pucch_nr.c 91.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.1  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */

/*! \file PHY/NR_UE_TRANSPORT/pucch_nr.c
* \brief Top-level routines for generating and decoding the PUCCH physical channel
* \author A. Mico Pereperez
* \date 2018
* \version 0.1
* \company Eurecom
* \email: 
* \note
* \warning
*/
//#include "PHY/defs.h"
#include "PHY/impl_defs_nr.h"
#include "PHY/defs_nr_common.h"
35
#include "PHY/defs_nr_UE.h"
36
37
//#include "PHY/extern.h" 
//#include "LAYER2/MAC/extern.h"
38
#include "PHY/NR_UE_TRANSPORT/pucch_nr.h"
39

40
41
#include "common/utils/LOG/log.h"
#include "common/utils/LOG/vcd_signal_dumper.h"
42
43

#include "T.h"
44
#ifdef NR_UNIT_TEST
45
46
47
  #define DEBUG_PUCCH_TX
  #define DEBUG_NR_PUCCH_TX
#endif
48
//#define ONE_OVER_SQRT2 23170 // 32767/sqrt(2) = 23170 (ONE_OVER_SQRT2)
49

50
51
52
53
void nr_group_sequence_hopping (//pucch_GroupHopping_t ue->pucch_config_common_nr.puch_GroupHopping,
                                //uint8_t PUCCH_GroupHopping,
                                PHY_VARS_NR_UE *ue,
                                //uint32_t n_id,
54
                                uint8_t n_hop,
55
                                int nr_tti_tx,
56
57
58
59
60
61
62
63
64
65
66
67
68
69
                                uint8_t *u,
                                uint8_t *v) {
/*
 * Implements TS 38.211 subclause 6.3.2.2.1 Group and sequence hopping
 * The following variables are set by higher layers:
 *    - PUCCH_GroupHopping:
 *    - n_id: higher-layer parameter hoppingId
 *    - n_hop: frequency hopping index
 *             if intra-slot frequency hopping is disabled by the higher-layer parameter PUCCH-frequency-hopping
 *                n_hop=0
 *             if frequency hopping is enabled by the higher-layer parameter PUCCH-frequency-hopping
 *                n_hop=0 for the first hop
 *                n_hop=1 for the second hop
 */
70
71
72
73
74
75
76
77
78
  // depending on the value of the PUCCH_GroupHopping, we will obtain different values for u,v
  pucch_GroupHopping_t PUCCH_GroupHopping = ue->pucch_config_common_nr->pucch_GroupHopping; // from higher layers FIXME!!!
  // n_id defined as per TS 38.211 subclause 6.3.2.2.1 (is given by the higher-layer parameter hoppingId)
  // it is hoppingId from PUCCH-ConfigCommon:
  // Cell-Specific scrambling ID for group hoppping and sequence hopping if enabled
  // Corresponds to L1 parameter 'HoppingID' (see 38.211, section 6.3.2.2) BIT STRING (SIZE (10))
  uint16_t n_id = ue->pucch_config_common_nr->hoppingId; // from higher layers FIXME!!!


79
  #ifdef DEBUG_NR_PUCCH_TX
80
81
82
    // initialization to be removed
    PUCCH_GroupHopping=neither;
    n_id=10;
83
84
    printf("\t\t [nr_group_sequence_hopping] initialization PUCCH_GroupHopping=%d, n_id=%d -> variable initializations TO BE REMOVED\n",PUCCH_GroupHopping,n_id);
  #endif
85
86


87
88
89
90
91
92
93
94
95
  uint8_t f_ss=0,f_gh=0;
  *u=0;
  *v=0;
  uint32_t c_init = (1<<5)*floor(n_id/30)+(n_id%30); // we initialize c_init to calculate u,v
  uint32_t x1,s = lte_gold_generic(&x1, &c_init, 1); // TS 38.211 Subclause 5.2.1
  #ifdef DEBUG_NR_PUCCH_TX
    printf("\t\t [nr_group_sequence_hopping] calculating u,v -> ");
  #endif

96
  if (PUCCH_GroupHopping == neither){ // PUCCH_GroupHopping 'neither'
97
98
    f_ss = n_id%30;
  }
99
  if (PUCCH_GroupHopping == enable){ // PUCCH_GroupHopping 'enabled'
100
    for (int m=0; m<8; m++){
101
      f_gh = f_gh + ((1<<m)*((uint8_t)((s>>(8*(2*nr_tti_tx+n_hop)+m))&1))); // Not sure we have to use nr_tti_tx FIXME!!!
102
103
104
105
    }
    f_gh = f_gh%30;
    f_ss = n_id%30;
  }
106
  if (PUCCH_GroupHopping == disable){ // PUCCH_GroupHopping 'disabled'
107
    f_ss = n_id%30;
108
    *v = (uint8_t)((s>>(2*nr_tti_tx+n_hop))&1); // Not sure we have to use nr_tti_tx FIXME!!!
109
110
111
112
113
114
  }
  *u = (f_gh+f_ss)%30;
  #ifdef DEBUG_NR_PUCCH_TX
    printf("%d,%d\n",*u,*v);
  #endif
}
115

116
double nr_cyclic_shift_hopping(PHY_VARS_NR_UE *ue,
117
118
119
120
                               uint8_t m0,
                               uint8_t mcs,
                               uint8_t lnormal,
                               uint8_t lprime,
121
                               int nr_tti_tx) {
122
123
124
125
126
127
128
129
130
131
/*
 * Implements TS 38.211 subclause 6.3.2.2.2 Cyclic shift hopping
 *     - n_id: higher-layer parameter hoppingId
 *     - m0: provided by higher layer parameter PUCCH-F0-F1-initial-cyclic-shift of PUCCH-F0-resource-config
 *     - mcs: mcs=0 except for PUCCH format 0 when it depends on information to be transmitted according to TS 38.213 subclause 9.2
 *     - lnormal: lnormal is the OFDM symbol number in the PUCCH transmission where l=0 corresponds to the first OFDM symbol of the PUCCH transmission
 *     - lprime: lprime is the index of the OFDM symbol in the slot that corresponds to the first OFDM symbol of the PUCCH transmission in the slot given by [5, TS 38.213]
 */
  // alpha_init initialized to 2*PI/12=0.5235987756
  double alpha = 0.5235987756;
132
133
  uint16_t c_init = ue->pucch_config_common_nr->hoppingId; // we initialize c_init again to calculate n_cs

134
135
  #ifdef DEBUG_NR_PUCCH_TX
    // initialization to be removed
136
    c_init=10;
137
138
    printf("\t\t [nr_cyclic_shift_hopping] initialization c_init=%d -> variable initialization TO BE REMOVED\n",c_init);
  #endif
139

140
141
142
  uint32_t x1,s = lte_gold_generic(&x1, &c_init, 1); // TS 38.211 Subclause 5.2.1
  uint8_t n_cs=0;
  #ifdef DEBUG_NR_PUCCH_TX
143
    printf("\t\t [nr_cyclic_shift_hopping] calculating alpha (cyclic shift) using c_init=%d -> ",c_init);
144
145
  #endif
  for (int m=0; m<8; m++){
146
147
    // calculating n_cs (Not sure we have to use nr_tti_tx FIXME!!!)
    n_cs = n_cs+((1<<m)*((uint8_t)((s>>((14*8*nr_tti_tx) + 8*(lnormal+lprime) + m))&1)));
148
149
150
  }
  alpha = (alpha * (double)((m0+mcs+n_cs)%12));
  #ifdef DEBUG_NR_PUCCH_TX
151
    printf("n_cs=%d -> %lf\n",n_cs,alpha);
152
153
154
  #endif
  return(alpha);
}
155
156
void nr_generate_pucch0(PHY_VARS_NR_UE *ue,
                        int32_t **txdataF,
157
158
159
                        NR_DL_FRAME_PARMS *frame_parms,
                        PUCCH_CONFIG_DEDICATED *pucch_config_dedicated,
                        int16_t amp,
160
                        int nr_tti_tx,
161
                        uint8_t m0,
162
163
164
                        uint8_t mcs,
                        uint8_t nrofSymbols,
                        uint8_t startingSymbolIndex,
165
                        uint16_t startingPRB) {
166
  #ifdef DEBUG_NR_PUCCH_TX
167
    printf("\t [nr_generate_pucch0] start function at slot(nr_tti_tx)=%d\n",nr_tti_tx);
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
  #endif

  /*
   * Implement TS 38.211 Subclause 6.3.2.3.1 Sequence generation
   *
   */
  #ifdef DEBUG_NR_PUCCH_TX
    printf("\t [nr_generate_pucch0] sequence generation\n");
  #endif

  /*
   * Defining cyclic shift hopping TS 38.211 Subclause 6.3.2.2.2
   */
  // alpha is cyclic shift
  double alpha;
  // lnormal is the OFDM symbol number in the PUCCH transmission where l=0 corresponds to the first OFDM symbol of the PUCCH transmission
  uint8_t lnormal;
  // lprime is the index of the OFDM symbol in the slot that corresponds to the first OFDM symbol of the PUCCH transmission in the slot given by [5, TS 38.213]
  uint8_t lprime;
  // mcs is provided by TC 38.213 subclauses 9.2.3, 9.2.4, 9.2.5 FIXME!
  //uint8_t mcs;

