen-PER
option to asn1c was in effect). At some point you will want to replace this file with your
own file containing the int main() function.

• A Makefile.am.sample file mentioning all the files created at the earlier steps. This file is
suitable for either automake suite or the plain ‘make‘ utility. Just rename it intoMakefile.

It is possible to compile everything with just a couple of instructions:

asn1c -pdu=Rectangle *.asn1
make -f Makefile.am.sample # If you use ‘make‘

or

asn1c *.asn1
cc -I. -DPDU=Rectangle -o rectangle.exe *.c # ... or like this

Refer to the Chapter 3 on page 18 for a sample int main() function if you want some custom
logic and not satisfied with the supplied converter-sample.c.

6

http://lionet.info/asn1c

CHAPTER 1. INTRODUCTION TO THE ASN.1 COMPILER asn1c-0.9.25

1.3 Command line options

The following table summarizes the asn1c command line options.

Overall Options Description

-E Stop after the parsing stage and print the reconstructed ASN.1
specification code to the standard output.

-F Used together with -E, instructs the compiler to stop after the
ASN.1 syntax tree fixing stage and dump the reconstructed
ASN.1 specification to the standard output.

-P Dump the compiled output to the standard output instead of
creating the target language files on disk.

-R Restrict the compiler to generate only the ASN.1 tables, omit-
ting the usual support code.

-S <directory> Use the specified directory with ASN.1 skeleton files.

-X Generate the XML DTD for the specified ASN.1 modules.

Warning Options Description

-Werror Treat warnings as errors; abort if any warning is produced.

-Wdebug-lexer Enable lexer debugging during the ASN.1 parsing stage.

-Wdebug-fixer Enable ASN.1 syntax tree fixer debugging during the fixing
stage.

-Wdebug-compiler Enable debugging during the actual compile time.

Language Options Description

-fbless-SIZE Allow SIZE() constraint for INTEGER, ENUMERATED, and other
types for which this constraint is normally prohibited by the
standard. This is a violation of an ASN.1 standard and compiler
may fail to produce the meaningful code.

7

http://lionet.info/asn1c

CHAPTER 1. INTRODUCTION TO THE ASN.1 COMPILER asn1c-0.9.25

-fcompound-names Use complex names for C structures. Using complex names
prevents name clashes in case the module reuses the same
identifiers in multiple contexts.

-findirect-choice When generating code for a CHOICE type, compile the CHOICE
members as indirect pointers instead of declaring them inline.
Consider using this option together with -fno-include-deps to
prevent circular references.

-fknown-extern-type=<name> Pretend the specified type is known. The compiler will assume
the target language source files for the given type have been
provided manually.

-fno-constraints Do not generate ASN.1 subtype constraint checking code. This
may produce a shorter executable.

-fno-include-deps Do not generate courtesy #include lines for non-critical depen-
dencies.

-funnamed-unions Enable unnamed unions in the definitions of target language’s
structures.

-fwide-types Use the wide integer types (INTEGER_t, REAL_t) instead of ma-
chine’s native data types (long, double).

Codecs Generation Options Description

-gen-PER Generate Packed Encoding Rules (PER) support code.

-pdu=auto Generate PDU tables by discovering Protocol Data Units auto-
matically. Also accepts a special keyword all or a particular
type to be used as a PDU.

Output Options Description

-print-constraints When -EF are also specified, this option forces the compiler to
explain its internal understanding of subtype constraints.

-print-lines Generate “-- #line” comments in -E output.

8

http://lionet.info/asn1c

Chapter 2

Using the ASN.1 Compiler

2.1 Invoking the ASN.1 helper code

First of all, you should include one or more header files into your application. Typically, it is
enough to include the header file of the main PDU type. For our Rectangle module, including
the Rectangle.h file is sufficient:

#include <Rectangle.h>

The header files defines the C structure corresponding to the ASN.1 definition of a rectangle
and the declaration of the ASN.1 type descriptor, which is used as an argument to most of
the functions provided by the ASN.1 module. For example, here is the code which frees the
Rectangle_t structure:

Rectangle_t *rect = ...;

asn_DEF_Rectangle.free_struct(&asn_DEF_Rectangle, rect, 0);

This code defines a rect pointer which points to the Rectangle_t structure which needs to be
freed. The second line invokes the generic free_struct() routine created specifically for this
Rectangle_t structure. The asn_DEF_Rectangle is the type descriptor, which holds a collection
of routines to deal with the Rectangle_t structure.

The following member functions of the asn_DEF_Rectangle type descriptor are of interest:

ber_decoder This is the generic restartable1 BER decoder (Basic Encoding Rules). This de-
coder would create and/or fill the target structure for you. See Section 2.1.1 on the
next page.

