defs.h 11.2 KB
Newer Older
ghaddab's avatar
ghaddab committed
1
/*******************************************************************************
2
    OpenAirInterface
ghaddab's avatar
ghaddab committed
3 4 5 6 7 8 9 10 11 12 13 14 15 16
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
17 18
    along with OpenAirInterface.The full GNU General Public License is
   included in this distribution in the file called "COPYING". If not,
ghaddab's avatar
ghaddab committed
19 20 21 22 23
   see <http://www.gnu.org/licenses/>.

  Contact Information
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
24
  OpenAirInterface Dev  : openair4g-devel@lists.eurecom.fr
25

ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
ghaddab's avatar
ghaddab committed
27 28

 *******************************************************************************/
29 30 31 32 33 34 35 36
#ifndef __LTE_ESTIMATION_DEFS__H__
#define __LTE_ESTIMATION_DEFS__H__

#include "PHY/defs.h"
/*
#ifdef EMOS
#include "SCHED/phy_procedures_emos.h"
#endif
37
 */
38 39

/** @addtogroup _PHY_PARAMETER_ESTIMATION_BLOCKS_
40 41
 * @{
 */
42 43 44 45

/*!\brief Timing drift hysterisis in samples*/
#define SYNCH_HYST 1

46 47 48 49 50
/*!
\brief This function is used for time-frequency scanning prior to complete cell search.  It scans
over the entire LTE band for maximum correlation and keeps the 10 best scores and the correspoding frequency offset (5 kHz granularity) for each of the 3 PSS sequences.
\param ue Pointer to UE variables
\param band index of lte band
51
\param DL_freq Central RF Frequency in Hz
52
*/
53 54 55
/*!
\brief This function allocates memory needed for the synchronization.
\param frame_parms LTE DL frame parameter structure
56

57
 */
58 59 60 61 62

int lte_sync_time_init(LTE_DL_FRAME_PARMS *frame_parms); //LTE_UE_COMMON *common_vars

/*! \fn void lte_sync_time_free()
\brief This function frees the memory allocated by lte_sync_time_init.
63
 */
64 65
void lte_sync_time_free(void);

66
/*!
67
\brief This function performs the coarse timing synchronization.
68
The algorithm uses a time domain correlation with a downsampled version of the received signal.
69 70 71 72
\param rxdata Received time domain data for all rx antennas
\param frame_parms LTE DL frame parameter structure
\param eNB_id return value with the eNb_id
\return sync_pos Position of the sync within the frame (downsampled) if successfull and -1 if there was an error or no peak was detected.
73
 */
74 75 76
int lte_sync_time(int **rxdata,
                  LTE_DL_FRAME_PARMS *frame_parms,
                  int *eNB_id);
77

78
/*!
79 80 81 82 83 84 85 86 87
\brief This function performs the coarse frequency and PSS synchronization.
The algorithm uses a frequency-domain correlation.  It scans over 20 MHz/10ms signal chunks using each of the 3 PSS finding the most likely (strongest) carriers and their frequency offset (+-2.5 kHz).
\param ue Pointer to UE data structure
\param band index of band in scan_info structure, used to store statistics
\param DL_freq center frequency of band being scanned, used when storing statistics
*/
void lte_sync_timefreq(PHY_VARS_UE *ue,int band,unsigned int DL_freq);


88
/*!
89
\brief This function performs detection of the PRACH (=SRS) at the eNb to estimate the timing advance
90
The algorithm uses a time domain correlation with a downsampled version of the received signal.
91 92 93
\param rxdata Received time domain data for all rx antennas
\param frame_parms LTE DL frame parameter structure
\param length Length for correlation
94
\param peak_val pointer to value of returned peak
95 96
\param sync_corr_eNb pointer to correlation buffer
\return sync_pos Position of the sync within the frame (downsampled) if successfull and -1 if there was an error or no peak was detected.
97 98
 */
int lte_sync_time_eNB(int32_t **rxdata,
99 100 101 102
                      LTE_DL_FRAME_PARMS *frame_parms,
                      uint32_t length,
                      uint32_t *peak_val,
                      uint32_t *sync_corr_eNb);
103 104

int lte_sync_time_eNB_emul(PHY_VARS_eNB *phy_vars_eNb,
105 106
                           uint8_t sect_id,
                           int32_t *sync_val);
107 108 109 110 111 112 113