  /*
   * in TS 38.213 Subclause 9.2.1 it is said that:
   * for PUCCH format 0 or PUCCH format 1, the index of the cyclic shift
   * is indicated by higher layer parameter PUCCH-F0-F1-initial-cyclic-shift
   */

  /*
   * Implementing TS 38.211 Subclause 6.3.2.3.1, the sequence x(n) shall be generated according to:
   * x(l*12+n) = r_u_v_alpha_delta(n)
   */
  // the value of u,v (delta always 0 for PUCCH) has to be calculated according to TS 38.211 Subclause 6.3.2.2.1
  uint8_t u=0,v=0,delta=0;
  // if frequency hopping is disabled by the higher-layer parameter PUCCH-frequency-hopping
  //              n_hop = 0
  // if frequency hopping is enabled by the higher-layer parameter PUCCH-frequency-hopping
  //              n_hop = 0 for first hop
  //              n_hop = 1 for second hop
  uint8_t n_hop = 0;
208
  //uint8_t PUCCH_Frequency_Hopping; // from higher layers FIXME!!
209

Jacques's avatar
Jacques committed
210
#ifdef DEBUG_NR_PUCCH_TX
211
    printf("\t [nr_generate_pucch0] sequence generation: variable initialization for test\n");
Jacques's avatar
Jacques committed
212
#endif
213
214
215
216
217
218

  // x_n contains the sequence r_u_v_alpha_delta(n)
  int16_t x_n_re[24],x_n_im[24];
  // we proceed to calculate alpha according to TS 38.211 Subclause 6.3.2.2.2
  for (int l=0; l<nrofSymbols; l++){
    // if frequency hopping is enabled n_hop = 1 for second hop. Not sure frequency hopping concerns format 0. FIXME!!!
219
    // if ((PUCCH_Frequency_Hopping == 1)&&(l == (nrofSymbols-1))) n_hop = 1;
220
221
    nr_group_sequence_hopping(ue,n_hop,nr_tti_tx,&u,&v); // calculating u and v value
    alpha = nr_cyclic_shift_hopping(ue,m0,mcs,l,startingSymbolIndex,nr_tti_tx);
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    #ifdef DEBUG_NR_PUCCH_TX
      printf("\t [nr_generate_pucch0] sequence generation \tu=%d \tv=%d \talpha=%lf \t(for symbol l=%d)\n",u,v,alpha,l);
    #endif
    for (int n=0; n<12; n++){
      x_n_re[(12*l)+n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Re[u][n])>>15)
                                  - (((int32_t)(round(32767*sin(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15))); // Re part of base sequence shifted by alpha
      x_n_im[(12*l)+n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15)
                                  + (((int32_t)(round(32767*sin(alpha*n))) * table_5_2_2_2_2_Re[u][n])>>15))); // Im part of base sequence shifted by alpha
      #ifdef DEBUG_NR_PUCCH_TX
        printf("\t [nr_generate_pucch0] sequence generation \tu=%d \tv=%d \talpha=%lf \tx_n(l=%d,n=%d)=(%d,%d)\n",
                u,v,alpha,l,n,x_n_re[(12*l)+n],x_n_im[(12*l)+n]);
      #endif
    }
  }
  /*
   * Implementing TS 38.211 Subclause 6.3.2.3.2 Mapping to physical resources FIXME!
   */
  int32_t *txptr;
  uint32_t re_offset;
  for (int l=0; l<nrofSymbols; l++) {
    if ((startingPRB <  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is lower band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
    }
    if ((startingPRB >= (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is upper band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(startingPRB-(frame_parms->N_RB_DL>>1)));
    }
    if ((startingPRB <  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB is lower band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
    }
    if ((startingPRB >  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB is upper band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(startingPRB-(frame_parms->N_RB_DL>>1))) + 6;
    }
    if ((startingPRB == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB contains DC
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
    }
    txptr = &txdataF[0][re_offset];
    for (int n=0; n<12; n++){
      if ((n==6) && (startingPRB == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) {
        // if number RBs in bandwidth is odd  and current PRB contains DC, we need to recalculate the offset when n=6 (for second half PRB)
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size);
      }
      ((int16_t *)&txdataF[0][re_offset])[0] = (int16_t)(((int32_t)(amp) * x_n_re[(12*l)+n])>>15);
      ((int16_t *)&txdataF[0][re_offset])[1] = (int16_t)(((int32_t)(amp) * x_n_im[(12*l)+n])>>15);
      //((int16_t *)txptr[0][re_offset])[0] = (int16_t)((int32_t)amp * x_n_re[(12*l)+n])>>15;
      //((int16_t *)txptr[0][re_offset])[1] = (int16_t)((int32_t)amp * x_n_im[(12*l)+n])>>15;
      //txptr[re_offset] = (x_n_re[(12*l)+n]<<16) + x_n_im[(12*l)+n];
      #ifdef DEBUG_NR_PUCCH_TX
        printf("\t [nr_generate_pucch0] mapping to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \ttxptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
                amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,re_offset,
                l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
      #endif
      re_offset++;
    }
  }
}
277

278
279
void nr_generate_pucch1(PHY_VARS_NR_UE *ue,
                        int32_t **txdataF,
280
281
282
283
                        NR_DL_FRAME_PARMS *frame_parms,
                        PUCCH_CONFIG_DEDICATED *pucch_config_dedicated,
                        uint64_t payload,
                        int16_t amp,
284
                        int nr_tti_tx,
285
                        uint8_t m0,
286
287
                        uint8_t nrofSymbols,
                        uint8_t startingSymbolIndex,
288
289
                        uint16_t startingPRB,
                        uint16_t startingPRB_intraSlotHopping,
290
291
292
                        uint8_t timeDomainOCC,
                        uint8_t nr_bit) {
#ifdef DEBUG_NR_PUCCH_TX
293
294
  printf("\t [nr_generate_pucch1] start function at slot(nr_tti_tx)=%d payload=%d m0=%d nrofSymbols=%d startingSymbolIndex=%d startingPRB=%d startingPRB_intraSlotHopping=%d timeDomainOCC=%d nr_bit=%d\n",
          nr_tti_tx,payload,m0,nrofSymbols,startingSymbolIndex,startingPRB,startingPRB_intraSlotHopping,timeDomainOCC,nr_bit);
295
296
297
#endif

  /*
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
   * Implement TS 38.211 Subclause 6.3.2.4.1 Sequence modulation
   *
   */
  // complex-valued symbol d_re, d_im containing complex-valued symbol d(0):
  int16_t d_re, d_im;
  if (nr_bit == 1) { // using BPSK if M_bit=1 according to TC 38.211 Subclause 5.1.2
    d_re = (payload&1)==0 ? (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15) : -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    d_im = (payload&1)==0 ? (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15) : -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
  }
  if (nr_bit == 2) { // using QPSK if M_bit=2 according to TC 38.211 Subclause 5.1.2
    if (((payload&1)==0) && (((payload>>1)&1)==0)) {
      d_re =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15); // 32767/sqrt(2) = 23170 (ONE_OVER_SQRT2)
      d_im =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
    if (((payload&1)==0) && (((payload>>1)&1)==1)) {
      d_re =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      d_im = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
    if (((payload&1)==1) && (((payload>>1)&1)==0)) {
      d_re = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      d_im =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
    if (((payload&1)==1) && (((payload>>1)&1)==1)) {
      d_re = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      d_im = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
  }
  #ifdef DEBUG_NR_PUCCH_TX
    printf("\t [nr_generate_pucch1] sequence modulation: payload=%x \tde_re=%d \tde_im=%d\n",payload,d_re,d_im);
  #endif

  /*
   * Defining cyclic shift hopping TS 38.211 Subclause 6.3.2.2.2
   */
  // alpha is cyclic shift
  double alpha;
  // lnormal is the OFDM symbol number in the PUCCH transmission where l=0 corresponds to the first OFDM symbol of the PUCCH transmission
  uint8_t lnormal = 0 ;
  // lprime is the index of the OFDM symbol in the slot that corresponds to the first OFDM symbol of the PUCCH transmission in the slot given by [5, TS 38.213]
  uint8_t lprime = startingSymbolIndex;
  // mcs = 0 except for PUCCH format 0
  uint8_t mcs=0;
  // r_u_v_alpha_delta_re and r_u_v_alpha_delta_im tables containing the sequence y(n) for the PUCCH, when they are multiplied by d(0)
  // r_u_v_alpha_delta_dmrs_re and r_u_v_alpha_delta_dmrs_im tables containing the sequence for the DM-RS.
  int16_t r_u_v_alpha_delta_re[12],r_u_v_alpha_delta_im[12],r_u_v_alpha_delta_dmrs_re[12],r_u_v_alpha_delta_dmrs_im[12];
343
  /*
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
   * in TS 38.213 Subclause 9.2.1 it is said that:
   * for PUCCH format 0 or PUCCH format 1, the index of the cyclic shift
   * is indicated by higher layer parameter PUCCH-F0-F1-initial-cyclic-shift
   */