1Restartable means that if the decoder encounters the end of the buffer, it will fail, but may later be invoked
again with the rest of the buffer to continue decoding.

9

CHAPTER 2. USING THE ASN.1 COMPILER asn1c-0.9.25

der_encoder This is the generic DER encoder (Distinguished Encoding Rules). This encoder
will take the target structure and encode it into a series of bytes. See Section 2.1.2 on
page 13. NOTE: DER encoding is a subset of BER. Any BER decoder should be able to
handle DER input.

xer_decoder This is the generic XER decoder. It takes both BASIC-XER or CANONICAL-XER
encodings and deserializes the data into a local, machine-dependent representation.
See Section 2.1.4 on page 15.

xer_encoder This is the XER encoder (XML Encoding Rules). This encoder will take the tar-
get structure and represent it as an XML (text) document using either BASIC-XER or
CANONICAL-XER encoding rules. See Section 2.1.3 on page 14.

uper_decoder This is the Unaligned PER decoder.

uper_encoder This is the Unaligned Basic PER encoder. This encoder will take the target
structure and encode it into a series of bytes.

check_constraints Check that the contents of the target structure are semantically valid and
constrained to appropriate implicit or explicit subtype constraints. See Section 2.1.5 on
page 15.

print_struct This function convert the contents of the passed target structure into human
readable form. This form is not formal and cannot be converted back into the struc-
ture, but it may turn out to be useful for debugging or quick-n-dirty printing. See Sec-
tion 2.1.6 on page 16.

free_struct This is a generic disposal which frees the target structure. See Section 2.1.7 on
page 16.

Each of the above function takes the type descriptor (asn_DEF_…) and the target structure
(rect, in the above example).

2.1.1 Decoding BER

The Basic Encoding Rules describe the most widely used (by the ASN.1 community) way to
encode and decode a given structure in a machine-independent way. Several other encoding
rules (CER, DER) define a more restrictive versions of BER, so the generic BER parser is also
capable of decoding the data encoded by CER and DER encoders. The opposite is not true.

10

http://lionet.info/asn1c

CHAPTER 2. USING THE ASN.1 COMPILER asn1c-0.9.25

The ASN.1 compiler provides the generic BER decoder which is capable of decoding BER, CER
and DER encoded data.

The decoder is restartable (stream-oriented), which means that in case the buffer has less
data than it is expected, the decoder will process whatever there is available and ask for more
data to be provided. Please note that the decoder may actually process less data than it was
given in the buffer, which means that you must be able to make the next buffer contain the
unprocessed part of the previous buffer.

Suppose, you have two buffers of encoded data: 100 bytes and 200 bytes.

• You can concatenate these buffers and feed the BER decoder with 300 bytes of data, or

• You can feed it the first buffer of 100 bytes of data, realize that the ber_decoder con-
sumed only 95 bytes from it and later feed the decoder with 205 bytes buffer which
consists of 5 unprocessed bytes from the first buffer and the additional 200 bytes from
the second buffer.

This is not as convenient as it could be (the BER encoder could consume the whole 100 bytes
and keep these 5 bytes in some temporary storage), but in case of existing stream based
processing it might actually fit well into existing algorithm. Suggestions are welcome.

Here is the simplest example of BER decoding:

Rectangle_t *
simple_deserializer(const void *buffer, size_t buf_size) {

Rectangle_t *rect = 0; /* Note this 02! */
asn_dec_rval_t rval;

rval = asn_DEF_Rectangle.ber_decoder(0,
&asn_DEF_Rectangle,
(void **)&rect, /* Decoder moves the pointer */
buffer, buf_size,
0);

if(rval.code == RC_OK) {
return rect; /* Decoding succeeded */

} else {
/* Free partially decoded rect */
asn_DEF_Rectangle.free_struct(&asn_DEF_Rectangle, rect,

0);

2Forgetting to properly initialize the pointer to a destination structure is a major source of support requests.

11

http://lionet.info/asn1c

CHAPTER 2. USING THE ASN.1 COMPILER asn1c-0.9.25

return 0;
}

}

The code above defines a function, simple_deserializer, which takes a buffer and its length
and is expected to return a pointer to the Rectangle_t structure. Inside, it tries to convert
the bytes passed into the target structure (rect) using the BER decoder and returns the rect
pointer afterwards. If the structure cannot be deserialized, it frees the memory which might
be left allocated by the unfinished ber_decoder routine and returns 0 (no data). (This freeing
is necessary because the ber_decoder is a restartable procedure, and may fail just because
there is more data needs to be provided before decoding could be finalized). The code above
obviously does not take into account the way the ber_decoder() failed, so the freeing is nec-
essary because the part of the buffer may already be decoded into the structure by the time
something goes wrong.

