defs.h 12.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#ifndef __SIMULATION_TOOLS_DEFS_H__
#define __SIMULATION_TOOLS_DEFS_H__
#include "PHY/TOOLS/defs.h"

/** @defgroup _numerical_ Useful Numerical Functions
 *@{
The present clause specifies several numerical functions for testing of digital communication systems.

-# Generation of Uniform Random Bits
-# Generation of Quantized Gaussian Random Variables
-# Generation of Floating-point Gaussian Random Variables
-# Generic Multipath Channel Generator

 * @defgroup _channel_ Multipath channel generator
 * @ingroup _numerical_ 
 * @{

*/

#define NB_SAMPLES_CHANNEL_OFFSET 4

typedef struct {
  ///Number of tx antennas
gauthier's avatar
gauthier committed
24
  uint8_t nb_tx; 
25
  ///Number of rx antennas
gauthier's avatar
gauthier committed
26
  uint8_t nb_rx;
27
  ///number of taps
gauthier's avatar
gauthier committed
28
  uint8_t nb_taps; 
29
30
31
32
33
  ///linear amplitudes of taps
  double *amps; 
  ///Delays of the taps in mus. length(delays)=nb_taps. Has to be between 0 and Td. 
  double *delays; 
  ///length of impulse response. should be set to 11+2*bw*t_max 
gauthier's avatar
gauthier committed
34
  uint8_t channel_length; 
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
  ///channel state vector. size(state) = nb_taps * (n_tx * n_rx);
  struct complex **a; 
  ///interpolated (sample-spaced) channel impulse response. size(ch) = (n_tx * n_rx) * channel_length. ATTENTION: the dimensions of ch are the transposed ones of a. This is to allow the use of BLAS when applying the correlation matrices to the state.
  struct complex **ch; 
  ///Sampled frequency response (90 kHz resolution)
  struct complex **chF; 
  ///Maximum path delay in mus.
  double Td; 
  ///Channel bandwidth in MHz.
  double BW; 
  ///Ricean factor of first tap wrt other taps (0..1, where 0 means AWGN and 1 means Rayleigh channel).
  double ricean_factor; 
  ///Angle of arrival of wavefront (in radians). For Ricean channel only. This assumes that both RX and TX have linear antenna arrays with lambda/2 antenna spacing. Furhter it is assumed that the arrays are parallel to each other and that they are far enough apart so that we can safely assume plane wave propagation.  
  double aoa; 
  ///If set to 1, aoa is randomized according to a uniform random distribution 
gauthier's avatar
gauthier committed
50
  int8_t random_aoa;
51
52
53
54
55
56
57
  ///in Hz. if >0 generate a channel with a Clarke's Doppler profile with a maximum Doppler bandwidth max_Doppler. CURRENTLY NOT IMPLEMENTED!
  double max_Doppler; 
  ///Square root of the full correlation matrix size(R_tx) = nb_taps * (n_tx * n_rx) * (n_tx * n_rx).
  struct complex **R_sqrt; 
  ///path loss including shadow fading in dB 
  double path_loss_dB;
  ///additional delay of channel in samples. 
gauthier's avatar
gauthier committed
58
  int32_t channel_offset; 
59
60
61
  ///This parameter (0...1) allows for simple 1st order temporal variation. 0 means a new channel every call, 1 means keep channel constant all the time
  double forgetting_factor;
  ///needs to be set to 1 for the first call, 0 otherwise.
gauthier's avatar
gauthier committed
62
  uint8_t first_run;
63
64
65
  /// initial phase for frequency offset simulation 
  double ip;
  /// number of paths taken by transmit signal
gauthier's avatar
gauthier committed
66
  uint16_t nb_paths; 
67
68
69
70
71
  /// timing measurements
  time_stats_t random_channel;
  time_stats_t interp_time;
  time_stats_t interp_freq;
  time_stats_t convolution;
72
73
74
75
} channel_desc_t;