  /*
   * the complex-valued symbol d_0 shall be multiplied with a sequence r_u_v_alpha_delta(n): y(n) = d_0 * r_u_v_alpha_delta(n)
   */
  // the value of u,v (delta always 0 for PUCCH) has to be calculated according to TS 38.211 Subclause 6.3.2.2.1
  uint8_t u=0,v=0,delta=0;
  // if frequency hopping is disabled, intraSlotFrequencyHopping is not provided
  //              n_hop = 0
  // if frequency hopping is enabled,  intraSlotFrequencyHopping is     provided
  //              n_hop = 0 for first hop
  //              n_hop = 1 for second hop
  uint8_t n_hop = 0;
  // Intra-slot frequency hopping shall be assumed when the higher-layer parameter intraSlotFrequencyHopping is provided,
  // regardless of whether the frequency-hop distance is zero or not,
  // otherwise no intra-slot frequency hopping shall be assumed
  //uint8_t PUCCH_Frequency_Hopping = 0 ; // from higher layers
  uint8_t intraSlotFrequencyHopping = 0;
  if (startingPRB != startingPRB_intraSlotHopping){
    intraSlotFrequencyHopping=1;
  }
368
369
370
#ifdef DEBUG_NR_PUCCH_TX
  printf("\t [nr_generate_pucch1] intraSlotFrequencyHopping = %d \n",intraSlotFrequencyHopping);
#endif
371
372
/*
 * Implementing TS 38.211 Subclause 6.3.2.4.2 Mapping to physical resources
373
 */
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
  int32_t *txptr;
  uint32_t re_offset;
  int i=0;
  #define MAX_SIZE_Z 168 // this value has to be calculated from mprime*12*table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[pucch_symbol_length]+m*12+n
  int16_t z_re[MAX_SIZE_Z],z_im[MAX_SIZE_Z];
  int16_t z_dmrs_re[MAX_SIZE_Z],z_dmrs_im[MAX_SIZE_Z];

  for (int l=0; l<nrofSymbols; l++) {
    #ifdef DEBUG_NR_PUCCH_TX
      printf("\t [nr_generate_pucch1] for symbol l=%d, lprime=%d\n",
              l,lprime);
    #endif
    // y_n contains the complex value d multiplied by the sequence r_u_v
    int16_t y_n_re[12],y_n_im[12];
    if ((intraSlotFrequencyHopping == 1) && (l >= (int)floor(nrofSymbols/2))) n_hop = 1; // n_hop = 1 for second hop
    #ifdef DEBUG_NR_PUCCH_TX
      printf("\t [nr_generate_pucch1] entering function nr_group_sequence_hopping with n_hop=%d, nr_tti_tx=%d\n",
              n_hop,nr_tti_tx);
    #endif
    nr_group_sequence_hopping(ue,n_hop,nr_tti_tx,&u,&v); // calculating u and v value
    alpha = nr_cyclic_shift_hopping(ue,m0,mcs,l,lprime,nr_tti_tx);
    for (int n=0; n<12; n++){
      r_u_v_alpha_delta_re[n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Re[u][n])>>15)
                                         - (((int32_t)(round(32767*sin(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15))); // Re part of base sequence shifted by alpha
      r_u_v_alpha_delta_im[n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15)
                                         + (((int32_t)(round(32767*sin(alpha*n))) * table_5_2_2_2_2_Re[u][n])>>15))); // Im part of base sequence shifted by alpha
      r_u_v_alpha_delta_dmrs_re[n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Re[u][n])>>15)
                                              - (((int32_t)(round(32767*sin(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15))); // Re part of DMRS base sequence shifted by alpha
      r_u_v_alpha_delta_dmrs_im[n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15)
                                              + (((int32_t)(round(32767*sin(alpha*n))) * table_5_2_2_2_2_Re[u][n])>>15))); // Im part of DMRS base sequence shifted by alpha
404
405
      r_u_v_alpha_delta_dmrs_re[n] = (int16_t)(((int32_t)(amp*r_u_v_alpha_delta_dmrs_re[n]))>>15);
      r_u_v_alpha_delta_dmrs_im[n] = (int16_t)(((int32_t)(amp*r_u_v_alpha_delta_dmrs_im[n]))>>15);
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
      // PUCCH sequence = DM-RS sequence multiplied by d(0)
      y_n_re[n]               = (int16_t)(((((int32_t)(r_u_v_alpha_delta_re[n])*d_re)>>15)
                                         - (((int32_t)(r_u_v_alpha_delta_im[n])*d_im)>>15))); // Re part of y(n)
      y_n_im[n]               = (int16_t)(((((int32_t)(r_u_v_alpha_delta_re[n])*d_im)>>15)
                                         + (((int32_t)(r_u_v_alpha_delta_im[n])*d_re)>>15))); // Im part of y(n)
      #ifdef DEBUG_NR_PUCCH_TX
        printf("\t [nr_generate_pucch1] sequence generation \tu=%d \tv=%d \talpha=%lf \tr_u_v_alpha_delta[n=%d]=(%d,%d) \ty_n[n=%d]=(%d,%d)\n",
            u,v,alpha,n,r_u_v_alpha_delta_re[n],r_u_v_alpha_delta_im[n],n,y_n_re[n],y_n_im[n]);
      #endif
    }
    /*
     * The block of complex-valued symbols y(n) shall be block-wise spread with the orthogonal sequence wi(m)
     * (defined in table_6_3_2_4_1_2_Wi_Re and table_6_3_2_4_1_2_Wi_Im)
     * z(mprime*12*table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[pucch_symbol_length]+m*12+n)=wi(m)*y(n)
     *
     * The block of complex-valued symbols r_u_v_alpha_dmrs_delta(n) for DM-RS shall be block-wise spread with the orthogonal sequence wi(m)
     * (defined in table_6_3_2_4_1_2_Wi_Re and table_6_3_2_4_1_2_Wi_Im)
     * z(mprime*12*table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_noHop[pucch_symbol_length]+m*12+n)=wi(m)*y(n)
     *
     */
    // the orthogonal sequence index for wi(m) defined in TS 38.213 Subclause 9.2.1
    // the index of the orthogonal cover code is from a set determined as described in [4, TS 38.211]
    // and is indicated by higher layer parameter PUCCH-F1-time-domain-OCC
    // In the PUCCH_Config IE, the PUCCH-format1, timeDomainOCC field
    uint8_t w_index = timeDomainOCC;
    // N_SF_mprime_PUCCH_1 contains N_SF_mprime from table 6.3.2.4.1-1   (depending on number of PUCCH symbols nrofSymbols, mprime and intra-slot hopping enabled/disabled)
    uint8_t N_SF_mprime_PUCCH_1;
    // N_SF_mprime_PUCCH_1 contains N_SF_mprime from table 6.4.1.3.1.1-1 (depending on number of PUCCH symbols nrofSymbols, mprime and intra-slot hopping enabled/disabled)
    uint8_t N_SF_mprime_PUCCH_DMRS_1;
    // N_SF_mprime_PUCCH_1 contains N_SF_mprime from table 6.3.2.4.1-1   (depending on number of PUCCH symbols nrofSymbols, mprime=0 and intra-slot hopping enabled/disabled)
    uint8_t N_SF_mprime0_PUCCH_1;
    // N_SF_mprime_PUCCH_1 contains N_SF_mprime from table 6.4.1.3.1.1-1 (depending on number of PUCCH symbols nrofSymbols, mprime=0 and intra-slot hopping enabled/disabled)
    uint8_t N_SF_mprime0_PUCCH_DMRS_1;
    // mprime is 0 if no intra-slot hopping / mprime is {0,1} if intra-slot hopping
    uint8_t mprime = 0;
    if (intraSlotFrequencyHopping == 0) { // intra-slot hopping disabled
      #ifdef DEBUG_NR_PUCCH_TX
443
        printf("\t [nr_generate_pucch1] block-wise spread with the orthogonal sequence wi(m) if intraSlotFrequencyHopping = %d, intra-slot hopping disabled\n",
444
445
446
447
448
449
                intraSlotFrequencyHopping);
      #endif
      N_SF_mprime_PUCCH_1       =   table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled (PUCCH)
      N_SF_mprime_PUCCH_DMRS_1  = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled (DM-RS)
      N_SF_mprime0_PUCCH_1      =   table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled mprime = 0 (PUCCH)
      N_SF_mprime0_PUCCH_DMRS_1 = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled mprime = 0 (DM-RS)
450
451
452
453
      #ifdef DEBUG_NR_PUCCH_TX
        printf("\t [nr_generate_pucch1] w_index = %d, N_SF_mprime_PUCCH_1 = %d, N_SF_mprime_PUCCH_DMRS_1 = %d, N_SF_mprime0_PUCCH_1 = %d, N_SF_mprime0_PUCCH_DMRS_1 = %d\n",
                 w_index, N_SF_mprime_PUCCH_1,N_SF_mprime_PUCCH_DMRS_1,N_SF_mprime0_PUCCH_1,N_SF_mprime0_PUCCH_DMRS_1);
      #endif
454
455
456
457
458
459
460
      for (int m=0; m < N_SF_mprime_PUCCH_1; m++){
        for (int n=0; n<12 ; n++){
          z_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]           = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15)
                                                                              - (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15));
          z_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]           = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15)
                                                                              + (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15));
          #ifdef DEBUG_NR_PUCCH_TX
461
462
            printf("\t [nr_generate_pucch1] block-wise spread with wi(m) (mprime=%d, m=%d, n=%d) z[%d] = ((%d * %d - %d * %d), (%d * %d + %d * %d)) = (%d,%d)\n",
                    mprime, m, n, (mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n,
463
464
465
466
467
468
469
470
                    table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m],y_n_re[n],table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m],y_n_im[n],
                    table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m],y_n_im[n],table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m],y_n_re[n],
                    z_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n],z_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]);
          #endif
        }
      }
      for (int m=0; m < N_SF_mprime_PUCCH_DMRS_1; m++){
        for (int n=0; n<12 ; n++){
471
472
473
474
          z_dmrs_re[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_dmrs_re[n])>>15)
                                                                              - (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_dmrs_im[n])>>15));
          z_dmrs_im[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_dmrs_im[n])>>15)
                                                                              + (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_dmrs_re[n])>>15));
475
          #ifdef DEBUG_NR_PUCCH_TX
476
477
478
479
480
            printf("\t [nr_generate_pucch1] block-wise spread with wi(m) (mprime=%d, m=%d, n=%d) z[%d] = ((%d * %d - %d * %d), (%d * %d + %d * %d)) = (%d,%d)\n",
                    mprime, m, n, (mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n,
                    table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m],r_u_v_alpha_delta_dmrs_re[n],table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m],r_u_v_alpha_delta_dmrs_im[n],
                    table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m],r_u_v_alpha_delta_dmrs_im[n],table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m],r_u_v_alpha_delta_dmrs_re[n],
                    z_dmrs_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n],z_dmrs_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]);
481
482
483
484
485
486
          #endif
        }
      }
    }
    if (intraSlotFrequencyHopping == 1) { // intra-slot hopping enabled
      #ifdef DEBUG_NR_PUCCH_TX
487
        printf("\t [nr_generate_pucch1] block-wise spread with the orthogonal sequence wi(m) if intraSlotFrequencyHopping = %d, intra-slot hopping enabled\n",
488
489
490
491
492
493
                intraSlotFrequencyHopping);
      #endif
      N_SF_mprime_PUCCH_1       =   table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (PUCCH)
      N_SF_mprime_PUCCH_DMRS_1  = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (DM-RS)
      N_SF_mprime0_PUCCH_1      =   table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (PUCCH)
      N_SF_mprime0_PUCCH_DMRS_1 = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (DM-RS)
494
495
496
497
498
      #ifdef DEBUG_NR_PUCCH_TX
        printf("\t [nr_generate_pucch1] w_index = %d, N_SF_mprime_PUCCH_1 = %d, N_SF_mprime_PUCCH_DMRS_1 = %d, N_SF_mprime0_PUCCH_1 = %d, N_SF_mprime0_PUCCH_DMRS_1 = %d\n",
                 w_index, N_SF_mprime_PUCCH_1,N_SF_mprime_PUCCH_DMRS_1,N_SF_mprime0_PUCCH_1,N_SF_mprime0_PUCCH_DMRS_1);
      #endif
      for (int m=0; m < N_SF_mprime_PUCCH_1; m++){
499
500
501
502
503
504
505
      for (mprime = 0; mprime<2; mprime++){ // mprime can get values {0,1}
        for (int m=0; m < N_SF_mprime_PUCCH_1; m++){
          for (int n=0; n<12 ; n++){
            z_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]           = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15)
                                                                                - (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15));
            z_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]           = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15)
                                                                                + (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15));
506
507
508
509
510
511
512
#ifdef DEBUG_NR_PUCCH_TX
  printf("\t [nr_generate_pucch1] block-wise spread with wi(m) (mprime=%d, m=%d, n=%d) z[%d] = ((%d * %d - %d * %d), (%d * %d + %d * %d)) = (%d,%d)\n",
          mprime, m, n, (mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n,
          table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m],y_n_re[n],table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m],y_n_im[n],
          table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m],y_n_im[n],table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m],y_n_re[n],
          z_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n],z_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]);
#endif
513
514
515
516
          }
        }
        for (int m=0; m < N_SF_mprime_PUCCH_DMRS_1; m++){
          for (int n=0; n<12 ; n++){
517
518
519
520
521
522
523
524
525
526
527
            z_dmrs_re[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_dmrs_re[n])>>15)
                                                                                - (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_dmrs_im[n])>>15));
            z_dmrs_im[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_dmrs_im[n])>>15)
                                                                                + (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_dmrs_re[n])>>15));
#ifdef DEBUG_NR_PUCCH_TX
  printf("\t [nr_generate_pucch1] block-wise spread with wi(m) (mprime=%d, m=%d, n=%d) z[%d] = ((%d * %d - %d * %d), (%d * %d + %d * %d)) = (%d,%d)\n",
          mprime, m, n, (mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n,
          table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m],r_u_v_alpha_delta_dmrs_re[n],table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m],r_u_v_alpha_delta_dmrs_im[n],
          table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m],r_u_v_alpha_delta_dmrs_im[n],table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m],r_u_v_alpha_delta_dmrs_re[n],
          z_dmrs_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n],z_dmrs_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]);
#endif
528
529
530
531
532
          }
        }
        N_SF_mprime_PUCCH_1       =   table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_m1Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 1 (PUCCH)
        N_SF_mprime_PUCCH_DMRS_1  = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_m1Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 1 (DM-RS)
      }
533
      }
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
    }
    if ((intraSlotFrequencyHopping == 1) && (l<floor(nrofSymbols/2))) { // intra-slot hopping enabled, we need to calculate new offset PRB
      startingPRB = startingPRB + startingPRB_intraSlotHopping;
    }
    if ((startingPRB <  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is lower band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
    }
    if ((startingPRB >= (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is upper band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(startingPRB-(frame_parms->N_RB_DL>>1)));
    }
    if ((startingPRB <  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB is lower band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
    }
    if ((startingPRB >  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB is upper band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(startingPRB-(frame_parms->N_RB_DL>>1))) + 6;
    }
    if ((startingPRB == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB contains DC
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
    }