A little less wordy would be to invoke a globally available ber_decode() function instead
of dereferencing the asn_DEF_Rectangle type descriptor:

rval = ber_decode(0, &asn_DEF_Rectangle, (void **)&rect, buffer,
buf_size);

Note that the initial (asn_DEF_Rectangle.ber_decoder) reference is gone, and also the last
argument (0) is no longer necessary.

These two ways of BER decoder invocations are fully equivalent.
The BER decoder may fail because of (the following RC_… codes are defined in ber_decoder.h):

• RC_WMORE: There is more data expected than it is provided (streammode continuation
feature);

• RC_FAIL: General failure to decode the buffer;

• … other codes may be defined as well.

Together with the return code (.code) the asn_dec_rval_t type contains the number of bytes
which is consumed from the buffer. In the previous hypothetical example of two buffers (of
100 and 200 bytes), the first call to ber_decode() would return with .code = RC_WMORE and
.consumed = 95. The .consumed field of the BER decoder return value is always valid, even if
the decoder succeeds or fails with any other return code.

Look into ber_decoder.h for the precise definition of ber_decode() and related types.

12

http://lionet.info/asn1c

CHAPTER 2. USING THE ASN.1 COMPILER asn1c-0.9.25

2.1.2 Encoding DER

The Distinguished Encoding Rules is the canonical variant of BER encoding rules. The DER
is best suited to encode the structures where all the lengths are known beforehand. This
is probably exactly how you want to encode: either after a BER decoding or after a manual
fill-up, the target structure contains the data which size is implicitly known before encoding.
Among other uses, the DER encoding is used to encode X.509 certificates.

As with BER decoder, the DER encoder may be invoked either directly from the ASN.1 type
descriptor (asn_DEF_Rectangle) or from the stand-alone function, which is somewhat simpler:

/*
* This is the serializer itself.
* It supplies the DER encoder with the
* pointer to the custom output function.
*/

ssize_t
simple_serializer(FILE *ostream, Rectangle_t *rect) {

asn_enc_rval_t er; /* Encoder return value */

er = der_encode(&asn_DEF_Rect, rect, write_stream, ostream);
if(er.encoded == -1) {

/*
* Failed to encode the rectangle data.
*/

fprintf(stderr, ”Cannot encode %s: %s\n”,
er.failed_type->name, strerror(errno));

return -1;
} else {

/* Return the number of bytes */
return er.encoded;

}
}

As you see, the DER encoder does not write into some sort of buffer or something. It just
invokes the custom function (possible, multiple times) which would save the data into ap-
propriate storage. The optional argument app_key is opaque for the DER encoder code and
just used by _write_stream() as the pointer to the appropriate output stream to be used.

If the custom write function is not given (passed as 0), then the DER encoder will essen-
tially do the same thing (i. e., encode the data) but no callbacks will be invoked (so the data

13

http://lionet.info/asn1c

CHAPTER 2. USING THE ASN.1 COMPILER asn1c-0.9.25

goes nowhere). It may prove useful to determine the size of the structure’s encoding before
actually doing the encoding3.

Look into der_encoder.h for the precise definition of der_encode() and related types.

2.1.3 Encoding XER

The XER stands for XML Encoding Rules, where XML, in turn, is eXtensible Markup Language,
a text-based format for information exchange. The encoder routine API comes in two flavors:
stdio-based and callback-based. With the callback-based encoder, the encoding process is
very similar to the DER one, described in Section 2.1.2 on the preceding page. The following
example uses the definition of write_stream() from up there.

/*
* This procedure generates the XML document
* by invoking the XER encoder.
* NOTE: Do not copy this code verbatim!
* If the stdio output is necessary,
* use the xer_fprint() procedure instead.
* See Section 2.1.6 on page 16.
*/

int
print_as_XML(FILE *ostream, Rectangle_t *rect) {

asn_enc_rval_t er; /* Encoder return value */

er = xer_encode(&asn_DEF_Rectangle, rect,
XER_F_BASIC, /* BASIC-XER or CANONICAL-XER */
write_stream, ostream);

return (er.encoded == -1) ? -1 : 0;
}

Look into xer_encoder.h for the precise definition of xer_encode() and related types.
See Section 2.1.6 for the example of stdio-based XML encoder and other pretty-printing

suggestions.
3It is actually faster too: the encoder might skip over some computations which aren’t important for the size

determination.