typedef struct {
  /// Number of sectors (set to 1 in case of an omnidirectional antenna)
gauthier's avatar
gauthier committed
76
  uint8_t n_sectors;
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
  /// Antenna orientation for each sector (for non-omnidirectional antennas) in radians wrt north
  double alpha_rad[3];
  /// Antenna 3dB beam width (in radians) 
  double phi_rad;
  /// Antenna gain (dBi)
  double ant_gain_dBi;
  /// Tx power (dBm)
  double tx_power_dBm;
  /// Rx noise level (dB)
  double rx_noise_level;
  ///x coordinate (cartesian, in m)
  double x; 
  ///y coordinate (cartesian, in m)
  double y; 
  ///z coordinate (antenna height, in m)
  double z;
  /// direction of travel in radians wrt north
  double direction_rad;
  /// speed of node (m/s)
  double speed;
} node_desc_t;

typedef enum {
  rural=0,
  urban,
  indoor
} scenario_t;
  
typedef struct {
  /// Scenario classifcation
  scenario_t scenario;
  /// Carrier frequency in Hz
  double carrier_frequency;
  /// Bandwidth (in Hz)
  double bandwidth;
  /// path loss at 0m distance in dB
  double path_loss_0;
  /// path loss exponent 
  double path_loss_exponent;
  /// shadow fading standard deviation [dB] (assuming log-normal shadow fading with 0 mean)
  double shadow_fading_std;
  /// correlation distance of shadow fading 
  double shadow_fading_correlation_distance;
  /// Shadowing correlation between cells
  double shadow_fading_correlation_cells;
  /// Shadowing correlation between sectors
  double shadow_fading_correlation_sectors;
  /// Rice factor???
  /// Walls (penetration loss)
  /// Nodes in the scenario
  node_desc_t* nodes;
} scenario_desc_t;

typedef enum {
  custom=0, 
  SCM_A,
  SCM_B,
  SCM_C,
  SCM_D,
  EPA,
  EVA,
  ETU,
  MBSFN,
  Rayleigh8,
  Rayleigh1,
  Rayleigh1_800,
  Rayleigh1_corr,
  Rayleigh1_anticorr,
  Rice8,
  Rice1,
  Rice1_corr,
  Rice1_anticorr,
  AWGN
} SCM_t;

/** 
\brief This routine initializes a new channel descriptor
\param nb_tx Number of TX antennas
\param nb_rx Number of RX antennas
\param nb_taps Number of taps
\param channel_length Length of the interpolated channel impulse response
\param amps Linear amplitudes of the taps (length(amps)=channel_length). The values should sum up to 1.
\param delays Delays of the taps. If delays==NULL the taps are assumed to be spaced equidistantly between 0 and t_max. 
\param R_sqrt Channel correlation matrix. If R_sqrt==NULL, no channel correlation is applied.
\param Td Maximum path delay in mus.
\param BW Channel bandwidth in MHz.
\param ricean_factor Ricean factor applied to all taps.
\param aoa Anlge of arrival
\param forgetting_factor This parameter (0...1) allows for simple 1st order temporal variation
\param max_Doppler This is the maximum Doppler frequency for Jakes' Model
\param channel_offset This is a time delay to apply to channel
\param path_loss_dB This is the path loss in dB
\param random_aoa If set to 1, AoA of ricean component is randomized
*/

gauthier's avatar
gauthier committed
172
//channel_desc_t *new_channel_desc(uint8_t nb_tx,uint8_t nb_rx, uint8_t nb_taps, uint8_t channel_length, double *amps, double* delays, struct complex** R_sqrt, double Td, double BW, double ricean_factor, double aoa, double forgetting_factor, double max_Doppler, int32_t channel_offset, double path_loss_dB,uint8_t random_aoa);
173

gauthier's avatar
gauthier committed
174
175
channel_desc_t *new_channel_desc_scm(uint8_t nb_tx,
				     uint8_t nb_rx, 
176
177
178
				     SCM_t channel_model, 
				     double BW, 
				     double forgetting_factor,
gauthier's avatar
gauthier committed
179
				     int32_t channel_offset, 
180
181
182
183
184
185
186
187
				     double path_loss_dB);