    txptr = &txdataF[0][re_offset];
    for (int n=0; n<12; n++){
      if ((n==6) && (startingPRB == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) {
        // if number RBs in bandwidth is odd  and current PRB contains DC, we need to recalculate the offset when n=6 (for second half PRB)
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size);
      }
      if (l%2 == 1) { // mapping PUCCH according to TS38.211 subclause 6.4.1.3.1
        ((int16_t *)&txdataF[0][re_offset])[0] = z_re[i+n];
        ((int16_t *)&txdataF[0][re_offset])[1] = z_im[i+n];
        #ifdef DEBUG_NR_PUCCH_TX
          printf("\t [nr_generate_pucch1] mapping PUCCH to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_pucch[%d]=txptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
                  amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,i+n,re_offset,
                  l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
        #endif
      }
      if (l%2 == 0) { // mapping DM-RS signal according to TS38.211 subclause 6.4.1.3.1
        ((int16_t *)&txdataF[0][re_offset])[0] = z_dmrs_re[i+n];
        ((int16_t *)&txdataF[0][re_offset])[1] = z_dmrs_im[i+n];
        #ifdef DEBUG_NR_PUCCH_TX
          printf("\t [nr_generate_pucch1] mapping DM-RS to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_dm-rs[%d]=txptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
                  amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,i+n,re_offset,
                  l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
        #endif
      }
      re_offset++;
    }
    if (l%2 == 1) i+=12;
  }
}

#if 0
void nr_generate_pucch1_old(PHY_VARS_NR_UE *ue,
                        int32_t **txdataF,
                        NR_DL_FRAME_PARMS *frame_parms,
                        PUCCH_CONFIG_DEDICATED *pucch_config_dedicated,
                        uint64_t payload,
                        int16_t amp,
                        int nr_tti_tx,
                        uint8_t m0,
                        uint8_t nrofSymbols,
                        uint8_t startingSymbolIndex,
                        uint16_t startingPRB,
                        uint16_t startingPRB_intraSlotHopping,
                        uint8_t timeDomainOCC,
                        uint8_t nr_bit) {
#ifdef DEBUG_NR_PUCCH_TX
  printf("\t [nr_generate_pucch1] start function at slot(nr_tti_tx)=%d payload=%d m0=%d nrofSymbols=%d startingSymbolIndex=%d startingPRB=%d startingPRB_intraSlotHopping=%d timeDomainOCC=%d nr_bit=%d\n",
          nr_tti_tx,payload,m0,nrofSymbols,startingSymbolIndex,startingPRB,startingPRB_intraSlotHopping,timeDomainOCC,nr_bit);
#endif
604
605
606
607
608
609
610