14

http://lionet.info/asn1c

CHAPTER 2. USING THE ASN.1 COMPILER asn1c-0.9.25

2.1.4 Decoding XER

The data encoded using the XER rules can be subsequently decoded using the xer_decode()
API call:

Rectangle_t *
XML_to_Rectangle(const void *buffer, size_t buf_size) {

Rectangle_t *rect = 0; /* Note this 04! */
asn_dec_rval_t rval;

rval = xer_decode(0, &asn_DEF_Rectangle, (void **)&rect,
buffer, buf_size);

if(rval.code == RC_OK) {
return rect; /* Decoding succeeded */

} else {
/* Free partially decoded rect */
asn_DEF_Rectangle.free_struct(&asn_DEF_Rectangle, rect,

0);
return 0;

}
}

The decoder takes both BASIC-XER and CANONICAL-XER encodings.
The decoder shares its data consumption properties with BER decoder; please read the

Section 2.1.1 on page 10 to know more.
Look into xer_decoder.h for the precise definition of xer_decode() and related types.

2.1.5 Validating the target structure

Sometimes the target structure needs to be validated. For example, if the structure was
created by the application (as opposed to being decoded from some external source), some
important information required by the ASN.1 specification might be missing. On the other
hand, the successful decoding of the data from some external source does not necessarily
mean that the data is fully valid either. It might well be the case that the specification
describes some subtype constraints that were not taken into account during decoding, and it
would actually be useful to perform the last check when the data is ready to be encoded or
when the data has just been decoded to ensure its validity according to some stricter rules.

4Forgetting to properly initialize the pointer to a destination structure is a major source of support requests.

15

http://lionet.info/asn1c

CHAPTER 2. USING THE ASN.1 COMPILER asn1c-0.9.25

The asn_check_constraints() function checks the type for various implicit and explicit con-
straints. It is recommended to use asn_check_constraints() function after each decoding and
before each encoding.

Look into constraints.h for the precise definition of asn_check_constraints() and related
types.

2.1.6 Printing the target structure

There are two ways to print the target structure: either invoke the print_struct member of
the ASN.1 type descriptor, or using the asn_fprint() function, which is a simpler wrapper of
the former:

asn_fprint(stdout, &asn_DEF_Rectangle, rect);

Look into constr_TYPE.h for the precise definition of asn_fprint() and related types.
Another practical alternative to this custom format printing would be to invoke XER en-

coder. The default BASIC-XER encoder performs reasonable formatting for the output to be
useful and human readable. To invoke the XER decoder in a manner similar to asn_fprint(),
use the xer_fprint() call:

xer_fprint(stdout, &asn_DEF_Rectangle, rect);

See Section 2.1.3 on page 14 for XML-related details.

2.1.7 Freeing the target structure

Freeing the structure is slightly more complex than it may seem to. When the ASN.1 structure
is freed, all the members of the structure and their submembers are recursively freed as well.
But it might not be feasible to free the structure itself. Consider the following case:

struct my_figure { /* The custom structure */
int flags; /* <some custom member> */
/* The type is generated by the ASN.1 compiler */
Rectangle_t rect;
/* other members of the structure */

};

In this example, the application programmer defined a custom structure with one ASN.1-
derived member (rect). This member is not a reference to the Rectangle_t, but an in-place
inclusion of the Rectangle_t structure. If the freeing is necessary, the usual procedure of

16

http://lionet.info/asn1c

CHAPTER 2. USING THE ASN.1 COMPILER asn1c-0.9.25

freeing everything must not be applied to the &rect pointer itself, because it does not point
to the memory block directly allocated by the memory allocation routine, but instead lies
within a block allocated for the my_figure structure.

To solve this problem, the free_struct routine has the additional argument (besides the
obvious type descriptor and target structure pointers), which is the flag specifying whether
the outer pointer itself must be freed (0, default) or it should be left intact (non-zero value).

/* 1. Rectangle_t is defined within my_figure */
struct my_figure {

Rectangle_t rect;
} *mf = ...;
/*
* Freeing the Rectangle_t
* without freeing the mf->rect area.
*/

asn_DEF_Rectangle.free_struct(
&asn_DEF_Rectangle, &mf->rect, 1 /* !free */);

/* 2. Rectangle_t is a stand-alone pointer */
Rectangle_t *rect = ...;
/*
* Freeing the Rectangle_t
* and freeing the rect pointer.
*/

asn_DEF_Rectangle.free_struct(
&asn_DEF_Rectangle, rect, 0 /* free the pointer too */);

It is safe to invoke the free_struct function with the target structure pointer set to 0 (NULL),
the function will do nothing.

For the programmer’s convenience, the following macros are available:

ASN_STRUCT_FREE(asn_DEF, ptr);
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF, ptr);

Thesemacros bear the same semantics as the free_struct function invocation, discussed above.

17

http://lionet.info/asn1c

Chapter 3

Step by step examples

3.1 A “Rectangle” Encoder

This example will help you create a simple BER and XER encoder of a “Rectangle” type used
throughout this document.

