lte-ue.c 63.1 KB
Newer Older
1
/*******************************************************************************
2
    OpenAirInterface
3 4 5 6 7 8 9 10 11 12 13 14 15 16
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
17 18
    along with OpenAirInterface.The full GNU General Public License is
    included in this distribution in the file called "COPYING". If not,
19 20 21 22 23
    see <http://www.gnu.org/licenses/>.

   Contact Information
   OpenAirInterface Admin: openair_admin@eurecom.fr
   OpenAirInterface Tech : openair_tech@eurecom.fr
24
   OpenAirInterface Dev  : openair4g-devel@lists.eurecom.fr
25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
   Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE

*******************************************************************************/

/*! \file lte-ue.c
 * \brief threads and support functions for real-time LTE UE target
 * \author R. Knopp, F. Kaltenberger, Navid Nikaein
 * \date 2015
 * \version 0.1
 * \company Eurecom
 * \email: knopp@eurecom.fr,florian.kaltenberger@eurecom.fr, navid.nikaein@eurecom.fr
 * \note
 * \warning
 */
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sched.h>
#include <linux/sched.h>
#include <signal.h>
#include <execinfo.h>
#include <getopt.h>
#include <syscall.h>

#include "rt_wrapper.h"
#include "assertions.h"
#include "PHY/types.h"

#include "PHY/defs.h"
knopp's avatar
 
knopp committed
62
#ifdef OPENAIR2
63 64
#include "LAYER2/MAC/defs.h"
#include "RRC/LITE/extern.h"
knopp's avatar
 
knopp committed
65
#endif
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
#include "PHY_INTERFACE/extern.h"

#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all
//#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all

#ifdef EXMIMO
#include "openair0_lib.h"
#else
#include "../../ARCH/COMMON/common_lib.h"
#endif

#include "PHY/extern.h"
#include "MAC_INTERFACE/extern.h"
//#include "SCHED/defs.h"
#include "SCHED/extern.h"
knopp's avatar
 
knopp committed
81
#ifdef OPENAIR2
82 83
#include "LAYER2/MAC/extern.h"
#include "LAYER2/MAC/proto.h"
knopp's avatar
 
knopp committed
84
#endif
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

#include "UTIL/LOG/log_extern.h"
#include "UTIL/OTG/otg_tx.h"
#include "UTIL/OTG/otg_externs.h"
#include "UTIL/MATH/oml.h"
#include "UTIL/LOG/vcd_signal_dumper.h"
#include "UTIL/OPT/opt.h"

#define FRAME_PERIOD    100000000ULL
#define DAQ_PERIOD      66667ULL

typedef enum {
  pss=0,
  pbch=1,
  si=2
} sync_mode_t;

int init_dlsch_threads(void);
void cleanup_dlsch_threads(void);
int32_t init_rx_pdsch_thread(void);
void cleanup_rx_pdsch_thread(void);

extern pthread_cond_t sync_cond;
extern pthread_mutex_t sync_mutex;
extern int sync_var;

extern openair0_config_t openair0_cfg[MAX_CARDS];
extern uint32_t          downlink_frequency[MAX_NUM_CCs][4];
113
extern int32_t           uplink_frequency_offset[MAX_NUM_CCs][4];
114 115 116 117 118 119 120 121
extern openair0_rf_map rf_map[MAX_NUM_CCs];

extern openair0_device openair0;
extern int oai_exit;

extern int32_t **rxdata;
extern int32_t **txdata;

122 123
//extern unsigned int tx_forward_nsamps;
//extern int tx_delay;
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

extern int rx_input_level_dBm;
extern uint8_t exit_missed_slots;
extern uint64_t num_missed_slots; // counter for the number of missed slots

extern void exit_fun(const char* s);

#ifdef EXMIMO

extern unsigned int             rxg_max[4];
extern unsigned int             rxg_med[4];
extern unsigned int             rxg_byp[4];
extern unsigned int             nf_max[4];
extern unsigned int             nf_med[4];
extern unsigned int             nf_byp[4];
extern rx_gain_t                rx_gain_mode[MAX_NUM_CCs][4];

extern double tx_gain[MAX_NUM_CCs][4];
extern double rx_gain[MAX_NUM_CCs][4];
#endif
#define KHz (1000UL)
#define MHz (1000 * KHz)

typedef struct eutra_band_s {
  int16_t band;
  uint32_t ul_min;
  uint32_t ul_max;
  uint32_t dl_min;
  uint32_t dl_max;
  lte_frame_type_t frame_type;
} eutra_band_t;

typedef struct band_info_s {
  int nbands;
  eutra_band_t band_info[100];
} band_info_t;

band_info_t bands_to_scan;