  /*
   * Implement TS 38.211 Subclause 6.3.2.4.1 Sequence modulation
   *
   */
  // complex-valued symbol d_re, d_im containing complex-valued symbol d(0):
  int16_t d_re, d_im;
611
  if (nr_bit == 1) { // using BPSK if M_bit=1 according to TC 38.211 Subclause 5.1.2
612
613
614
    d_re = (payload&1)==0 ? (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15) : -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    d_im = (payload&1)==0 ? (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15) : -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
  }
615
  if (nr_bit == 2) { // using QPSK if M_bit=2 according to TC 38.211 Subclause 5.1.2
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
    if (((payload&1)==0) && (((payload>>1)&1)==0)) {
      d_re =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15); // 32767/sqrt(2) = 23170 (ONE_OVER_SQRT2)
      d_im =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
    if (((payload&1)==0) && (((payload>>1)&1)==1)) {
      d_re =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      d_im = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
    if (((payload&1)==1) && (((payload>>1)&1)==0)) {
      d_re = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      d_im =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
    if (((payload&1)==1) && (((payload>>1)&1)==1)) {
      d_re = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      d_im = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
  }
  #ifdef DEBUG_NR_PUCCH_TX
    printf("\t [nr_generate_pucch1] sequence modulation: payload=%x \tde_re=%d \tde_im=%d\n",payload,d_re,d_im);
  #endif

  /*
   * Defining cyclic shift hopping TS 38.211 Subclause 6.3.2.2.2
   */
  // alpha is cyclic shift
  double alpha;
  // lnormal is the OFDM symbol number in the PUCCH transmission where l=0 corresponds to the first OFDM symbol of the PUCCH transmission
  uint8_t lnormal = 0 ;
  // lprime is the index of the OFDM symbol in the slot that corresponds to the first OFDM symbol of the PUCCH transmission in the slot given by [5, TS 38.213]
  uint8_t lprime = startingSymbolIndex;
  // mcs = 0 except for PUCCH format 0
  uint8_t mcs=0;
  // r_u_v_alpha_delta_re and r_u_v_alpha_delta_im tables containing the sequence for the DM-RS.
  // When they are multiplied by d(0), they become the sequence y(n) for the PUCCH
  int16_t r_u_v_alpha_delta_re[12],r_u_v_alpha_delta_im[12];
  /*
   * in TS 38.213 Subclause 9.2.1 it is said that:
   * for PUCCH format 0 or PUCCH format 1, the index of the cyclic shift
   * is indicated by higher layer parameter PUCCH-F0-F1-initial-cyclic-shift
   */

  /*
   * the complex-valued symbol d_0 shall be multiplied with a sequence r_u_v_alpha_delta(n): y(n) = d_0 * r_u_v_alpha_delta(n)
   */
  // the value of u,v (delta always 0 for PUCCH) has to be calculated according to TS 38.211 Subclause 6.3.2.2.1
  uint8_t u=0,v=0,delta=0;
  // if frequency hopping is disabled, intraSlotFrequencyHopping is not provided
  //              n_hop = 0
  // if frequency hopping is enabled,  intraSlotFrequencyHopping is     provided
  //              n_hop = 0 for first hop
  //              n_hop = 1 for second hop
  uint8_t n_hop = 0;
  // Intra-slot frequency hopping shall be assumed when the higher-layer parameter intraSlotFrequencyHopping is provided,
  // regardless of whether the frequency-hop distance is zero or not,
  // otherwise no intra-slot frequency hopping shall be assumed
671
  //uint8_t PUCCH_Frequency_Hopping = 0 ; // from higher layers
672
  uint8_t intraSlotFrequencyHopping = 0;
673
674
675
  if (startingPRB != startingPRB_intraSlotHopping){
    intraSlotFrequencyHopping=1;
    #ifdef DEBUG_NR_PUCCH_TX
676
      printf("\t [nr_generate_pucch1] intraSlotFrequencyHopping=%d \n",intraSlotFrequencyHopping);
677
678
679
680
681
682
    #endif
    // n_hop = 1 for second hop;
    // FIXME
    // When hopping will be activated we have to implement this function differently as PUCH signal generation depends on n_hop value for u,v calculation
  }