1. Create a file named rectangle.asn1 with the following contents:

RectangleModule1 DEFINITIONS ::= BEGIN

Rectangle ::= SEQUENCE {
height INTEGER,
width INTEGER

}

END

2. Compile it into the set of .c and .h files using asn1c compiler [ASN1C]:

asn1c rectangle.asn1

3. Alternatively, use the Online ASN.1 compiler [AONL] by uploading the rectangle.asn1
file into the Web form and unpacking the produced archive on your computer.

4. By this time, you should have gotten multiple files in the current directory, including
the Rectangle.c and Rectangle.h.

5. Create a main() routine which creates the Rectangle_t structure in memory and encodes
it using BER and XER encoding rules. Let’s name the file main.c:

18

CHAPTER 3. STEP BY STEP EXAMPLES asn1c-0.9.25

#include <stdio.h>
#include <sys/types.h>
#include <Rectangle.h> /* Rectangle ASN.1 type */

/* Write the encoded output into some FILE stream. */
static int write_out(const void *buffer, size_t size, void *app_key) {

FILE *out_fp = app_key;
size_t wrote = fwrite(buffer, 1, size, out_fp);
return (wrote == size) ? 0 : -1;

}

int main(int ac, char **av) {
Rectangle_t *rectangle; /* Type to encode */
asn_enc_rval_t ec; /* Encoder return value */

/* Allocate the Rectangle_t */
rectangle = calloc(1, sizeof(Rectangle_t)); /* not malloc! */
if(!rectangle) {

perror(”calloc() failed”);
exit(1);

}

/* Initialize the Rectangle members */
rectangle->height = 42; /* any random value */
rectangle->width = 23; /* any random value */

/* BER encode the data if filename is given */
if(ac < 2) {

fprintf(stderr, ”Specify filename for BER output\n”);
} else {

const char *filename = av[1];
FILE *fp = fopen(filename, ”wb”); /* for BER output */

if(!fp) {
perror(filename);
exit(1);

}

/* Encode the Rectangle type as BER (DER) */
ec = der_encode(&asn_DEF_Rectangle, rectangle, write_out, fp);
fclose(fp);
if(ec.encoded == -1) {

fprintf(stderr, ”Could not encode Rectangle (at %s)\n”,
ec.failed_type ? ec.failed_type->name : ”unknown”);

exit(1);
} else {
fprintf(stderr, ”Created %s with BER encoded Rectangle\n”, filename);

}
}

/* Also print the constructed Rectangle XER encoded (XML) */
xer_fprint(stdout, &asn_DEF_Rectangle, rectangle);

return 0; /* Encoding finished successfully */
}

19

http://lionet.info/asn1c

CHAPTER 3. STEP BY STEP EXAMPLES asn1c-0.9.25

6. Compile all files together using C compiler (varies by platform):

cc -I. -o rencode *.c

7. Voila! You have just created the BER and XER encoder of a Rectangle type, named
rencode!

3.2 A “Rectangle” Decoder

This example will help you to create a simple BER decoder of a simple “Rectangle” type used
throughout this document.

1. Create a file named rectangle.asn1 with the following contents:

RectangleModule1 DEFINITIONS ::= BEGIN

Rectangle ::= SEQUENCE {
height INTEGER,
width INTEGER

}

END

2. Compile it into the set of .c and .h files using asn1c compiler [ASN1C]:

asn1c rectangle.asn1

3. Alternatively, use the Online ASN.1 compiler [AONL] by uploading the rectangle.asn1
file into the Web form and unpacking the produced archive on your computer.

4. By this time, you should have gotten multiple files in the current directory, including
the Rectangle.c and Rectangle.h.

5. Create a main() routine which takes the binary input file, decodes it as it were a BER-
encoded Rectangle type, and prints out the text (XML) representation of the Rectangle
type. Let’s name the file main.c:
#include <stdio.h>
#include <sys/types.h>
#include <Rectangle.h> /* Rectangle ASN.1 type */

int main(int ac, char **av) {

20

http://lionet.info/asn1c

CHAPTER 3. STEP BY STEP EXAMPLES asn1c-0.9.25

char buf[1024]; /* Temporary buffer */
Rectangle_t *rectangle = 0; /* Type to decode. Note this 01! */
asn_dec_rval_t rval; /* Decoder return value */
FILE *fp; /* Input file handler */
size_t size; /* Number of bytes read */
char *filename; /* Input file name */

/* Require a single filename argument */
if(ac != 2) {

fprintf(stderr, ”Usage: %s <file.ber>\n”, av[0]);
exit(1);

} else {
filename = av[1];

}

/* Open input file as read-only binary */
fp = fopen(filename, ”rb”);
if(!fp) {

perror(filename);
exit(1);