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
static const eutra_band_t eutra_bands[] = {
  { 1, 1920    * MHz, 1980    * MHz, 2110    * MHz, 2170    * MHz, FDD},
  { 2, 1850    * MHz, 1910    * MHz, 1930    * MHz, 1990    * MHz, FDD},
  { 3, 1710    * MHz, 1785    * MHz, 1805    * MHz, 1880    * MHz, FDD},
  { 4, 1710    * MHz, 1755    * MHz, 2110    * MHz, 2155    * MHz, FDD},
  { 5,  824    * MHz,  849    * MHz,  869    * MHz,  894    * MHz, FDD},
  { 6,  830    * MHz,  840    * MHz,  875    * MHz,  885    * MHz, FDD},
  { 7, 2500    * MHz, 2570    * MHz, 2620    * MHz, 2690    * MHz, FDD},
  { 8,  880    * MHz,  915    * MHz,  925    * MHz,  960    * MHz, FDD},
  { 9, 1749900 * KHz, 1784900 * KHz, 1844900 * KHz, 1879900 * KHz, FDD},
  {10, 1710    * MHz, 1770    * MHz, 2110    * MHz, 2170    * MHz, FDD},
  {11, 1427900 * KHz, 1452900 * KHz, 1475900 * KHz, 1500900 * KHz, FDD},
  {12,  698    * MHz,  716    * MHz,  728    * MHz,  746    * MHz, FDD},
  {13,  777    * MHz,  787    * MHz,  746    * MHz,  756    * MHz, FDD},
  {14,  788    * MHz,  798    * MHz,  758    * MHz,  768    * MHz, FDD},
  {17,  704    * MHz,  716    * MHz,  734    * MHz,  746    * MHz, FDD},
  {20,  832    * MHz,  862    * MHz,  791    * MHz,  821    * MHz, FDD},
180
  {22, 3510    * MHz, 3590    * MHz, 3410    * MHz, 3490    * MHz, FDD},
181 182 183 184 185 186 187 188 189 190 191 192 193 194
  {33, 1900    * MHz, 1920    * MHz, 1900    * MHz, 1920    * MHz, TDD},
  {34, 2010    * MHz, 2025    * MHz, 2010    * MHz, 2025    * MHz, TDD},
  {35, 1850    * MHz, 1910    * MHz, 1850    * MHz, 1910    * MHz, TDD},
  {36, 1930    * MHz, 1990    * MHz, 1930    * MHz, 1990    * MHz, TDD},
  {37, 1910    * MHz, 1930    * MHz, 1910    * MHz, 1930    * MHz, TDD},
  {38, 2570    * MHz, 2620    * MHz, 2570    * MHz, 2630    * MHz, TDD},
  {39, 1880    * MHz, 1920    * MHz, 1880    * MHz, 1920    * MHz, TDD},
  {40, 2300    * MHz, 2400    * MHz, 2300    * MHz, 2400    * MHz, TDD},
  {41, 2496    * MHz, 2690    * MHz, 2496    * MHz, 2690    * MHz, TDD},
  {42, 3400    * MHz, 3600    * MHz, 3400    * MHz, 3600    * MHz, TDD},
  {43, 3600    * MHz, 3800    * MHz, 3600    * MHz, 3800    * MHz, TDD},
  {44, 703    * MHz, 803    * MHz, 703    * MHz, 803    * MHz, TDD},
};

195 196
/*!
 * \brief This is the UE synchronize thread.
197
 * It performs band scanning and synchonization.
198 199 200
 * \param arg is a pointer to a \ref PHY_VARS_UE structure.
 * \returns a pointer to an int. The storage is not on the heap and must not be freed.
 */
201 202
static void *UE_thread_synch(void *arg)
{
203 204 205
  static int UE_thread_synch_retval;
  int i, hw_slot_offset;
  PHY_VARS_UE *UE = (PHY_VARS_UE*) arg;
206 207
  int current_band = 0;
  int current_offset = 0;
208
  sync_mode_t sync_mode = pbch;
209
  int card;
210 211
  int ind;
  int found;
212
  int freq_offset=0;
213 214 215 216 217 218 219

  UE->is_synchronized = 0;
  printf("UE_thread_sync in with PHY_vars_UE %p\n",arg);
  printf("waiting for sync (UE_thread_synch) \n");

  pthread_mutex_lock(&sync_mutex);
  printf("Locked sync_mutex, waiting (UE_sync_thread)\n");
220

221 222
  while (sync_var<0)
    pthread_cond_wait(&sync_cond, &sync_mutex);
223

224 225 226
  pthread_mutex_unlock(&sync_mutex);
  printf("unlocked sync_mutex (UE_sync_thread)\n");

227
  printf("starting UE synch thread (IC %d)\n",UE->instance_cnt_synch);
228 229
  ind = 0;
  found = 0;
230 231


232 233
  if (UE->UE_scan == 0) {
    do  {
234
      current_band = eutra_bands[ind].band;
knopp's avatar
 
knopp committed
235
      printf( "Scanning band %d, dl_min %"PRIu32", ul_min %"PRIu32"\n", current_band, eutra_bands[ind].dl_min,eutra_bands[ind].ul_min);
236

237
      if ((eutra_bands[ind].dl_min <= downlink_frequency[0][0]) && (eutra_bands[ind].dl_max >= downlink_frequency[0][0])) {
238 239 240 241 242 243 244
        for (card=0; card<MAX_NUM_CCs; card++)
          for (i=0; i<4; i++)
            uplink_frequency_offset[card][i] = eutra_bands[ind].ul_min - eutra_bands[ind].dl_min;

        found = 1;
        break;
      }
245

246
      ind++;
247 248
    } while (ind < sizeof(eutra_bands) / sizeof(eutra_bands[0]));
  
249 250
    if (found == 0) {
      exit_fun("Can't find EUTRA band for frequency");
251
      return &UE_thread_synch_retval;
252
    }
253