683
684
  // y_n contains the complex value d multiplied by the sequence r_u_v
  int16_t y_n_re[12],y_n_im[12];
685
  #ifdef DEBUG_NR_PUCCH_TX
686
687
    printf("\t [nr_generate_pucch1] entering function nr_group_sequence_hopping with n_hop=%d, nr_tti_tx=%d\n",
            n_hop,nr_tti_tx);
688
  #endif
689
690
  nr_group_sequence_hopping(ue,n_hop,nr_tti_tx,&u,&v); // calculating u and v value
  alpha = nr_cyclic_shift_hopping(ue,m0,mcs,lnormal,lprime,nr_tti_tx);
691
  for (int n=0; n<12; n++){
692
693
694
695
    r_u_v_alpha_delta_re[n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Re[u][n])>>15)
                                       - (((int32_t)(round(32767*sin(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15))); // Re part of base sequence shifted by alpha
    r_u_v_alpha_delta_im[n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15)
                                       + (((int32_t)(round(32767*sin(alpha*n))) * table_5_2_2_2_2_Re[u][n])>>15))); // Im part of base sequence shifted by alpha
696
    // PUCCH sequence = DM-RS sequence multiplied by d(0)
697
698
699
700
    y_n_re[n]               = (int16_t)(((((int32_t)(r_u_v_alpha_delta_re[n])*d_re)>>15)
                                       - (((int32_t)(r_u_v_alpha_delta_im[n])*d_im)>>15))); // Re part of y(n)
    y_n_im[n]               = (int16_t)(((((int32_t)(r_u_v_alpha_delta_re[n])*d_im)>>15)
                                       + (((int32_t)(r_u_v_alpha_delta_im[n])*d_re)>>15))); // Im part of y(n)
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
    // DM-RS sequence
    r_u_v_alpha_delta_re[n] = (int16_t)(((int32_t)amp*r_u_v_alpha_delta_re[n])>>15);
    r_u_v_alpha_delta_im[n] = (int16_t)(((int32_t)amp*r_u_v_alpha_delta_im[n])>>15);
    #ifdef DEBUG_NR_PUCCH_TX
      printf("\t [nr_generate_pucch1] sequence generation \tu=%d \tv=%d \talpha=%lf \tr_u_v_alpha_delta[n=%d]=(%d,%d) \ty_n[n=%d]=(%d,%d)\n",
          u,v,alpha,n,r_u_v_alpha_delta_re[n],r_u_v_alpha_delta_im[n],n,y_n_re[n],y_n_im[n]);
    #endif
  }
  /*
   * The block of complex-valued symbols y(n) shall be block-wise spread with the orthogonal sequence wi(m)
   * (defined in table_6_3_2_4_1_2_Wi_Re and table_6_3_2_4_1_2_Wi_Im)
   * z(mprime*12*table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[pucch_symbol_length]+m*12+n)=wi(m)*y(n)
   *
   * The block of complex-valued symbols r_u_v_alpha_delta(n) for DM-RS shall be block-wise spread with the orthogonal sequence wi(m)
   * (defined in table_6_3_2_4_1_2_Wi_Re and table_6_3_2_4_1_2_Wi_Im)
   * z(mprime*12*table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_noHop[pucch_symbol_length]+m*12+n)=wi(m)*y(n)
   *
   * We are not implementing intra-slot hopping at the moment (so mprime=0)FIXME!
   */
#define MAX_SIZE_Z 168 // this value has to be calculated from mprime*12*table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[pucch_symbol_length]+m*12+n
  int16_t z_re[MAX_SIZE_Z],z_im[MAX_SIZE_Z];
  int16_t z_dmrs_re[MAX_SIZE_Z],z_dmrs_im[MAX_SIZE_Z];
  // the orthogonal sequence index for wi(m) defined in TS 38.213 Subclause 9.2.1
  // the index of the orthogonal cover code is from a set determined as described in [4, TS 38.211]
  // and is indicated by higher layer parameter PUCCH-F1-time-domain-OCC
  // In the PUCCH_Config IE, the PUCCH-format1, timeDomainOCC field FIXME!
  uint8_t w_index = timeDomainOCC; // to be filled with the value of timeDomainOCC, higher layers parameters FIXME !!!
  // N_SF_mprime_PUCCH_1 contains N_SF_mprime from table 6.3.2.4.1-1   (depending on number of PUCCH symbols nrofSymbols, mprime and intra-slot hopping enabled/disabled)
  uint8_t N_SF_mprime_PUCCH_1;
  // N_SF_mprime_PUCCH_1 contains N_SF_mprime from table 6.4.1.3.1.1-1 (depending on number of PUCCH symbols nrofSymbols, mprime and intra-slot hopping enabled/disabled)
  uint8_t N_SF_mprime_PUCCH_DMRS_1;
  // N_SF_mprime_PUCCH_1 contains N_SF_mprime from table 6.3.2.4.1-1   (depending on number of PUCCH symbols nrofSymbols, mprime=0 and intra-slot hopping enabled/disabled)
  uint8_t N_SF_mprime0_PUCCH_1;
  // N_SF_mprime_PUCCH_1 contains N_SF_mprime from table 6.4.1.3.1.1-1 (depending on number of PUCCH symbols nrofSymbols, mprime=0 and intra-slot hopping enabled/disabled)
  uint8_t N_SF_mprime0_PUCCH_DMRS_1;
  // mprime is 0 if no intra-slot hopping / mprime is {0,1} if intra-slot hopping
  uint8_t mprime = 0;
  if (intraSlotFrequencyHopping == 0) { // intra-slot hopping disabled
    #ifdef DEBUG_NR_PUCCH_TX
      printf("\t [nr_generate_pucch1] block-wise spread with the orthogonal sequence wi(m) if intraSlotFrequencyHopping = %d\n",
              intraSlotFrequencyHopping);
    #endif
    N_SF_mprime_PUCCH_1       =   table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled (PUCCH)
    N_SF_mprime_PUCCH_DMRS_1  = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled (DM-RS)
    N_SF_mprime0_PUCCH_1      =   table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled mprime = 0 (PUCCH)
    N_SF_mprime0_PUCCH_DMRS_1 = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled mprime = 0 (DM-RS)
    for (int m=0; m < N_SF_mprime_PUCCH_1; m++){
      for (int n=0; n<12 ; n++){
        z_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]           = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15)
                                                                            - (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15));
        z_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]           = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15)
                                                                            + (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15));
        #ifdef DEBUG_NR_PUCCH_TX
          printf("\t\t z_pucch[%d] \t= ((%d \t* %d \t-%d \t* %d),   (%d \t* %d \t+%d \t*%d))    = (%d,%d)\n",
                  (mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n,
                  table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m],y_n_re[n],table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m],y_n_im[n],
                  table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m],y_n_im[n],table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m],y_n_re[n],
                  z_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n],z_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]);
        #endif
      }
    }
    for (int m=0; m < N_SF_mprime_PUCCH_DMRS_1; m++){
      for (int n=0; n<12 ; n++){
        z_dmrs_re[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_re[n])>>15)
                                                                            - (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_im[n])>>15));
        z_dmrs_im[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_im[n])>>15)
                                                                            + (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_re[n])>>15));
        #ifdef DEBUG_NR_PUCCH_TX
          printf("\t\t z_dm-rs[%d] = ((),()) =(%d,%d)\n",
                  (mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n,z_dmrs_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n],z_dmrs_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]);
        #endif
      }
    }
  }
  if (intraSlotFrequencyHopping == 1) { // intra-slot hopping enabled
    #ifdef DEBUG_NR_PUCCH_TX
      printf("\t [nr_generate_pucch1] block-wise spread with the orthogonal sequence wi(m) if intraSlotFrequencyHopping = %d\n",
              intraSlotFrequencyHopping);
    #endif
    N_SF_mprime_PUCCH_1       =   table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (PUCCH)
    N_SF_mprime_PUCCH_DMRS_1  = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (DM-RS)
    N_SF_mprime0_PUCCH_1      =   table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (PUCCH)
    N_SF_mprime0_PUCCH_DMRS_1 = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (DM-RS)
    for (mprime = 0; mprime<2; mprime++){ // mprime can get values {0,1}
      for (int m=0; m < N_SF_mprime_PUCCH_1; m++){
        for (int n=0; n<12 ; n++){
          z_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]           = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15)
                                                                              - (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15));
          z_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]           = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15)
                                                                              + (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15));
        }
      }
      for (int m=0; m < N_SF_mprime_PUCCH_DMRS_1; m++){
        for (int n=0; n<12 ; n++){
          z_dmrs_re[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_re[n])>>15)
                                                                              - (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_im[n])>>15));
          z_dmrs_im[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_im[n])>>15)
                                                                              + (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_re[n])>>15));
        }
      }
      N_SF_mprime_PUCCH_1       =   table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_m1Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 1 (PUCCH)
      N_SF_mprime_PUCCH_DMRS_1  = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_m1Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 1 (DM-RS)
    }
  }
/*
 * Implementing TS 38.211 Subclause 6.3.2.4.2 Mapping to physical resources
 */
  int32_t *txptr;
  uint32_t re_offset;
  int i=0;
  for (int l=0; l<nrofSymbols; l++) {
    if ((intraSlotFrequencyHopping == 1) && (l<floor(nrofSymbols/2))) { // intra-slot hopping enabled, we need to calculate new PRB, FIXME!!!
      startingPRB = startingPRB + startingPRB_intraSlotHopping;
    }
    if ((startingPRB <  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is lower band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
    }
    if ((startingPRB >= (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is upper band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(startingPRB-(frame_parms->N_RB_DL>>1)));
    }
    if ((startingPRB <  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB is lower band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
    }
    if ((startingPRB >  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB is upper band
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(startingPRB-(frame_parms->N_RB_DL>>1))) + 6;
    }
    if ((startingPRB == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB contains DC
      re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
    }
    txptr = &txdataF[0][re_offset];
    for (int n=0; n<12; n++){
      if ((n==6) && (startingPRB == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) {
        // if number RBs in bandwidth is odd  and current PRB contains DC, we need to recalculate the offset when n=6 (for second half PRB)
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size);
      }
      if (l%2 == 1) { // mapping PUCCH according to TS38.211 subclause 6.4.1.3.1
        ((int16_t *)&txdataF[0][re_offset])[0] = z_re[i+n];
        ((int16_t *)&txdataF[0][re_offset])[1] = z_im[i+n];
        #ifdef DEBUG_NR_PUCCH_TX
          printf("\t [nr_generate_pucch1] mapping PUCCH to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_pucch[%d]=txptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
                  amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,i+n,re_offset,
                  l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
        #endif
      }
      if (l%2 == 0) { // mapping DM-RS signal according to TS38.211 subclause 6.4.1.3.1
        ((int16_t *)&txdataF[0][re_offset])[0] = z_dmrs_re[i+n];
        ((int16_t *)&txdataF[0][re_offset])[1] = z_dmrs_im[i+n];
        #ifdef DEBUG_NR_PUCCH_TX
          printf("\t [nr_generate_pucch1] mapping DM-RS to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_dm-rs[%d]=txptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
                  amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,i+n,re_offset,
                  l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
        #endif
      }
      re_offset++;
    }
    if (l%2 == 1) i+=12;
  }
}
859
#endif //0
860
861
862
863
864
865
866
867

inline void nr_pucch2_3_4_scrambling(uint16_t M_bit,uint16_t rnti,uint16_t n_id,uint32_t B,uint8_t *btilde) __attribute__((always_inline));
inline void nr_pucch2_3_4_scrambling(uint16_t M_bit,uint16_t rnti,uint16_t n_id,uint32_t B,uint8_t *btilde) {

  uint32_t x1, x2, s=0;
  int i;
  uint8_t c;
  // c_init=nRNTI*2^15+n_id according to TS 38.211 Subclause 6.3.2.6.1
868
  //x2 = (rnti) + ((uint32_t)(1+nr_tti_tx)<<16)*(1+(fp->Nid_cell<<1));
869
870
871
872
873
874
875
876
  x2 = ((rnti)<<15)+n_id;
  s = lte_gold_generic(&x1, &x2, 1);
  #ifdef DEBUG_NR_PUCCH_TX
    printf("\t\t [nr_pucch2_3_4_scrambling] gold sequence s=%lx\n",s);
  #endif
  for (i=0;i<M_bit;i++) {
    c = (uint8_t)((s>>i)&1);
    btilde[i] = (((B>>i)&1) ^ c);
877
    #ifdef DEBUG_NR_PUCCH_TX
878
      //printf("\t\t\t btilde[%d]=%lx from scrambled bit %d\n",i,btilde[i],((B>>i)&1));
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
    #endif
  }
  #ifdef DEBUG_NR_PUCCH_TX
    printf("\t\t [nr_pucch2_3_4_scrambling] scrambling M_bit=%d bits\n", M_bit);
  #endif

}
void nr_uci_encoding(uint64_t payload,
                     uint8_t nr_bit,
                     pucch_format_nr_t fmt,
                     uint8_t is_pi_over_2_bpsk_enabled,
                     uint8_t nrofSymbols,
                     uint8_t nrofPRB,
                     uint8_t n_SF_PUCCH_s,
                     uint8_t intraSlotFrequencyHopping,
                     uint8_t add_dmrs,
                     uint64_t *b,
                     uint16_t *M_bit) {
  /*
   * Implementing TS 38.212 Subclause 6.3.1.2
   *
   */