}

/* Read up to the buffer size */
size = fread(buf, 1, sizeof(buf), fp);
fclose(fp);
if(!size) {

fprintf(stderr, ”%s: Empty or broken\n”, filename);
exit(1);

}

/* Decode the input buffer as Rectangle type */
rval = ber_decode(0, &asn_DEF_Rectangle, (void **)&rectangle, buf, size);
if(rval.code != RC_OK) {

fprintf(stderr, ”%s: Broken Rectangle encoding at byte %ld\n”, filename,
(long)rval.consumed);

exit(1);
}

/* Print the decoded Rectangle type as XML */
xer_fprint(stdout, &asn_DEF_Rectangle, rectangle);

return 0; /* Decoding finished successfully */

6. Compile all files together using C compiler (varies by platform):

cc -I. -o rdecode *.c

7. Voila! You have just created the BER decoder of a Rectangle type, named rdecode!

1Forgetting to properly initialize the pointer to a destination structure is a major source of support requests.

21

http://lionet.info/asn1c

Chapter 4

Constraint validation examples

This chapter shows how to define ASN.1 constraints and use the generated validation code.

4.1 Adding constraints into “Rectangle” type

This example shows how to add basic constraints to the ASN.1 specification and how to invoke
the constraints validation code in your application.

1. Create a file named rectangle.asn1 with the following contents:

RectangleModuleWithConstraints DEFINITIONS ::= BEGIN

Rectangle ::= SEQUENCE {
height INTEGER (0..100), -- Value range constraint
width INTEGER (0..MAX) -- Makes width non-negative

}

END

2. Compile the file according to procedures shown in the previous chapter.

3. Modify the Rectangle type processing routine (you can start with the main() routine
shown in the Section 3.2 on page 20) by placing the following snippet of code before
encoding and/or after decoding the Rectangle type1:

1Placing the constraint checking code before encoding helps to make sure you know the data is correct and
within constraints before sharing the data with anyone else.

22

CHAPTER 4. CONSTRAINT VALIDATION EXAMPLES asn1c-0.9.25

int ret; /* Return value */
char errbuf[128]; /* Buffer for error message */
size_t errlen = sizeof(errbuf); /* Size of the buffer */

/* ... here may go Rectangle decoding code ... */

ret = asn_check_constraints(&asn_DEF_Rectangle, rectangle,
errbuf, &errlen);

/* assert(errlen < sizeof(errbuf)); // you may rely on that */
if(ret) {

fprintf(stderr, ”Constraint validation failed: %s\n”,
errbuf /* errbuf is properly nul-terminated */

);
/* exit(...); // Replace with appropriate action */

}

/* ... here may go Rectangle encoding code ... */

4. Compile the resulting C code as shown in the previous chapters.

5. Try to test the constraints checking code by assigning integer value 101 to the .height
member of the Rectangle structure, or a negative value to the .widthmember. In either
case, the program should print “Constraint validation failed” message, followed by a
short explanation why validation did not succeed.

6. Done.

Placing the constraint checking code after decoding, but before any further action depending on the decoded
data, helps to make sure the application got the valid contents before making use of it.

23

http://lionet.info/asn1c

Part II

ASN.1 Basics

24

Chapter 5

Abstract Syntax Notation: ASN.1

This chapter defines some basic ASN.1 concepts and describes several most widely used types. It is
by no means an authoritative or complete reference. For more complete ASN.1 description, please
refer to Olivier Dubuisson’s book [Dub00] or the ASN.1 body of standards itself [ITU-T/ASN.1].

The Abstract Syntax Notation One is used to formally describe the semantics of data
transmitted across the network. Two communicating parties may have different formats of
their native data types (i. e. number of bits in the integer type), thus it is important to have
a way to describe the data in a manner which is independent from the particular machine’s
representation. The ASN.1 specifications are used to achieve the following:

• The specification expressed in the ASN.1 notation is a formal and precise way to com-
municate the data semantics to human readers;

• The ASN.1 specifications may be used as input for automatic compilers which produce
the code for some target language (C, C++, Java, etc) to encode and decode the data
according to some encoding rules (which are also defined by the ASN.1 standard).

Consider the following example:

Rectangle ::= SEQUENCE {
height INTEGER,
width INTEGER

}

This ASN.1 specification describes a constructed type, Rectangle, containing two integer fields.
This specification may tell the reader that there exists this kind of data structure and that
some entity may be prepared to send or receive it. The question on how that entity is going
to send or receive the encoded data is outside the scope of ASN.1. For example, this data

25

CHAPTER 5. ABSTRACT SYNTAX NOTATION: ASN.1 asn1c-0.9.25

structure may be encoded according to some encoding rules and sent to the destination
using the TCP protocol. The ASN.1 specifies several ways of encoding (or “serializing”, or
“marshaling”) the data: BER, PER, XER and others, including CER and DER derivatives from
BER.