254 255


256

257 258


knopp's avatar
 
knopp committed
259
    LOG_I( PHY, "[SCHED][UE] Check absolute frequency DL %"PRIu32", UL %"PRIu32" (oai_exit %d)\n", downlink_frequency[0][0], downlink_frequency[0][0]+uplink_frequency_offset[0][0],oai_exit );
260 261 262 263 264 265 266

    for (i=0;i<openair0_cfg[0].rx_num_channels;i++) {
      openair0_cfg[0].rx_freq[i] = downlink_frequency[0][i];
      openair0_cfg[0].tx_freq[i] = downlink_frequency[0][i]+uplink_frequency_offset[0][i];
      openair0_cfg[0].autocal[i] = 1;
    }

267
    sync_mode = pbch;
268

269
  } else if  (UE->UE_scan == 1) {
270
    current_band=0;
271

272
    for (card=0; card<MAX_CARDS; card++) {
273
      for (i=0; i<openair0_cfg[card].rx_num_channels; i++) {
274 275 276 277 278
        downlink_frequency[card][i] = bands_to_scan.band_info[0].dl_min;
        uplink_frequency_offset[card][i] = bands_to_scan.band_info[0].ul_min-bands_to_scan.band_info[0].dl_min;

        openair0_cfg[card].rx_freq[i] = downlink_frequency[card][i];
        openair0_cfg[card].tx_freq[i] = downlink_frequency[card][i]+uplink_frequency_offset[card][i];
279
#ifdef OAI_USRP
280
        openair0_cfg[card].rx_gain[i] = UE->rx_total_gain_dB;//-USRP_GAIN_OFFSET;
281

282
	
283 284 285 286 287 288 289 290 291 292 293 294 295
        switch(UE->lte_frame_parms.N_RB_DL) {
        case 6:
          openair0_cfg[card].rx_gain[i] -= 12;
          break;

        case 25:
          openair0_cfg[card].rx_gain[i] -= 6;
          break;

        case 50:
          openair0_cfg[card].rx_gain[i] -= 3;
          break;

296 297 298 299
        case 100:
          openair0_cfg[card].rx_gain[i] -= 0;
          break;

300
        default:
301
          printf( "Unknown number of RBs %d\n", UE->lte_frame_parms.N_RB_DL );
302 303
          break;
        }
304
	
305
        printf( "UE synch: setting RX gain (%d,%d) to %f\n", card, i, openair0_cfg[card].rx_gain[i] );
306 307
#endif
      }
308 309 310
    }

  }
311 312

  while (oai_exit==0) {
313

314
    if (pthread_mutex_lock(&UE->mutex_synch) != 0) {
315
      LOG_E( PHY, "[SCHED][UE] error locking mutex for UE initial synch thread\n" );
316
      exit_fun("noting to add");
317 318
      return &UE_thread_synch_retval;
    }
319
    
320

321
    while (UE->instance_cnt_synch < 0) {
322
      // the thread waits here most of the time
323 324
      pthread_cond_wait( &UE->cond_synch, &UE->mutex_synch );
    }
325

326 327 328 329 330
    if (pthread_mutex_unlock(&UE->mutex_synch) != 0) {
      LOG_E( PHY, "[SCHED][eNB] error unlocking mutex for UE Initial Synch thread\n" );
      exit_fun("nothing to add");
      return &UE_thread_synch_retval;
    }
331

332
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SYNCH, 1 );
333 334

    switch (sync_mode) {
335
    case pss:
336 337
      LOG_I(PHY,"[SCHED][UE] Scanning band %d (%d), freq %u\n",bands_to_scan.band_info[current_band].band, current_band,bands_to_scan.band_info[current_band].dl_min+current_offset);
      lte_sync_timefreq(UE,current_band,bands_to_scan.band_info[current_band].dl_min+current_offset);
338 339 340 341 342 343 344
      current_offset += 20000000; // increase by 20 MHz

      if (current_offset > bands_to_scan.band_info[current_band].dl_max-bands_to_scan.band_info[current_band].dl_min) {
        current_band++;
        current_offset=0;
      }

345
      if (current_band==bands_to_scan.nbands) {
346 347
        current_band=0;
        oai_exit=1;
348
      }
349 350 351 352 353 354 355

      for (card=0; card<MAX_CARDS; card++) {
        for (i=0; i<openair0_cfg[card].rx_num_channels; i++) {
          downlink_frequency[card][i] = bands_to_scan.band_info[current_band].dl_min+current_offset;
          uplink_frequency_offset[card][i] = bands_to_scan.band_info[current_band].ul_min-bands_to_scan.band_info[0].dl_min + current_offset;


356 357
          openair0_cfg[card].rx_freq[i] = downlink_frequency[card][i];
          openair0_cfg[card].tx_freq[i] = downlink_frequency[card][i]+uplink_frequency_offset[card][i];
358
#ifdef OAI_USRP
359 360
          openair0_cfg[card].rx_gain[i] = UE->rx_total_gain_dB;//-USRP_GAIN_OFFSET;  // 65 calibrated for USRP B210 @ 2.6 GHz
	  
361 362 363 364 365 366 367 368 369 370 371 372 373
          switch(UE->lte_frame_parms.N_RB_DL) {
          case 6:
            openair0_cfg[card].rx_gain[i] -= 12;
            break;

          case 25:
            openair0_cfg[card].rx_gain[i] -= 6;
            break;

          case 50:
            openair0_cfg[card].rx_gain[i] -= 3;
            break;

374 375 376 377
          case 100:
            openair0_cfg[card].rx_gain[i] -= 0;
            break;

378 379 380 381
          default:
            printf("Unknown number of RBs %d\n",UE->lte_frame_parms.N_RB_DL);
            break;
          }
382
	  