  // A is the payload size, to be provided in function call
  uint8_t A = nr_bit;
  // L is the CRC size
  uint8_t L;
  // E is the rate matching output sequence length as given in TS 38.212 subclause 6.3.1.4.1
  uint16_t E,E_init;
  if (fmt == pucch_format2_nr) E = 16*nrofSymbols*nrofPRB;
  if (fmt == pucch_format3_nr){
    E_init = (is_pi_over_2_bpsk_enabled == 0) ? 24:12;
    if (nrofSymbols == 4) {
      E = (intraSlotFrequencyHopping == 0)?(E_init*(nrofSymbols-1)*nrofPRB):((E_init*(nrofSymbols-1)*nrofPRB));
913
914
915
      #ifdef DEBUG_NR_PUCCH_TX
        printf("format 3 nrofSymbols =4 and E_init=%d,E=%d\n",E_init,E);
      #endif
916
917
918
    }
    if (nrofSymbols > 4)  {
      E = E_init*(nrofSymbols-2)*nrofPRB;
919
920
921
      #ifdef DEBUG_NR_PUCCH_TX
        printf("format 3 nrofSymbols >4 and E_init=%d,E = %d\n",E_init,E);
      #endif
922
923
924
    }
    if (nrofSymbols > 9)  {
      E = (add_dmrs == 0)?(E_init*(nrofSymbols-2)*nrofPRB):((E_init*(nrofSymbols-4)*nrofPRB));
925
926
927
      #ifdef DEBUG_NR_PUCCH_TX
        printf("format 3 nrofSymbols >9 and E_init=%d,E = %d\n",E_init,E);
      #endif
928
929
930
931
932
933
    }
  }
  if (fmt == pucch_format4_nr){
    E_init = (is_pi_over_2_bpsk_enabled == 0) ? 24:12;
    if (nrofSymbols == 4) {
      E = (intraSlotFrequencyHopping == 0)?(E_init*(nrofSymbols-1)/n_SF_PUCCH_s):((E_init*(nrofSymbols-1)/n_SF_PUCCH_s));
934
935
936
      #ifdef DEBUG_NR_PUCCH_TX
        printf("format 4 nrofSymbols =4 and E_init=%d,E=%d\n",E_init,E);
      #endif
937
938
939
    }
    if (nrofSymbols > 4)  {
      E = E_init*(nrofSymbols-2)/n_SF_PUCCH_s;
940
941
942
      #ifdef DEBUG_NR_PUCCH_TX
        printf("format 4 nrofSymbols >4 and E_init=%d,E = %d\n",E_init,E);
      #endif
943
944
945
    }
    if (nrofSymbols > 9)  {
      E = (add_dmrs == 0)?(E_init*(nrofSymbols-2)/n_SF_PUCCH_s):((E_init*(nrofSymbols-4)/n_SF_PUCCH_s));
946
947
948
      #ifdef DEBUG_NR_PUCCH_TX
        printf("format 4 nrofSymbols >9 and E_init=%d,E = %d\n",E_init,E);
      #endif
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
    }
  }
  *M_bit = E;
  int I_seg;
  #ifdef DEBUG_NR_PUCCH_TX
    printf("\t\t [nr_uci_encoding] start function with fmt=%d, encoding A=%d bits into M_bit=%d (where nrofSymbols=%d,nrofPRB=%d)\n",fmt,A,*M_bit,nrofSymbols,nrofPRB);
  #endif

  if (A<=11){
    // procedure in subclause 6.3.1.2.2 (UCI encoded by channel coding of small block lengths -> subclause 6.3.1.3.2)
    // CRC bits are not attached, and coding small block lengths (subclause 5.3.3)
  } else if (A>=12){
    // procedure in subclause 6.3.1.2.1 (UCI encoded by Polar code -> subclause 6.3.1.3.1)
    if ((A>=360 && E>=1088)||(A>=1013)){
      I_seg = 1;
    } else {
      I_seg = 0;
    }
    if (A>=20){
      // parity bits (subclause 5.2.1) computed by setting L=11 and using generator polynomial gCRC11(D) (subclause 5.1)
      L=11;
    } else if (A<=19){
      // parity bits (subclause 5.2.1) computed by setting L=6  and using generator polynomial gCRC6(D)  (subclause 5.1)
      L=6;
    }
    // code block segmentation and CRC attachment is performed according to subclause 5.2.1
    // polar coding subclause 5.3.1
  }
}
//#if 0
979
void nr_generate_pucch2(PHY_VARS_NR_UE *ue,
980
                        uint16_t crnti,
981
                        int32_t **txdataF,
982
983
984
985
                        NR_DL_FRAME_PARMS *frame_parms,
                        PUCCH_CONFIG_DEDICATED *pucch_config_dedicated,
                        uint64_t payload,
                        int16_t amp,
986
                        int nr_tti_tx,
987
988
989
                        uint8_t nrofSymbols,
                        uint8_t startingSymbolIndex,
                        uint8_t nrofPRB,
990
                        uint16_t startingPRB,
991
992
                        uint8_t nr_bit) {
  #ifdef DEBUG_NR_PUCCH_TX
993
    printf("\t [nr_generate_pucch2] start function at slot(nr_tti_tx)=%d  with payload=%d and nr_bit=%d\n",nr_tti_tx, payload, nr_bit);
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
  #endif
  // b is the block of bits transmitted on the physical channel after payload coding
  uint64_t b;
  // M_bit is the number of bits of block b (payload after encoding)
  uint16_t M_bit;
  nr_uci_encoding(payload,nr_bit,pucch_format2_nr,0,nrofSymbols,nrofPRB,1,0,0,&b,&M_bit);

  /*
   * Implementing TS 38.211
   * Subclauses 6.3.2.5.1 Scrambling (PUCCH format 2)
   * The block of bits b(0),..., b(M_bit-1 ), where M_bit is the number of bits transmitted on the physical channel,
   * shall be scrambled prior to modulation,
   * resulting in a block of scrambled bits btilde(0),...,btilde(M_bit-1) according to
   *                     btilde(i)=(b(i)+c(i))mod 2
   * where the scrambling sequence c(i) is given by clause 5.2.1.
   * The scrambling sequence generator shall be initialized with c_init=nRNTI*2^15+n_id
   * n_id = {0,1,...,1023}  equals the higher-layer parameter Data-scrambling-Identity if configured
   * n_id = N_ID_cell       if higher layer parameter not configured
   */

  uint8_t *btilde = malloc(sizeof(int8_t)*M_bit);
1015
1016
1017
1018
1019
  // rnti is given by the C-RNTI
  uint16_t rnti=crnti, n_id=0;
#ifdef DEBUG_NR_PUCCH_TX
  printf("\t [nr_generate_pucch2] rnti = %d ,\n",rnti);
#endif
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069

  /*
   * Implementing TS 38.211 Subclause 6.3.2.5.1 scrambling format 2
   */
  nr_pucch2_3_4_scrambling(M_bit,rnti,n_id,b,btilde);

  /*
   * Implementing TS 38.211 Subclause 6.3.2.5.2 modulation format 2
   * btilde shall be modulated as described in subclause 5.1 using QPSK
   * resulting in a block of complex-valued modulation symbols d(0),...,d(m_symbol) where m_symbol=M_bit/2
   */

//#define ONE_OVER_SQRT2_S 23171 // 32767/sqrt(2) = 23170 (ONE_OVER_SQRT2)

  // complex-valued symbol d(0)
  int16_t *d_re = malloc(sizeof(int16_t)*M_bit);
  int16_t *d_im = malloc(sizeof(int16_t)*M_bit);
  uint16_t m_symbol = (M_bit%2==0) ? M_bit/2 : floor(M_bit/2)+1;
  for (int i=0; i < m_symbol; i++){ // QPSK modulation subclause 5.1.3
    if (((btilde[2*i]&1)==0) && ((btilde[(2*i)+1]&1)==0)) {
      d_re[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      d_im[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
    if (((btilde[2*i]&1)==0) && ((btilde[(2*i)+1]&1)==1)) {
      d_re[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      d_im[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
    if (((btilde[2*i]&1)==1) && ((btilde[(2*i)+1]&1)==0)) {
      d_re[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      d_im[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
    if (((btilde[2*i]&1)==1) && ((btilde[(2*i)+1]&1)==1)) {
      d_re[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      d_im[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
    }
    #ifdef DEBUG_NR_PUCCH_TX
      printf("\t [nr_generate_pucch2] modulation of bit pair btilde(%d,%d), m_symbol=%d, d(%d)=(%d,%d)\n",(btilde[2*i]&1),(btilde[(2*i)+1]&1),m_symbol,i,d_re[i],d_im[i]);
    #endif
  }