/*!
\brief This function performs channel estimation including frequency and temporal interpolation
\param phy_vars_ue Pointer to UE PHY variables
\param eNB_id Index of target eNB
\param eNB_offset Offset for interfering eNB (in terms cell ID mod 3)
\param Ns slot number (0..19)
114
\param p antenna port
115 116 117 118
\param l symbol within slot
\param symbol symbol within frame
*/
int lte_dl_channel_estimation(PHY_VARS_UE *phy_vars_ue,
119 120 121 122 123 124
                              module_id_t eNB_id,
                              uint8_t eNB_offset,
                              uint8_t Ns,
                              uint8_t p,
                              uint8_t l,
                              uint8_t symbol);
125 126 127


int lte_dl_msbfn_channel_estimation(PHY_VARS_UE *phy_vars_ue,
128 129 130 131 132
                                    module_id_t eNB_id,
                                    uint8_t eNB_offset,
                                    int subframe,
                                    unsigned char l,
                                    unsigned char symbol);
133

134
int lte_dl_mbsfn_channel_estimation(PHY_VARS_UE *phy_vars_ue,
135 136 137 138
                                    module_id_t eNB_id,
                                    uint8_t eNB_offset,
                                    int subframe,
                                    unsigned char l);
139 140 141 142

/*
#ifdef EMOS
int lte_dl_channel_estimation_emos(int dl_ch_estimates_emos[NB_ANTENNAS_RX*NB_ANTENNAS_TX][N_RB_DL_EMOS*N_PILOTS_PER_RB*N_SLOTS_EMOS],
143 144 145 146 147 148
           int **rxdataF,
           LTE_DL_FRAME_PARMS *frame_parms,
           unsigned char Ns,
           unsigned char p,
           unsigned char l,
           unsigned char sector);
149
#endif
150
 */
151 152 153 154 155 156 157 158

/*!
\brief Frequency offset estimation for LTE
We estimate the frequency offset by calculating the phase difference between channel estimates for symbols carrying pilots (l==0 or l==3/4). We take a moving average of the phase difference.
\param dl_ch_estimates pointer to structure that holds channel estimates (one slot)
\param frame_parms pointer to LTE frame parameters
\param l symbol within slot
\param freq_offset pointer to the returned frequency offset
159
\param reset When non-zer it resets the filter to the initial value (set whenever tuning has been changed or for a one-shot estimate)
160
 */
161
int lte_est_freq_offset(int **dl_ch_estimates,
162 163
                        LTE_DL_FRAME_PARMS *frame_parms,
                        int l,
164 165
                        int* freq_offset,
			int reset);
166 167

int lte_mbsfn_est_freq_offset(int **dl_ch_estimates,
168 169 170
                              LTE_DL_FRAME_PARMS *frame_parms,
                              int l,
                              int* freq_offset);
171 172 173 174 175

/*! \brief Tracking of timing for LTE
This function computes the time domain channel response, finds the peak and adjusts the timing in pci_interface.offset accordingly.
\param frame_parms LTE DL frame parameter structure
\param phy_vars_ue Pointer to UE PHY data structure
176
\param eNb_id
177 178
\param clear If clear==1 moving average filter is reset
\param coef Coefficient of the moving average filter (Q1.15)
179
 */
180 181

void lte_adjust_synch(LTE_DL_FRAME_PARMS *frame_parms,
182 183 184 185
                      PHY_VARS_UE *phy_vars_ue,
                      module_id_t eNb_id,
                      unsigned char clear,
                      short coef);
186 187 188

//! \brief this function fills the PHY_VARS_UE->PHY_measurement structure
void lte_ue_measurements(PHY_VARS_UE *phy_vars_ue,
189 190 191
                         unsigned int subframe_offset,
                         unsigned char N0_symbol,
                         unsigned char abstraction_flag);
192 193 194