383 384

          printf("UE synch: setting RX gain (%d,%d) to %f\n",card,i,openair0_cfg[card].rx_gain[i]);
385
#endif
386

387
        }
388 389 390

      }

391
      if (UE->UE_scan_carrier) {
392

393 394 395 396
	for (i=0;i<openair0_cfg[0].rx_num_channels;i++)
	  openair0_cfg[0].autocal[i] = 1;

      }
397

398 399 400

      break;
 
401
    case pbch:
402

403
      
404
      if (initial_sync( UE, UE->mode ) == 0) {
405 406 407 408 409 410 411 412

        hw_slot_offset = (UE->rx_offset<<1) / UE->lte_frame_parms.samples_per_tti;
        LOG_I( HW, "Got synch: hw_slot_offset %d\n", hw_slot_offset );
	if (UE->UE_scan_carrier == 1) {

	  UE->UE_scan_carrier = 0;
	  // rerun with new cell parameters and frequency-offset
	  for (i=0;i<openair0_cfg[0].rx_num_channels;i++) {
413
	    openair0_cfg[0].rx_gain[i] = UE->rx_total_gain_dB;//-USRP_GAIN_OFFSET;
414 415 416 417 418 419
	    openair0_cfg[0].rx_freq[i] -= UE->lte_ue_common_vars.freq_offset;
	    openair0_cfg[0].tx_freq[i] =  openair0_cfg[0].rx_freq[i]+uplink_frequency_offset[0][i];
	    downlink_frequency[0][i] = openair0_cfg[0].rx_freq[i];
	    freq_offset=0;	    
	  }

420
	  // reconfigure for potentially different bandwidth
421 422 423
	  switch(UE->lte_frame_parms.N_RB_DL) {
	  case 6:
	    openair0_cfg[0].sample_rate =1.92e6;
424 425
	    openair0_cfg[0].rx_bw          =.96e6;
	    openair0_cfg[0].tx_bw          =.96e6;
426
            openair0_cfg[0].rx_gain[0] -= 12;
427 428
	    break;
	  case 25:
429 430 431
	    openair0_cfg[0].sample_rate =7.68e6;
	    openair0_cfg[0].rx_bw          =2.5e6;
	    openair0_cfg[0].tx_bw          =2.5e6;
432
            openair0_cfg[0].rx_gain[0] -= 6;
433 434
	    break;
	  case 50:
435 436 437
	    openair0_cfg[0].sample_rate =15.36e6;
	    openair0_cfg[0].rx_bw          =5.0e6;
	    openair0_cfg[0].tx_bw          =5.0e6;
438
            openair0_cfg[0].rx_gain[0] -= 3;
439 440 441
	    break;
	  case 100:
	    openair0_cfg[0].sample_rate=30.72e6;
442 443
	    openair0_cfg[0].rx_bw=10.0e6;
	    openair0_cfg[0].tx_bw=10.0e6;
444
            openair0_cfg[0].rx_gain[0] -= 0;
445 446
	    break;
	  }
447 448 449 450 451
#ifndef EXMIMO
	  openair0.trx_set_freq_func(&openair0,&openair0_cfg[0],0);
	  openair0.trx_set_gains_func(&openair0,&openair0_cfg[0]);
	  openair0.trx_stop_func(0);	  
#else
452 453 454
	  openair0_set_frequencies(&openair0,&openair0_cfg[0],0);
	  openair0_set_gains(&openair0,&openair0_cfg[0]);
	  openair0_stop(0);
455
#endif
456
	  sleep(1);
457 458 459 460
	  init_frame_parms(&UE->lte_frame_parms,1);
	}
	else {
	  UE->is_synchronized = 1;
461 462

	 if( UE->mode == rx_dump_frame ){
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	   FILE *fd;
	   if ((UE->frame_rx&1) == 0) {  // this guarantees SIB1 is present 
	     if (fd = fopen("rxsig_frame0.dat","w")) {
	       fwrite((void*)&UE->lte_ue_common_vars.rxdata[0][0],
		      sizeof(int32_t),
		      10*UE->lte_frame_parms.samples_per_tti,
		      fd);
	       LOG_I(PHY,"Dummping Frame ... bye bye \n");
	       fclose(fd);
	       exit(0);
	     }
	     else {
	       LOG_E(PHY,"Cannot open file for writing\n");
	       exit(0);
	     }
	   }
	   else {
	     UE->is_synchronized = 0;
	   }
482
	 }
483
	 
484

485
#ifndef EXMIMO
486 487
	  UE->slot_rx = 0;
	  UE->slot_tx = 4;
488
#else
489 490
	  UE->slot_rx = 18;
	  UE->slot_tx = 2;
491
#endif
492
	}
493 494 495
      } else {
        // initial sync failed
        // calculate new offset and try again
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
	if (UE->UE_scan_carrier == 1) {
	  if (freq_offset >= 0) {
	    freq_offset += 100;
	    freq_offset *= -1;
	  } else {
	    freq_offset *= -1;
	  }
	
	  if (abs(freq_offset) > 7500) {
	    LOG_I( PHY, "[initial_sync] No cell synchronization found, abandoning\n" );
	    mac_xface->macphy_exit("No cell synchronization found, abandoning");
	    return &UE_thread_synch_retval; // not reached
	  }
	}
	else {
	  
