
1

MGMT-CORE Progress Report
What's there and what is not?

1. Versioning
a. v1.0 (26/11/12) by Baris Demiray <baris.demiray@eurecom.fr>

Initial version
b. v1.1 (27/11/12) by Baris Demiray <baris.demiray@eurecom.fr>

3.b. Version Information and 3.d. Physical View of the Development Environment sections added
4.a. Unit Tests and 4.b. Simulator sections added

c. v1.2 (27/11/12) by Baris Demiray <baris.demiray@eurecom.fr>
10.a. Intelligent code to select a proper communication profile section has been updated
according to code refactorization

d. v1.3 (04/12/12) by Baris Demiray <baris.demiray@eurecom.fr>
Directions for newly added Design/ directory added to 3.b. Design

e. v1.4 (10/12/12) by Baris Demiray <baris.demiray@eurecom.fr>
4.b. Simulator is updated with the changes in Simulator.

f. v1.5 (07/02/13) by Baris Demiray <baris.demiray@eurecom.fr>
4.b. Ubuntu version updated
8.a. LOCATION_UPDATE section updated
8.l. NETWORK_STATE section updated
9. FAC-MGMT Interface, and relevant sub-sections updated according to the changes in FAC-CM
10. Tasks section's sub-sections have been removed as they both are completed
3.e. Making a Release section added

2. Goal
Goal of making this document is to keep track of what has been done and what is missing in the
current SCOREF-MGMT (or MGMT-CORE) implementation. Every other document produced during
the making of SCOREF-MGMT will be referred herein.

3. Design & Development
a. General Information

C++ has been used as the programming language along with STL and Boost libraries. Eclipse is the
IDE and project files, coding style document (ready to be imported into Eclipse), path and library
information (ready to be imported into Eclipse) are all ready in the Software/ directory of
EURECOM SVN. Valgrind and Cppcheck have been utilized during the development and there are
no major memory leaks or coding errors that compilers would not catch.

2

Code documentation can be extracted using Doxygen (a .doxygen file is ready in the root directory
of the project) yet further design documentation (especially class diagrams and sequence
diagrams) will be produced.

b. Version Information
Current version information of the libraries and the software I have been using is as follows.

Software/Library Version Notes
Boost 1.48.0 Standard Ubuntu package
Doxygen 1.7.6.1 Standard Ubuntu package
Eclipse Indigo Service Release 2 http://www.eclipse.org/
g++ 4.6.3 Standard Ubuntu package
libstdc++ 4.6 Standard Ubuntu package
Python 2.7.3 Standard Ubuntu package
Ubuntu Precise 12.04.2 LTS
Umbrello 2.6.5 Standard Fedora package

c. Design

Design documents that are listed below are produced using UMBRELLO (http://uml.sf.net/).

Design Artifact Type Notes
Main Flow Sequence Diagram Big picture of MGMT-CORE's main flow
Configuration Sequence Diagram Configuration handling flow
Client Handling Sequence Diagram Client and socket communication handling

flow including packet processing

d. Physical View of the Development Environment

Herein this section you will find how the software resides in the development environment and
what is where.

i. EURECOM SVN Server

Following paths given in the table are relative to the root directory of the project,
openair4G/trunk/openair3/SCOREF-MGMT/

Directory Component Notes
Binary/ Releases Those versions released in

the INRIA SVN are kept here
Documentation/ Presentations and

manuals
All the presentations are
kept here along with .odt
versions

Software/ Root directory of the
project

This is also the root
directory to do "Makefile
project with existing code"

3

in Eclipse
Software/bin/ Makefile produced

binaries
Makefile puts binaries here

Software/bin/configuration/ FACilities configuration
files

Software/doc/ Documentation Doxygen will produce the
source code documentation
here

Software/doc/design/ Design Currently empty, will have
class and sequence diagrams

Software/src/ Root directory of the
code

All the code is in here

Software/src/interface/ Interfaces C++ interface classes
Software/src/packets/ GN and FAC packets Classes where packets are

handled
Software/src/util/ Utility methods
Software/test/ Root directory of the

test code
All the unit tests, simulator,
etc. are here

Software/test/data/ Test data for unit tests Do not edit this directory or
unit tests will fail