/** \fn void random_channel(channel_desc_t *desc)
\brief This routine generates a random channel response (time domain) according to a tapped delay line model. 
\param desc Pointer to the channel descriptor
*/
gauthier's avatar
gauthier committed
188
int random_channel(channel_desc_t *desc, uint8_t abstraction_flag);
189
190
191
192
193
194

/**\fn void multipath_channel(channel_desc_t *desc,
		       double **tx_sig_re, 
		       double **tx_sig_im, 
		       double **rx_sig_re,
		       double **rx_sig_im,
gauthier's avatar
gauthier committed
195
196
		       uint32_t length,
		       uint8_t keep_channel)
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

\brief This function generates and applys a random frequency selective random channel model.
@param desc Pointer to channel descriptor
@param tx_sig_re input signal (real component) 
@param tx_sig_im input signal (imaginary component) 
@param rx_sig_re output signal (real component)
@param rx_sig_im output signal (imaginary component)
@param length Length of input signal
@param keep_channel Set to 1 to keep channel constant for null-B/F
*/

void multipath_channel(channel_desc_t *desc,
		       double **tx_sig_re, 
		       double **tx_sig_im, 
		       double **rx_sig_re,
		       double **rx_sig_im,
gauthier's avatar
gauthier committed
213
214
		       uint32_t length,
		       uint8_t keep_channel);
215
216
217
218
219
220
/*
\fn double compute_pbch_sinr(channel_desc_t *desc,
                             channel_desc_t *desc_i1, 
			     channel_desc_t *desc_i2,
			     double snr_dB,double snr_i1_dB,
			     double snr_i2_dB,
gauthier's avatar
gauthier committed
221
			     uint16_t nb_rb)
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

\brief This function computes the average SINR over all frequency resources of the PBCH.  It is used for PHY abstraction of the PBCH BLER
@param desc Pointer to channel descriptor of eNB
@param desc Pointer to channel descriptor of interfering eNB 1
@param desc Pointer to channel descriptor of interfering eNB 2
@param snr_dB SNR of eNB
@param snr_i1_dB SNR of interfering eNB 1
@param snr_i2_dB SNR of interfering eNB 2
@param nb_rb Number of RBs in system
*/
double compute_pbch_sinr(channel_desc_t *desc,
			 channel_desc_t *desc_i1, 
			 channel_desc_t *desc_i2,
			 double snr_dB,double snr_i1_dB,
			 double snr_i2_dB,
gauthier's avatar
gauthier committed
237
			 uint16_t nb_rb);
238
239
240
241
242
243

double compute_sinr(channel_desc_t *desc,
			 channel_desc_t *desc_i1, 
			 channel_desc_t *desc_i2,
			 double snr_dB,double snr_i1_dB,
			 double snr_i2_dB,
gauthier's avatar
gauthier committed
244
			 uint16_t nb_rb);
245
246

double pbch_bler(double sinr);
247
248
249

void load_pbch_desc(FILE *pbch_file_fd);

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/**@}*/

/**
 * @defgroup _taus_ Tausworthe Uniform Random Variable Generator
 * @ingroup _numerical_ 
 * @{
\fn inline unsigned int taus()
\brief Tausworthe Uniform Random Generator.  This is based on the hardware implementation described in 
  Lee et al, "A Hardware Gaussian Noise Generator Usign the Box-Muller Method and its Error Analysis," IEEE Trans. on Computers, 2006.
*/
inline unsigned int taus(void);


/** 
\fn void set_taus_seed(unsigned int seed_init)
\brief Sets the seed for the Tausworthe generator.
@param seed_init 0 means generate based on CPU time, otherwise provide the seed
*/
void set_taus_seed(unsigned int seed_init);
/**@} */