	}
        LOG_I( PHY, "[initial_sync] trying carrier off %d Hz, rxgain %d (DL %u, UL %u)\n", 
	       freq_offset,
515
               UE->rx_total_gain_dB,
516 517
               downlink_frequency[0][0]+freq_offset,
               downlink_frequency[0][0]+uplink_frequency_offset[0][0]+freq_offset );
518 519 520

        for (card=0; card<MAX_CARDS; card++) {
          for (i=0; i<openair0_cfg[card].rx_num_channels; i++) {
521 522
            openair0_cfg[card].rx_freq[i] = downlink_frequency[card][i]+freq_offset;
            openair0_cfg[card].tx_freq[i] = downlink_frequency[card][i]+uplink_frequency_offset[card][i]+freq_offset;
523
#ifdef OAI_USRP
524
            openair0_cfg[card].rx_gain[i] = UE->rx_total_gain_dB;//-USRP_GAIN_OFFSET;
525 526 527 528 529 530
	    
	    
#ifndef EXMIMO
	    openair0.trx_set_freq_func(&openair0,&openair0_cfg[0],0);
	    
#else
531
	    openair0_set_frequencies(&openair0,&openair0_cfg[0],0);
532
	    
533
#endif
534 535 536 537 538 539 540 541 542 543
            switch(UE->lte_frame_parms.N_RB_DL) {
            case 6:
              openair0_cfg[card].rx_gain[i] -= 12;
              break;

            case 25:
              openair0_cfg[card].rx_gain[i] -= 6;
              break;

            case 50:
544 545 546 547 548
              openair0_cfg[card].rx_gain[i] -= 0;//3;
              break;

            case 100:
              openair0_cfg[card].rx_gain[i] -= 0;
549 550 551 552 553 554
              break;

            default:
              printf("Unknown number of RBs %d\n",UE->lte_frame_parms.N_RB_DL);
              break;
            }
555
	    
556
#endif
557 558
          }
        }
559 560 561 562 563 564
	if (UE->UE_scan_carrier==1) {
	  for (i=0;i<openair0_cfg[0].rx_num_channels;i++)
	    openair0_cfg[0].autocal[i] = 1;
	  
	}
      }// initial_sync=0
565

566
      break;
567

568 569 570 571
    case si:
    default:
      break;
    }
572

573
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SYNCH, 0 );
knopp's avatar
 
knopp committed
574

575 576


577
    if (pthread_mutex_lock(&UE->mutex_synch) != 0) {
578 579 580 581
      LOG_E( PHY, "[SCHED][UE] error locking mutex for UE synch\n" );
      exit_fun("noting to add");
      return &UE_thread_synch_retval;
    }
582

583
    // indicate readiness
584 585 586 587 588 589
    UE->instance_cnt_synch--;

    if (pthread_mutex_unlock(&UE->mutex_synch) != 0) {
      LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE synch\n" );
      exit_fun("noting to add");
      return &UE_thread_synch_retval;
590
    }
591

592
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SYNCH, 0 );
593
  }  // while !oai_exit
594

595
  return &UE_thread_synch_retval;
596 597
}

598 599 600 601 602 603
/*!
 * \brief This is the UE transmit thread.
 * This thread performs the phy_procedures_UE_TX() on every transmit slot.
 * \param arg is a pointer to a \ref PHY_VARS_UE structure.
 * \returns a pointer to an int. The storage is not on the heap and must not be freed.
 */
604 605
static void *UE_thread_tx(void *arg)
{
606
  static int UE_thread_tx_retval;
607 608 609 610 611 612 613
  int ret;

  PHY_VARS_UE *UE = (PHY_VARS_UE*)arg;

  UE->instance_cnt_tx=-1;

#ifdef RTAI
614
  RT_TASK *task = rt_task_init_schmod(nam2num("UE TX Thread"), 0, 0, 0, SCHED_FIFO, 0xF);
615

616 617 618 619
  if (task==NULL) {
    LOG_E(PHY,"[SCHED][UE] Problem starting UE TX thread!!!!\n");
    return 0;
  }
620

621 622 623 624
  LOG_D(HW,"Started UE TX thread (id %p)\n",task);
#else

#ifdef LOWLATENCY
625 626 627
  struct sched_attr attr;
  unsigned int flags = 0;

628 629 630
  attr.size = sizeof(attr);
  attr.sched_flags = 0;
  attr.sched_nice = 0;
631
  attr.sched_priority = 0;
632

633
  /* This creates a 1ms reservation every 10ms period*/
634 635 636 637
  attr.sched_policy   = SCHED_DEADLINE;
  attr.sched_runtime  = 900000;  // each tx thread requires .5ms to finish its job
  attr.sched_deadline = 1000000; // each tx thread will finish within 1ms
  attr.sched_period   = 1000000; // each tx thread has a period of 1ms from the starting point
638

639 640

  if (sched_setattr(0, &attr, flags) < 0 ) {
knopp's avatar
knopp committed
641
    perror("[SCHED] UE_thread_tx thread: sched_setattr failed\n");
642
    return &UE_thread_tx_retval;
643
  }
644

645 646 647 648 649
#else
  struct sched_param sp;
  sp.sched_priority = sched_get_priority_max(SCHED_FIFO)-1;
  pthread_setschedparam(pthread_self(),SCHED_FIFO,&sp);

650 651
#endif
#endif
652

653 654 655 656
  printf("waiting for sync (UE_thread_tx)\n");

  pthread_mutex_lock(&sync_mutex);
  printf("Locked sync_mutex, waiting (UE_thread_tx)\n");
657