Software/test/data/confFiles/ Test data for unit tests
Software/test/simulation/ Root directory of the

simulator
All the Python code resides
here, see 4.b. Simulator

Software/test/simulation/scenarios/ Simulator scenarios
Software/test/unittest Unit test code See 4.a. Unit Tests

ii. INRIA SVN Server

Following paths given in the table are relative to the root directory of the project,

scoref/Software/SoftwareComponents/MGMT/CORE/

Directory Component Notes
Binary/ Releases Versions released so far
Documentation/ Presentations and

manuals
All the presentations are
kept here only as .pdf

e. Making a Release

In order to make a release archive easier a Bash script added for this purpose. It can be used as
follows:

First, make sure that there are no build errors and the source code is ready to be built.

Run the script file make-release.sh should be run with the version of the release,

4

demiray@sud:~/workspace/SCOREF-MGMT/Software$./make-release.sh v1.9.1
Building the version v1.9.1
Preparing the release...
Copying binary...
Copying configuration files...
Copying documentation...
Preparing the compressed archive...
Removing temporary directory...
Release is ready

Now the compressed release archive is ready in the same directory.

demiray@sud:~/workspace/SCOREF-MGMT/Software$ ls -l SCOREF-MGMT-v1.9.1.tar.bz2
-rw-r--r-- 1 demiray umts 706463 Feb 7 15:58 SCOREF-MGMT-v1.9.1.tar.bz2

And there are following files in this archive:

demiray@sud:~/workspace/SCOREF-MGMT/Software$ tar jtf SCOREF-MGMT-v1.9.1.tar.bz2
SCOREF-MGMT-v1.9.1/
SCOREF-MGMT-v1.9.1/MGMT.conf
SCOREF-MGMT-v1.9.1/SCOREF-MGMT
SCOREF-MGMT-v1.9.1/configuration/
SCOREF-MGMT-v1.9.1/configuration/MGMT.IHM.conf
SCOREF-MGMT-v1.9.1/README.RUNNING
SCOREF-MGMT-v1.9.1/README

This .tar.bz2 file is now ready be sent to partners or to be put on SVN. Please be informed that the
binary SCOREF-MGMT file is stripped and compiled as a release binary, i.e. without debug symbols
and information so do not use this binary for debug purposes as it won't help to trace anything.

4. Testing
a. Unit Tests

Unit test code resides in Software/test/unittest/ and Google C++ Testing Framework has been
used to develop this code. Please see the README file in this directory to see how the code is
compiled and run.

b. Simulator
Simulator is a Python code that can process commands given in a scenario file. Please see the
README file in test/simulation/ directory for the details about the commands. Currently following
packets can be sent,

COMMUNICATION_PROFILE_REQUEST
NETWORK_STATE
CONFIGURATION_NOTIFICATION
GET_CONFIGURATION
LOCATION_UPDATE

And following clients can be simulated,

GN

5

FAC

5. Configuration Management
Configuration handling of SCOREF-MGMT is ready and working. Main configuration file (by default)
named MGMT.conf is read upon start and all the parameters parsed are printed. GN configuration
parameters are all integer, FAC-MGMT configuration parameters can have three data types: string,
integer, and float.

There is also a directory called named configuration/ and there is FACilities configuration files inside.
SCOREF-MGMT parses every configuration file it finds there and prints. See SCOREF-
MGMT_Configuration.pdf for further details.

6. Socket Interface
Socket code is quite clear now. Boost's Asynchronous UDP socket has been utilized and everything
about it is in ManagementServer class. All the packet exchange and repetitive sending (as in Wireless
State Request packet) is handled in this class.

7. Threading
There are two threads, one main thread and one InquiryThread (as in MGMT-CORE's terminology)
object. Main thread handles all the communication with all the clients and InquiryThread object
handles transmission of repetitive packets, replies go to the main thread (whom spends almost all of
its time in ManagementServer class) and handled there.