/** @defgroup _gauss_ Generation of Quantized Gaussian Random Variables 
 * @ingroup _numerical_
 * @{
This set of routines are used to generate quantized (i.e. fixed-point) Gaussian random noise efficiently. 
The use of these routines allows for rapid computer simulation of digital communication systems. The method 
is based on a lookup-table of the quantized normal probability distribution.  The routines assume that the 
continuous-valued Gaussian random-variable,\f$x\f$ is quantized
to \f$N\f$ bits over the interval \f$[-L\sigma,L\sigma)\f$ where \f$N\f$ and \f$L\f$ control the precision 
and range of the quantization.  The 
random variable, \f$l\in\{-2^{N-1},-2^{N-1}+1,\cdots,0,1,\cdots,2^{N-1}-1\}\f$ corresponds to the event, 
\f$E_l = 
\begin{cases} 
x\in\left[-\infty,-L\sigma\right) & l=-2^{N-1}, \\  
x\in\left[\frac{lL\sigma}{2^{N-1}},\frac{(l+1)L\sigma}{2^{N-1}}\right) & <l>-2^{N-1}, \\  
x\in\left[L\sigma,\infty\right) & l>-2^{N-1},
\end{cases}\f$
which occurs with probability
\f$\Pr(E_l) = 
\begin{cases} 
\mathrm{erfc}(L) & l=-2^{N-1}, \\  
\mathrm{erfc}(L) & l>-2^{N-1}, \\  
\mathrm{erf}\left(\frac{lL}{2^{N-1}}\right) \mathrm{erfc}\left(\frac{(l-1)L}{2^{N-1}}\right)& l>-2^{N-1}.
\end{cases}\f$
*/


/** \fn unsigned int *generate_gauss_LUT(unsigned char Nbits,unsigned char L)
\brief This routine generates a Gaussian pdf lookup table (LUT).  The table has \f$2^{\mathrm{Nbits}-1}\f$ entries which represent
the right half of the pdf.  The data stored in position \f$i\f$ is actually the scaled cumulative probability distribution, 
\f$2^{31}\mathrm{erf}\left(\frac{iL}{2^{N-1}}\right)\f$.  This represents the average number of times that the random variable
falls in the interval \f$\left[0,\frac{i}{2^{N-1}}\right)\f$.  This format allows for rapid conversion of uniform 32-bit
random variables to \f$N\f$-bit Gaussian random variables using binary search.
@see gauss
@param Nbits Number of bits for the output variable
@param L Number of standard deviations in range
*/
unsigned int *generate_gauss_LUT(unsigned char Nbits,unsigned char L);
 
/** \fn int gauss(unsigned int *gauss_LUT,unsigned char Nbits);
\brief This routine returns a zero-mean unit-variance Gaussian random variable.  
 Given a 32-bit uniform random variable, 
\f$\mathrm{u}\f$ (from \ref _taus_, we first extract the sign and then search in the monotonically increasing Gaussian LUT for 
the two entries \f$(i,i+1)\f$ for which 
\f$ 2^{31}\mathrm{erf}\left(\frac{i}{2^{Nbits-1}}\right) < |u| \leq 2^{31}\mathrm{erf}\left(\frac{i+1}{2^{Nbits-1}}\right) \f$ and assign 
the value \f$\mathrm{sgn}(u)i\f$.  The search requires at most \f$Nbits-1\f$ comparisons.
@see generate_gauss_LUT
@see taus
@param gauss_LUT pointer to lookup-table
@param Nbits number of bits for output variable ( between 1 and 16) 
*/
int gauss(unsigned int *gauss_LUT,unsigned char Nbits);

double gaussdouble(double,double);
void randominit(unsigned int seed_init);
double uniformrandom(void);
gauthier's avatar
gauthier committed
326
327
328
void freq_channel(channel_desc_t *desc,uint16_t nb_rb, int16_t n_samples);
void init_freq_channel(channel_desc_t *desc,uint16_t nb_rb,int16_t n_samples);
uint8_t multipath_channel_nosigconv(channel_desc_t *desc);
329
330
331
332
333
void multipath_tv_channel(channel_desc_t *desc,
		       double **tx_sig_re, 
		       double **tx_sig_im, 
		       double **rx_sig_re,
		       double **rx_sig_im,
gauthier's avatar
gauthier committed
334
335
		       uint16_t length,
		       uint8_t keep_channel);
336
337
338
339
340
341

/**@} */
/**@} */
#endif