658 659
  while (sync_var<0)
    pthread_cond_wait(&sync_cond, &sync_mutex);
660

661 662 663 664 665
  pthread_mutex_unlock(&sync_mutex);
  printf("unlocked sync_mutex, waiting (UE_thread_tx)\n");

  printf("Starting UE TX thread\n");

666
  // Lock memory from swapping. This is a process wide call (not constraint to this thread).
667 668 669 670 671
  mlockall(MCL_CURRENT | MCL_FUTURE);

  while (!oai_exit) {

    if (pthread_mutex_lock(&UE->mutex_tx) != 0) {
672
      LOG_E( PHY, "[SCHED][UE] error locking mutex for UE TX\n" );
673
      exit_fun("nothing to add");
674 675
      return &UE_thread_tx_retval;
    }
676

677 678 679
    while (UE->instance_cnt_tx < 0) {
      // most of the time, the thread is waiting here
      pthread_cond_wait( &UE->cond_tx, &UE->mutex_tx );
680
    }
681

682 683 684 685 686
    if (pthread_mutex_unlock(&UE->mutex_tx) != 0) {
      LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE TX\n" );
      exit_fun("nothing to add");
      return &UE_thread_tx_retval;
    }
687
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_THREAD_TX, 1 );
688

689
    if ((subframe_select( &UE->lte_frame_parms, UE->slot_tx>>1 ) == SF_UL) ||
690
        (UE->lte_frame_parms.frame_type == FDD)) {
691
      phy_procedures_UE_TX( UE, 0, 0, UE->mode, no_relay );
692
    }
693

694 695 696
    if ((subframe_select( &UE->lte_frame_parms, UE->slot_tx>>1 ) == SF_S) &&
        ((UE->slot_tx&1) == 1)) {
      phy_procedures_UE_S_TX( UE, 0, 0, no_relay );
697
    }
698

699 700 701 702 703 704 705 706 707 708 709
    UE->slot_tx += 2;

    if (UE->slot_tx >= 20) {
      UE->slot_tx -= 20;
      UE->frame_tx++;
      VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_TX_UE, UE->frame_tx );
    }

    VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_TX_UE, UE->slot_tx>>1 );

    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_THREAD_TX, 0 );
710

711
    if (pthread_mutex_lock(&UE->mutex_tx) != 0) {
712 713 714 715
      LOG_E( PHY, "[SCHED][UE] error locking mutex for UE TX thread\n" );
      exit_fun("nothing to add");
      return &UE_thread_tx_retval;
    }
716

717
    UE->instance_cnt_tx--;
718
    VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(VCD_SIGNAL_DUMPER_VARIABLES_UE_INST_CNT_TX, UE->instance_cnt_tx);
719 720 721 722 723

    if (pthread_mutex_unlock(&UE->mutex_tx) != 0) {
      LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE TX thread\n" );
      exit_fun("nothing to add");
      return &UE_thread_tx_retval;
724
    }
725

726
  }
727

728
  return &UE_thread_tx_retval;
729 730
}

731 732 733 734 735 736
/*!
 * \brief This is the UE receive thread.
 * This thread performs the phy_procedures_UE_RX() on every received slot.
 * \param arg is a pointer to a \ref PHY_VARS_UE structure.
 * \returns a pointer to an int. The storage is not on the heap and must not be freed.
 */
737

738
/*
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
#ifdef OAI_USRP
void rescale(int16_t *input,int length)
{
#if defined(__x86_64__) || defined(__i386__)
  __m128i *input128 = (__m128i *)input;
#elif defined(__arm__)
  int16x8_t *input128 = (int16x8_t *)input;
#endif
  int i;

  for (i=0; i<length>>2; i++) {
#if defined(__x86_64__) || defined(__i386__)
    input128[i] = _mm_srai_epi16(input128[i],4);
#elif defined(__arm__)
    input128[i] = vshrq_n_s16(input128[i],4);
#endif
  }
}
#endif
758
*/
759

760 761
static void *UE_thread_rx(void *arg)
{
762
  static int UE_thread_rx_retval;
763 764 765
  PHY_VARS_UE *UE = (PHY_VARS_UE*)arg;
  int i;
  int ret;
766

767 768 769
  UE->instance_cnt_rx=-1;

#ifdef RTAI
770
  RT_TASK *task = rt_task_init_schmod(nam2num("UE RX Thread"), 0, 0, 0, SCHED_FIFO, 0xF);
771

772 773
  if (task==NULL) {
    LOG_E(PHY,"[SCHED][UE] Problem starting UE RX thread!!!!\n");
774
    return &UE_thread_rx_retval;
775
  }
776

777 778
  LOG_D(HW,"Started UE RX thread (id %p)\n",task);
#else
779

780
#ifdef LOWLATENCY
781 782 783
  struct sched_attr attr;
  unsigned int flags = 0;

784 785 786
  attr.size = sizeof(attr);
  attr.sched_flags = 0;
  attr.sched_nice = 0;
787
  attr.sched_priority = 0;
788

789
  // This creates a .5ms reservation every 1ms period
790 791 792 793
  attr.sched_policy   = SCHED_DEADLINE;
  attr.sched_runtime  = 900000;  // each rx thread requires 1ms to finish its job
  attr.sched_deadline = 1000000; // each rx thread will finish within 1ms
  attr.sched_period   = 1000000; // each rx thread has a period of 1ms from the starting point
794 795

  if (sched_setattr(0, &attr, flags) < 0 ) {
knopp's avatar
knopp committed
796
    perror("[SCHED] UE_thread_rx : sched_setattr failed\n");
797
    return &UE_thread_rx_retval;
798 799
  }