8. GN Interface
All the information sent and received by MGMT-CORE is written in hexadecimal notation.

a. LOCATION_UPDATE

This packet is implemented and is being used. Information passed using this packet follows a
packet as follows,

POTI -> FAC-MGMT -> CORE-MGMT -> CM-GN

When it passes through MGMT, MGMT will process it and update MIB accordingly.

b. LOCATION_TABLE_REQUEST
This packet is implemented and is in use. A LOCATION_TABLE_REQUEST packet is sent upon GN's
connection to MGMT-CORE with the address 0xFFFFFFFFFFFFFFFF (in order to request all the
location table entries).

c. LOCATION_TABLE_RESPONSE
This packet is implemented and is in use. Upon transmission of a LOCATION_TABLE_REQUEST to
GN, GN replies back with a LOCATION_TABLE_RESPONSE and MGMT-CORE parses and updates

6

MIB with extracted information. Currently only the EGO vehicle is returned by GN so Location
Table has 1 entry after processing this message. All the information during and after the
processing of this message and the location table can be found in the log records.

d. CONFIGURATION_UPDATE_AVAILABLE
This packet is implemented and is in use. Upon receipt of a CONFIGURATION_NOTIFICATION from
FAC-MGMT, MGMT-CORE will notify GN with this packet. Even though FAC-MGMT is not ready yet
a simulator has been used to test MGMT-CORE and following 5-step scenario seems working,

Event number Event direction Event Packet
1 FAC-MGMT -> MGMT-CORE CONFIGURATION_NOTIFICATION
2 MGMT-CORE Updating MIB
3 MGMT-CORE -> GN CONFIGURATION_UPDATE_AVAILABLE
4 GN -> MGMT-CORE CONFIGURATION_REQUEST
5 MGMT-CORE -> GN CONFIGURATION_RESPONSE

Key count field (see CM-GN to MGMT Interface Description file) is always filled with the total
number of ITS keys.

e. CONFIGURATION_REQUEST
This packet is implemented and is in use. Upon receipt of this packet MGMT-CORE prepares a
CONFIGURATION_RESPONSE_BULK message (it's the only type that is asked by GN) and sends it to
GN. This is the first packet MGMT-CORE receives from GN.

f. CONFIGURATION_RESPONSE_CONTINUOUS
This packet is implemented but has never tested. GN doesn't ask for this but rather request a
single message containing all the configuration items (CONFIGURATION_RESPONSE_BULK, see
next title) so this is of no use now.

g. CONFIGURATION_RESPONSE_BULK
This packet is implemented and is in use. Upon receipt of a CONFIGURATION_REQUEST, MGMT-
CORE prepares this packet and sends it to the sender. This packet carries GN, FAC, or all the
configuration items according to the Conf ID parameter (see CM-GN to MGMT Interface
Description file) of the CONFIGURATION_REQUEST packet.

h. COMMUNICATION_PROFILE_REQUEST
This packet is implemented and is in use, and interpretation of filters has been discussed and
agreed upon with Andrea (HITACHI).

Communication profiles are placed towards the end of the configuration file MGMT.conf and
MGMT-CORE parses them upon start. Upon receipt of this packet MGMT-CORE will prepare a
COMMUNICATION_PROFILE_RESPONSE having the communication profiles matching the filter

7

given in this packet (namely a copy of the communication profile table or a subset of it) and send
it to the sender.

i. COMMUNICATION_PROFILE_RESPONSE
This packet is implemented and is in use. Upon receipt of a COMMUNICATION_PROFILE_REQ,
MGMT-CORE will prepare this packet carrying all those communication profiles matching the filter
given in the corresponding COMMUNICATION_PROFILE_REQUEST and send it to the sender.

j. WIRELESS_STATE_REQUEST
This packet is implemented and is in use. Yet there is no answer from GN thus far and
furthermore in the logs of GN this is marked as an "invalid event type/subtype". So this packet
should be regarded as not tested.

Upon start MGMT-CORE extracts the interval from the configuration file of how frequent it should
send a WIRELES_STATE_REQUEST to GN and starts to send this packet upon connection of a GN
and in every CONF_WIRELESS_STATE_UPDATE_INTERVAL (see MGMT.conf) seconds.

k. WIRELESS_STATE_RESPONSE
This packet is implemented but since WIRELESS_STATE_REQUEST is not implemented on GN side
(see 5.j. WIRELESS_STATE_REQUEST) MGMT-CORE has never received this packet so this packet
should be regarded as not tested.

l. NETWORK_STATE
This packet is implemented and is in use. It's is sent by GN to MGMT on a regular basis and MGMT
updates MIB accordingly.