The complete specification must be wrapped in a module, which looks like this:

RectangleModule1
{ iso org(3) dod(6) internet(1) private(4)
enterprise(1) spelio(9363) software(1)
asn1c(5) docs(2) rectangle(1) 1 }

DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

-- This is a comment which describes nothing.
Rectangle ::= SEQUENCE {

height INTEGER, -- Height of the rectangle
width INTEGER -- Width of the rectangle

}

END

The module header consists of module name (RectangleModule1), the module object identi-
fier ({...}), a keyword “DEFINITIONS”, a set of module flags (AUTOMATIC TAGS) and “::= BEGIN”.
The module ends with an “END” statement.

5.1 Some of the ASN.1 Basic Types

5.1.1 The BOOLEAN type

The BOOLEAN type models the simple binary TRUE/FALSE, YES/NO, ON/OFF or a similar kind
of two-way choice.

5.1.2 The INTEGER type

The INTEGER type is a signed natural number type without any restrictions on its size. If the
automatic checking on INTEGER value bounds are necessary, the subtype constraints must
be used.

26

http://lionet.info/asn1c

CHAPTER 5. ABSTRACT SYNTAX NOTATION: ASN.1 asn1c-0.9.25

SimpleInteger ::= INTEGER

-- An integer with a very limited range
SmallPositiveInt ::= INTEGER (0..127)

-- Integer, negative
NegativeInt ::= INTEGER (MIN..0)

5.1.3 The ENUMERATED type

The ENUMERATED type is semantically equivalent to the INTEGER type with some integer
values explicitly named.

FruitId ::= ENUMERATED { apple(1), orange(2) }

-- The numbers in braces are optional,
-- the enumeration can be performed
-- automatically by the compiler
ComputerOSType ::= ENUMERATED {

FreeBSD, -- acquires value 0
Windows, -- acquires value 1
Solaris(5), -- remains 5
Linux, -- becomes 6
MacOS -- becomes 7

}

5.1.4 The OCTET STRING type

This type models the sequence of 8-bit bytes. This may be used to transmit some opaque
data or data serialized by other types of encoders (i. e., video file, photo picture, etc).

5.1.5 The OBJECT IDENTIFIER type

The OBJECT IDENTIFIER is used to represent the unique identifier of any object, starting
from the very root of the registration tree. If your organization needs to uniquely identify
something (a router, a room, a person, a standard, or whatever), you are encouraged to get
your own identification subtree athttp://www.iana.org/protocols/forms.htm.

27

http://lionet.info/asn1c
http://www.iana.org/protocols/forms.htm

CHAPTER 5. ABSTRACT SYNTAX NOTATION: ASN.1 asn1c-0.9.25

For example, the very first ASN.1 module in this Chapter (RectangleModule1) has the
following OBJECT IDENTIFIER: 1 3 6 1 4 1 9363 1 5 2 1 1.

ExampleOID ::= OBJECT IDENTIFIER

rectangleModule1-oid ExampleOID
::= { 1 3 6 1 4 1 9363 1 5 2 1 1 }

-- An identifier of the Internet.
internet-id OBJECT IDENTIFIER

::= { iso(1) identified-organization(3)
dod(6) internet(1) }

As you see, names are optional.

5.1.6 The RELATIVE-OID type

The RELATIVE-OID type has the semantics of a subtree of an OBJECT IDENTIFIER. There may
be no need to repeat the whole sequence of numbers from the root of the registration tree
where the only thing of interest is some of the tree’s subsequence.

this-document RELATIVE-OID ::= { docs(2) usage(1) }

this-example RELATIVE-OID ::= {
this-document assorted-examples(0) this-example(1) }

5.2 Some of the ASN.1 String Types

5.2.1 The IA5String type

This is essentially the ASCII, with 128 character codes available (7 lower bits of an 8-bit byte).

5.2.2 The UTF8String type

This is the character string which encodes the full Unicode range (4 bytes) using multibyte
character sequences.

28

http://lionet.info/asn1c

CHAPTER 5. ABSTRACT SYNTAX NOTATION: ASN.1 asn1c-0.9.25

5.2.3 The NumericString type

This type represents the character string with the alphabet consisting of numbers (“0” to “9”)
and a space.

5.2.4 The PrintableString type

The character string with the following alphabet: space, “’” (single quote), “(”, “)”, “+”, “,”
(comma), “-”, “.”, “/”, digits (“0” to “9”), “:”, “=”, “?”, upper-case and lower-case letters (“A” to
“Z” and “a” to “z”).