800 801 802 803 804
#else
  struct sched_param sp;
  sp.sched_priority = sched_get_priority_max(SCHED_FIFO)-1;
  pthread_setschedparam(pthread_self(),SCHED_FIFO,&sp);

805 806
#endif
#endif
807

808
  // Lock memory from swapping. This is a process wide call (not constraint to this thread).
809
  mlockall(MCL_CURRENT | MCL_FUTURE);
810

811
  printf("waiting for sync (UE_thread_rx)\n");
Florian Kaltenberger's avatar
 
Florian Kaltenberger committed
812

813 814
  pthread_mutex_lock(&sync_mutex);
  printf("Locked sync_mutex, waiting (UE_thread_rx)\n");
815

816 817
  while (sync_var<0)
    pthread_cond_wait(&sync_cond, &sync_mutex);
818

819 820
  pthread_mutex_unlock(&sync_mutex);
  printf("unlocked sync_mutex, waiting (UE_thread_rx)\n");
821

822
  printf("Starting UE RX thread\n");
823 824

  while (!oai_exit) {
825
    if (pthread_mutex_lock(&UE->mutex_rx) != 0) {
826
      LOG_E( PHY, "[SCHED][UE] error locking mutex for UE RX\n" );
827
      exit_fun("nothing to add");
828
      return &UE_thread_rx_retval;
829
    }
830 831

    while (UE->instance_cnt_rx < 0) {
832 833
      // most of the time, the thread is waiting here
      pthread_cond_wait( &UE->cond_rx, &UE->mutex_rx );
834 835 836
    }

    if (pthread_mutex_unlock(&UE->mutex_rx) != 0) {
837
      LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE RX\n" );
838
      exit_fun("nothing to add");
839
      return &UE_thread_rx_retval;
840 841
    }

842
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_THREAD_RX, 1 );
843
    for (i=0; i<2; i++) {
844
      if ((subframe_select( &UE->lte_frame_parms, UE->slot_rx>>1 ) == SF_DL) ||
845
          (UE->lte_frame_parms.frame_type == FDD)) {
846
	/*
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
#ifdef OAI_USRP
	// this does the adjustments of RX signal amplitude to bring into least 12 significant bits
	int slot_length = UE->lte_frame_parms.samples_per_tti>>1;
	int rx_offset = (UE->slot_rx)*slot_length + UE->rx_offset;
	int frame_length = UE->lte_frame_parms.samples_per_tti*10;
	int aa;
	if (rx_offset > frame_length)
	  rx_offset-=frame_length;


	if (rx_offset >= 0) {
	  if (rx_offset + slot_length < frame_length)
	    for (aa=0;aa<UE->lte_frame_parms.nb_antennas_rx;aa++)
	      rescale((int16_t*)&UE->lte_ue_common_vars.rxdata[aa][rx_offset&(~0x3)],
		      slot_length);
	  else {
	    int diff = rx_offset + slot_length - frame_length;
	    for (aa=0;aa<UE->lte_frame_parms.nb_antennas_rx;aa++){
	      rescale((int16_t*)&UE->lte_ue_common_vars.rxdata[aa][rx_offset&(~0x3)],
		      slot_length-diff);
	      rescale((int16_t*)&UE->lte_ue_common_vars.rxdata[aa][0],
		      diff);
	    }
	  }
	}
	else {
	    for (aa=0;aa<UE->lte_frame_parms.nb_antennas_rx;aa++){
	      rescale((int16_t*)&UE->lte_ue_common_vars.rxdata[aa][(frame_length+rx_offset)&(~0x3)],
		      -rx_offset);
	      rescale((int16_t*)&UE->lte_ue_common_vars.rxdata[aa][0],
		      slot_length+rx_offset);
	    }
	}
#endif
881
	*/
882
        phy_procedures_UE_RX( UE, 0, 0, UE->mode, no_relay, NULL );
883
      }
gauthier's avatar
gauthier committed
884

885 886
      if ((subframe_select( &UE->lte_frame_parms, UE->slot_rx>>1 ) == SF_S) &&
          ((UE->slot_rx&1) == 0)) {
887
	/*
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
#ifdef OAI_USRP
	// this does the adjustments of RX signal amplitude to bring into least 12 significant bits
	int slot_length = UE->lte_frame_parms.samples_per_tti>>1;
	int rx_offset = (UE->slot_rx)*slot_length + UE->rx_offset;
	int frame_length = UE->lte_frame_parms.samples_per_tti*10;
	if (rx_offset > frame_length)
	  rx_offset-=frame_length;
	int aa;