9. FAC-MGMT Interface
All the information sent and received by MGMT-CORE is written in hexadecimal notation.

a. CONFIGURATION_UPDATE_AVAILABLE

This packet is implemented but is not yet in use since FAC-MGMT is not ready (as of 24/01/2013).
It has been tested using the simulator and it seems okay (see 5.d.
CONFIGURATION_UPDATE_AVAILABLE).

b. CONFIGURATION_REQUEST
This packet is implemented and is in use. Upon receipt of this packet MGMT-CORE prepares a
CONFIGURATION_RESPONSE_BULK message (it's the only type that is asked by FAC-CM) and
sends it to GN. This is the first packet MGMT-CORE receives from FAC-CM.

c. CONFIGURATION_RESPONSE_CONTINUOUS

8

This packet is implemented but has never tested. FAC-CM doesn't ask for this but rather request a
single message containing all the configuration items (CONFIGURATION_RESPONSE_BULK, see
next title) so this is of no use now.

d. CONFIGURATION_RESPONSE_BULK
This packet is implemented and is in use. Upon receipt of a CONFIGURATION_REQUEST, MGMT-
CORE prepares this packet and sends it to the sender. This packet carries GN, FAC, or all the
configuration items according to the Conf ID parameter (see CM-GN to MGMT Interface
Description file) of the CONFIGURATION_REQUEST packet.

e. CONFIGURATION_NOTIFICATION
This packet is implemented but is not yet in use since FAC-MGMT is not ready (as of 24/01/2013).
It has been tested using the simulator and worked for all ITS keys and data types (string, and
integer) tested thus far.

See 8.d. CONFIGURATION_UPDATE_AVAILABLE for further details.

f. COMMUNICATION_PROFILE_REQUEST
This packet is implemented and is in use, and interpretation of filters has been discussed and
agreed upon with Andrea (HITACHI).

Communication profiles are placed towards the end of the configuration file MGMT.conf and
MGMT-CORE parses them upon start. Upon receipt of this packet MGMT-CORE will prepare a
COMMUNICATION_PROFILE_RESPONSE having the communication profiles matching the filter
given in this packet (namely a copy of the communication profile table or a subset of it) and send
it to the sender.

g. COMMUNICATION_PROFILE_RESPONSE
This packet is implemented and is in use. Upon receipt of a COMMUNICATION_PROFILE_REQ,
MGMT-CORE will prepare this packet carrying all those communication profiles matching the filter
given in the corresponding COMMUNICATION_PROFILE_REQUEST and send it to the sender.

h. COMMUNICATION_PROFILE_SELECTION_REQUEST
This packet is implemented and is in use. When FAC-CM is asked to provide a communication
profile selected based on the given requirements FAC-CM asks MGMT-CORE by sending this
packet along with the given parameters and MGMT-CORE prepares a
COMMUNICATION_PROFILE_SELECTION_RESPONSE packet in return.

i. COMMUNICATION_PROFILE_SELECTION_RESPONSE
This packet is implemented and is in use. This packet is generated as a response to a
COMMUNICATION_PROFILE_SELECTION_REQUEST sent by FAC-CM and it carries a

9

communication profile ID selected based on the requirements given in corresponding
COMMUNICATION_PROFILE_SELECTION_REQUEST.

10. Tasks
a. Intelligent code to select a proper communication profile (COMPLETED)

There is a stub (or empty) method named,

CommunicationProfileManager::selectProfile()

and the intelligent code should go into this method. It takes three parameters; namely latency,
relevance, and reliability and returns the Communication Profile ID of type
CommunicationProfileID. See mgmt_comm_prof_manager.{cpp|hpp} files for further details.

b. Design documents has to be produced (COMPLETED)
Especially class and sequence diagrams are important (although class diagrams can be extracted
using Doxygen right now).

11. References
All the following files are placed in SCORE@F SVN.

a. Software/SoftwareComponents/MGMT/CORE/Documentation/SCOREF-

MGMT_Configuration.pdf
b. Software/SoftwareComponents/MGMT/CORE/Documentation/CM-GN Interface Description.pdf
c. Software/SoftwareComponents/MGMT/CORE/Documentation/FAC-CM Interface Description.pdf