//! \brief This function performance RSRP/RSCP measurements
void ue_rrc_measurements(PHY_VARS_UE *phy_vars_ue,
195 196
                         uint8_t slot,
                         uint8_t abstraction_flag);
197 198

void lte_ue_measurements_emul(PHY_VARS_UE *phy_vars_ue,uint8_t last_slot,uint8_t eNB_id);
199 200 201 202 203

/*! \brief Function to return the path-loss based on the UE cell-specific reference signal strength and transmission power of eNB
@param Mod_id Module ID for UE
@param eNB_index Index of eNB on which to act
@returns Path loss in dB
204
 */
205
int16_t get_PL(module_id_t Mod_id,uint8_t CC_id,uint8_t eNB_index);
206 207
uint32_t get_RSRP(module_id_t Mod_id,uint8_t CC_id,uint8_t eNB_index);
uint32_t get_RSRQ(module_id_t Mod_id,uint8_t CC_id,uint8_t eNB_index);
208
uint8_t get_n_adj_cells(module_id_t Mod_id,uint8_t CC_id);
209 210
uint32_t get_rx_total_gain_dB(module_id_t Mod_id,uint8_t CC_id);
uint32_t get_RSSI(module_id_t Mod_id,uint8_t CC_id);
211 212
int8_t set_RSRP_filtered(module_id_t Mod_id,uint8_t CC_id,uint8_t eNB_index,float rsrp);
int8_t set_RSRQ_filtered(module_id_t Mod_id,uint8_t CC_id,uint8_t eNB_index,float rstq);
213 214 215

//! Automatic gain control
void phy_adjust_gain (PHY_VARS_UE *phy_vars_ue,
216
		      uint32_t rx_power_fil_dB,
217
                      unsigned char eNB_id);
218 219

int lte_ul_channel_estimation(PHY_VARS_eNB *phy_vars_eNB,
220 221 222 223 224 225
                              module_id_t eNB_id,
                              module_id_t UE_id,
                              uint8_t subframe,
                              uint8_t l,
                              uint8_t Ns,
                              uint8_t cooperation_flag);
226

227
int16_t lte_ul_freq_offset_estimation(LTE_DL_FRAME_PARMS *frame_parms,
228 229
                                      int32_t *ul_ch_estimates,
                                      uint16_t nb_rb);
230 231

int lte_srs_channel_estimation(LTE_DL_FRAME_PARMS *frame_parms,
232 233 234 235 236
                               LTE_eNB_COMMON *eNb_common_vars,
                               LTE_eNB_SRS *eNb_srs_vars,
                               SOUNDINGRS_UL_CONFIG_DEDICATED *soundingrs_ul_config_dedicated,
                               unsigned char sub_frame_number,
                               unsigned char eNb_id);
237 238

int lte_est_timing_advance(LTE_DL_FRAME_PARMS *frame_parms,
239 240 241 242 243
                           LTE_eNB_SRS *lte_eNb_srs,
                           unsigned int *eNb_id,
                           unsigned char clear,
                           unsigned char number_of_cards,
                           short coef);
244

245
int lte_est_timing_advance_pusch(PHY_VARS_eNB* phy_vars_eNB,module_id_t UE_id,uint8_t subframe);
246

247 248
void lte_eNB_I0_measurements(PHY_VARS_eNB *phy_vars_eNB,
			     int subframe,
249 250
                             module_id_t eNB_id,
                             unsigned char clear);
251

252
void lte_eNB_I0_measurements_emul(PHY_VARS_eNB *phy_vars_eNB,
253
                                  uint8_t sect_id);
254 255


256
void lte_eNB_srs_measurements(PHY_VARS_eNB *phy_vars_eNBy,
257 258 259
                              module_id_t eNB_id,
                              module_id_t UE_id,
                              unsigned char init_averaging);
260 261 262


void freq_equalization(LTE_DL_FRAME_PARMS *frame_parms,
263 264 265 266 267 268
                       int **rxdataF_comp,
                       int **ul_ch_mag,
                       int **ul_ch_mag_b,
                       unsigned char symbol,
                       unsigned short Msc_RS,
                       unsigned char Qm);
269 270


271
/** @} */
272
#endif