	if (rx_offset >= 0) {
	  if (rx_offset + slot_length < frame_length)
	    for (aa=0;aa<UE->lte_frame_parms.nb_antennas_rx;aa++)
	      rescale((int16_t*)&UE->lte_ue_common_vars.rxdata[aa][rx_offset&(~0x3)],
		      slot_length);
	  else {
	    int diff = rx_offset + slot_length - frame_length;
	    for (aa=0;aa<UE->lte_frame_parms.nb_antennas_rx;aa++){
	      rescale((int16_t*)&UE->lte_ue_common_vars.rxdata[aa][rx_offset&(~0x3)],
		      slot_length-diff);
	      rescale((int16_t*)&UE->lte_ue_common_vars.rxdata[aa][0],
		      diff);
	    }
	  }
	}
	else {
	  for (aa=0;aa<UE->lte_frame_parms.nb_antennas_rx;aa++){
	    rescale((int16_t*)&UE->lte_ue_common_vars.rxdata[aa][(frame_length+rx_offset)&(~0x3)],
		    -rx_offset);
	    rescale((int16_t*)&UE->lte_ue_common_vars.rxdata[aa][0],
		    slot_length+rx_offset);
	  }
	}
#endif
921
	*/
922
        phy_procedures_UE_RX( UE, 0, 0, UE->mode, no_relay, NULL );
923 924 925 926 927 928 929 930 931 932 933 934 935
      }

#ifdef OPENAIR2

      if (i==0) {
        ret = mac_xface->ue_scheduler(UE->Mod_id,
                                      UE->frame_tx,
                                      UE->slot_rx>>1,
                                      subframe_select(&UE->lte_frame_parms,UE->slot_tx>>1),
                                      0,
                                      0/*FIXME CC_id*/);

        if (ret == CONNECTION_LOST) {
936
          LOG_E( PHY, "[UE %"PRIu8"] Frame %"PRIu32", subframe %u RRC Connection lost, returning to PRACH\n",
937
                 UE->Mod_id, UE->frame_rx, UE->slot_tx>>1 );
938 939
          UE->UE_mode[0] = PRACH;
        } else if (ret == PHY_RESYNCH) {
940
          LOG_E( PHY, "[UE %"PRIu8"] Frame %"PRIu32", subframe %u RRC Connection lost, trying to resynch\n",
941
                 UE->Mod_id, UE->frame_rx, UE->slot_tx>>1 );
942 943
          UE->UE_mode[0] = RESYNCH;
        } else if (ret == PHY_HO_PRACH) {
944
          LOG_I( PHY, "[UE %"PRIu8"] Frame %"PRIu32", subframe %u, return to PRACH and perform a contention-free access\n",
945
                 UE->Mod_id, UE->frame_rx, UE->slot_tx>>1 );
946 947
          UE->UE_mode[0] = PRACH;
        }
948
      }
949 950 951 952

#endif
      UE->slot_rx++;

953 954
      if (UE->slot_rx == 20) {
        UE->slot_rx = 0;
955
        UE->frame_rx++;
956
        VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_RX_UE, UE->frame_rx );
957 958
      }

959
      VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_RX_UE, UE->slot_rx>>1 );
960
    }
961 962
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_THREAD_RX, 0 );

963
    if (pthread_mutex_lock(&UE->mutex_rx) != 0) {
964 965 966
      LOG_E( PHY, "[SCHED][UE] error locking mutex for UE RX\n" );
      exit_fun("noting to add");
      return &UE_thread_rx_retval;
967 968
    }

969
    UE->instance_cnt_rx--;
970
    VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(VCD_SIGNAL_DUMPER_VARIABLES_UE_INST_CNT_RX, UE->instance_cnt_rx);
971 972 973 974 975 976

    if (pthread_mutex_unlock(&UE->mutex_rx) != 0) {
      LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE RX\n" );
      exit_fun("noting to add");
      return &UE_thread_rx_retval;
    }
gauthier's avatar
gauthier committed
977 978 979
  }

  // thread finished
980
  return &UE_thread_rx_retval;
Florian Kaltenberger's avatar
 
Florian Kaltenberger committed
981
}
982

983 984 985 986 987 988 989 990



#ifndef EXMIMO
#define RX_OFF_MAX 10
#define RX_OFF_MIN 5
#define RX_OFF_MID ((RX_OFF_MAX+RX_OFF_MIN)/2)

991 992 993 994 995 996 997 998 999
/*!
 * \brief This is the main UE thread.
 * This thread controls the other three UE threads:
 * - UE_thread_rx
 * - UE_thread_tx
 * - UE_thread_synch
 * \param arg unused
 * \returns a pointer to an int. The storage is not on the heap and must not be freed.
 */
1000 1001
void *UE_thread(void *arg)
{
1002 1003 1004
  UNUSED(arg)
  static int UE_thread_retval;
  PHY_VARS_UE *UE = PHY_vars_UE_g[0][0];
1005
  int spp = openair0_cfg[0].samples_per_packet;
1006
  int slot=1, frame=0, hw_subframe=0, rxpos=0, txpos=openair0_cfg[0].tx_scheduling_advance;
1007 1008 1009 1010 1011
#ifdef __AVX2__
  int dummy[2][spp] __attribute__((aligned(32)));
#else
  int dummy[2][spp] __attribute__((aligned(16)));
#endif
1012
  int dummy_dump = 0;
1013 1014
  int tx_enabled = 0;
  int start_rx_stream = 0;
1015 1016
  int rx_off_diff = 0;
  int rx_correction_timer = 0;
1017
  int first_rx = 0;
1018
  RTIME T0;
1019
  unsigned int rxs;
1020 1021 1022

  openair0_timestamp timestamp;

1023 1024 1025 1026
#ifdef NAS_UE
  MessageDef *message_p;
#endif

1027
#ifdef RTAI
1028
  RT_TASK *task = rt_task_init_schmod(nam2num("UE thread"), 0, 0, 0, SCHED_FIFO, 0xF);