5.2.5 The VisibleString type

The character string with the alphabet which is more or less a subset of ASCII between the
space and the “~” symbol (tilde).

Alternatively, the alphabet may be described as the PrintableString alphabet presented
earlier, plus the following characters: “!”, ““”, “#”, “$”, “%”, “&”, “*”, “;”, “<”, “>”, “[”, “\”, “]”, “^”, “_”,
“‘“ (single left quote), “{”, “|”, “}”, “~”.

5.3 ASN.1 Constructed Types

5.3.1 The SEQUENCE type

This is an ordered collection of other simple or constructed types. The SEQUENCE constructed
type resembles the C “struct” statement.

Address ::= SEQUENCE {
-- The apartment number may be omitted
apartmentNumber NumericString OPTIONAL,
streetName PrintableString,
cityName PrintableString,
stateName PrintableString,
-- This one may be omitted too
zipNo NumericString OPTIONAL

}

29

http://lionet.info/asn1c

CHAPTER 5. ABSTRACT SYNTAX NOTATION: ASN.1 asn1c-0.9.25

5.3.2 The SET type

This is a collection of other simple or constructed types. Ordering is not important. The data
may arrive in the order which is different from the order of specification. Data is encoded in
the order not necessarily corresponding to the order of specification.

5.3.3 The CHOICE type

This type is just a choice between the subtypes specified in it. The CHOICE type contains at
most one of the subtypes specified, and it is always implicitly known which choice is being
decoded or encoded. This one resembles the C “union” statement.

The following type defines a response code, which may be either an integer code or a
boolean “true”/“false” code.

ResponseCode ::= CHOICE {
intCode INTEGER,
boolCode BOOLEAN

}

5.3.4 The SEQUENCE OF type

This one is the list (array) of simple or constructed types:

-- Example 1
ManyIntegers ::= SEQUENCE OF INTEGER

-- Example 2
ManyRectangles ::= SEQUENCE OF Rectangle

-- More complex example:
-- an array of structures defined in place.
ManyCircles ::= SEQUENCE OF SEQUENCE {

radius INTEGER
}

30

http://lionet.info/asn1c

CHAPTER 5. ABSTRACT SYNTAX NOTATION: ASN.1 asn1c-0.9.25

5.3.5 The SET OF type

The SET OF type models the bag of structures. It resembles the SEQUENCE OF type, but the
order is not important: i. e. the elements may arrive in the order which is not necessarily the
same as the in-memory order on the remote machines.

-- A set of structures defined elsewhere
SetOfApples :: SET OF Apple

-- Set of integers encoding the kind of a fruit
FruitBag ::= SET OF ENUMERATED { apple, orange }

31

http://lionet.info/asn1c

Bibliography

[ASN1C] The Open Source ASN.1 Compiler. http://lionet.info/asn1c

[AONL] Online ASN.1 Compiler. http://lionet.info/asn1c/asn1c.cgi

[Dub00] Olivier Dubuisson — ASN.1 Communication between heterogeneous systems
— Morgan Kaufmann Publishers, 2000. http://asn1.elibel.tm.fr/
en/book/. ISBN:0-12-6333361-0.

[ITU-T/ASN.1] ITU-T Study Group 17 — Languages for Telecommunication Systems http:
//www.itu.int/ITU-T/studygroups/com17/languages/

32

http://lionet.info/asn1c
http://lionet.info/asn1c/asn1c.cgi
http://asn1.elibel.tm.fr/en/book/
http://asn1.elibel.tm.fr/en/book/
http://www.itu.int/ITU-T/studygroups/com17/languages/
http://www.itu.int/ITU-T/studygroups/com17/languages/

	I Using the ASN.1 Compiler
	Introduction to the ASN.1 Compiler
	Quick start with asn1c
	Recognizing compiler output
	Command line options

	Using the ASN.1 Compiler
	Invoking the helper code
	Decoding BER
	Encoding DER
	Encoding XER
	Decoding XER
	Validating the target structure
	Printing the target structure
	Freeing the target structure

	Step by step examples
	A ``Rectangle'' Encoder
	A ``Rectangle'' Decoder

	Constraint validation examples
	Adding constraints into ``Rectangle'' type

	II ASN.1 Basics
	Abstract Syntax Notation: ASN.1
	Some of the ASN.1 Basic Types
	The BOOLEAN type
	The INTEGER type
	The ENUMERATED type
	The OCTET STRING type
	The OBJECT IDENTIFIER type
	The RELATIVE-OID type

	Some of the ASN.1 String Types
	The IA5String type
	The UTF8String type
	The NumericString type
	The PrintableString type
	The VisibleString type

	ASN.1 Constructed Types
	The SEQUENCE type
	The SET type
	The CHOICE type
	The SEQUENCE OF type
	The SET OF type