  /*
   * Implementing TS 38.211 Subclause 6.3.2.5.3 Mapping to physical resources
   */
  int32_t *txptr;
  uint32_t re_offset;
  uint32_t x1, x2, s=0;
  int i=0;
  int m=0;
  for (int l=0; l<nrofSymbols; l++) {
1070
    x2 = (((1<<17)*((14*nr_tti_tx) + (l+startingSymbolIndex) + 1)*((2*n_id) + 1)) + (2*n_id))%(1<<31); // c_init calculation according to TS38.211 subclause
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
    s = lte_gold_generic(&x1, &x2, 1);
    for (int rb=0; rb<nrofPRB; rb++){
      //startingPRB = startingPRB + rb;
      if (((rb+startingPRB) <  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is lower band
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(rb+startingPRB)) + frame_parms->first_carrier_offset;
      }
      if (((rb+startingPRB) >= (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is upper band
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*((rb+startingPRB)-(frame_parms->N_RB_DL>>1)));
      }
      if (((rb+startingPRB) <  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB is lower band
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(rb+startingPRB)) + frame_parms->first_carrier_offset;
      }
      if (((rb+startingPRB) >  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB is upper band
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*((rb+startingPRB)-(frame_parms->N_RB_DL>>1))) + 6;
      }
      if (((rb+startingPRB) == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB contains DC
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(rb+startingPRB)) + frame_parms->first_carrier_offset;
      }
      txptr = &txdataF[0][re_offset];
      int k=0;
      int kk=0;
      for (int n=0; n<12; n++){
        if ((n==6) && ((rb+startingPRB) == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) {
          // if number RBs in bandwidth is odd  and current PRB contains DC, we need to recalculate the offset when n=6 (for second half PRB)
          re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size);
        }
        if (n%3 != 1) { // mapping PUCCH according to TS38.211 subclause 6.3.2.5.3
          ((int16_t *)&txdataF[0][re_offset])[0] = d_re[i+k];
          ((int16_t *)&txdataF[0][re_offset])[1] = d_im[i+k];
          #ifdef DEBUG_NR_PUCCH_TX
1101
            printf("\t [nr_generate_pucch2] (n=%d,i=%d) mapping PUCCH to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_pucch[%d]=txptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
                    n,i,amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,i+k,re_offset,
                    l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
          #endif
          k++;
        }
        if (n%3 == 1) { // mapping DM-RS signal according to TS38.211 subclause 6.4.1.3.2
          ((int16_t *)&txdataF[0][re_offset])[0] = (int16_t)((int32_t)(amp*ONE_OVER_SQRT2*(1-(2*((uint8_t)((s>>(2*m))&1)))))>>15);
          ((int16_t *)&txdataF[0][re_offset])[1] = (int16_t)((int32_t)(amp*ONE_OVER_SQRT2*(1-(2*((uint8_t)((s>>((2*m)+1))&1)))))>>15);
          m++;
          #ifdef DEBUG_NR_PUCCH_TX
1112
            printf("\t [nr_generate_pucch2] (n=%d,i=%d) mapping DM-RS to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_dm-rs[%d]=txptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
                    n,i,amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,i+kk,re_offset,
                    l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
          #endif
          kk++;
        }
        re_offset++;
      }
      i+=8;
    }
  }
}
//#if 0
1125
void nr_generate_pucch3_4(PHY_VARS_NR_UE *ue,
1126
                          uint16_t crnti,
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
                          int32_t **txdataF,
                          NR_DL_FRAME_PARMS *frame_parms,
                          pucch_format_nr_t fmt,
                          PUCCH_CONFIG_DEDICATED *pucch_config_dedicated,
                          uint64_t payload,
                          int16_t amp,
                          int nr_tti_tx,
                          uint8_t nrofSymbols,
                          uint8_t startingSymbolIndex,
                          uint8_t nrofPRB,
                          uint16_t startingPRB,
                          uint16_t startingPRB_intraSlotHopping,
                          uint8_t nr_bit,
                          uint8_t occ_length_format4,
                          uint8_t occ_index_format4) {
1142
1143

  #ifdef DEBUG_NR_PUCCH_TX
1144
    printf("\t [nr_generate_pucch3_4] start function at slot(nr_tti_tx)=%d with payload=%d and nr_bit=%d\n", nr_tti_tx, payload, nr_bit);
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
  #endif
  // b is the block of bits transmitted on the physical channel after payload coding
  uint64_t b;
  // M_bit is the number of bits of block b (payload after encoding)
  uint16_t M_bit;
  // parameter PUCCH-F4-preDFT-OCC-length set of {2,4} -> to use table -1 or -2
  uint8_t n_SF_PUCCH_s = 2; // in format 4, n_SF_PUCCH_s = {2,4}, provided by higher layer parameter PUCCH-F4-preDFT-OCC-length (in format 3 n_SF_PUCCH_s=1), FIXME!!!
  uint8_t is_pi_over_2_bpsk_enabled = 0; // this value has to be provided by higher layers parameter
  // Intra-slot frequency hopping shall be assumed when the higher-layer parameter intraSlotFrequencyHopping is provided,
  // regardless of whether the frequency-hop distance is zero or not,
  // otherwise no intra-slot frequency hopping shall be assumed
1156
  //uint8_t PUCCH_Frequency_Hopping = 0 ; // from higher layers
1157
  uint8_t intraSlotFrequencyHopping = 0;
1158
1159
1160
  if (startingPRB != startingPRB_intraSlotHopping){
    intraSlotFrequencyHopping=1;
    #ifdef DEBUG_NR_PUCCH_TX
1161
      printf("\t [nr_generate_pucch3_4] intraSlotFrequencyHopping=%d \n",intraSlotFrequencyHopping);
1162
1163
    #endif
  }
1164
1165
  // add_dmrs indicates if we are using or not Additional DM-RS for formats 3 and 4. From higher layers. FIXME!!!
  uint8_t add_dmrs = 0;
1166
1167
1168
  //nrofPRB = 2; // only for test purposes
  if (fmt == pucch_format4_nr) nrofPRB = 1;

1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
  nr_uci_encoding(payload,nr_bit,fmt,is_pi_over_2_bpsk_enabled,nrofSymbols,nrofPRB,n_SF_PUCCH_s,intraSlotFrequencyHopping,add_dmrs,&b,&M_bit);

  /*
   * Implementing TS 38.211
   * Subclauses 6.3.2.6.1 Scrambling (PUCCH formats 3 and 4)
   * The block of bits b(0),..., b(M_bit-1 ), where M_bit is the number of bits transmitted on the physical channel,
   * shall be scrambled prior to modulation,
   * resulting in a block of scrambled bits btilde(0),...,btilde(M_bit-1) according to
   *                     btilde(i)=(b(i)+c(i))mod 2
   * where the scrambling sequence c(i) is given by clause 5.2.1.
   * The scrambling sequence generator shall be initialized with c_init=nRNTI*2^15+n_id
   * n_id = {0,1,...,1023}  equals the higher-layer parameter Data-scrambling-Identity if configured
   * n_id = N_ID_cell       if higher layer parameter not configured
   */

  uint8_t *btilde = malloc(sizeof(int8_t)*M_bit);
1185
1186
1187
1188
1189
  // rnti is given by the C-RNTI
  uint16_t rnti=crnti, n_id=0;
#ifdef DEBUG_NR_PUCCH_TX
  printf("\t [nr_generate_pucch3_4] rnti = %d ,\n",rnti);
#endif
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270

  /*
   * Implementing TS 38.211 Subclause 6.3.2.6.1 scrambling formats 3 and 4
   */
  nr_pucch2_3_4_scrambling(M_bit,rnti,n_id,b,btilde);

  /*
   * Implementing TS 38.211 Subclause 6.3.2.6.2 modulation formats 3 and 4
   *
   * Subclause 5.1.1 PI/2-BPSK
   * Subclause 5.1.3 QPSK
   */
  // complex-valued symbol d(0)
  int16_t *d_re = malloc(sizeof(int16_t)*M_bit);
  int16_t *d_im = malloc(sizeof(int16_t)*M_bit);
  uint16_t m_symbol = (M_bit%2==0) ? M_bit/2 : floor(M_bit/2)+1;
  if (is_pi_over_2_bpsk_enabled == 0){
    // using QPSK if PUCCH format 3,4 and pi/2-BPSK is not configured, according to subclause 6.3.2.6.2
    for (int i=0; i < m_symbol; i++){ // QPSK modulation subclause 5.1.3
      if (((btilde[2*i]&1)==0) && ((btilde[(2*i)+1]&1)==0)) {
        d_re[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
        d_im[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      }
      if (((btilde[2*i]&1)==0) && ((btilde[(2*i)+1]&1)==1)) {
        d_re[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
        d_im[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      }
      if (((btilde[2*i]&1)==1) && ((btilde[(2*i)+1]&1)==0)) {
        d_re[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
        d_im[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      }
      if (((btilde[2*i]&1)==1) && ((btilde[(2*i)+1]&1)==1)) {
        d_re[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
        d_im[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      }
    #ifdef DEBUG_NR_PUCCH_TX
      printf("\t [nr_generate_pucch3_4] modulation QPSK of bit pair btilde(%d,%d), m_symbol=%d, d(%d)=(%d,%d)\n",(btilde[2*i]&1),(btilde[(2*i)+1]&1),m_symbol,i,d_re[i],d_im[i]);
    #endif
    }
  }
  if (is_pi_over_2_bpsk_enabled == 1){
    // using PI/2-BPSK if PUCCH format 3,4 and pi/2-BPSK is configured, according to subclause 6.3.2.6.2
    m_symbol = M_bit;
    for (int i=0; i<m_symbol; i++){ // PI/2-BPSK modulation subclause 5.1.1
      if (((btilde[i]&1)==0) && (i%2 == 0)){
        d_re[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
        d_im[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      }
      if (((btilde[i]&1)==0) && (i%2 == 1)){
        d_re[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
        d_im[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      }
      if (((btilde[i]&1)==1) && (i%2 == 0)){
        d_re[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
        d_im[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      }
      if (((btilde[i]&1)==1) && (i%2 == 1)){
        d_re[i] =  (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
        d_im[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
      }
    #ifdef DEBUG_NR_PUCCH_TX
      printf("\t [nr_generate_pucch3_4] modulation PI/2-BPSK of bit btilde(%d), m_symbol=%d, d(%d)=(%d,%d)\n",(btilde[i]&1),m_symbol,i,d_re[i],d_im[i]);
    #endif
    }
  }

  /*
   * Implementing Block-wise spreading subclause 6.3.2.6.3
   */
  // number of PRBs per PUCCH, provided by higher layers parameters PUCCH-F2-number-of-PRBs or PUCCH-F3-number-of-PRBs (for format 4, it is equal to 1)
  // for PUCCH 3 -> nrofPRBs = (2^alpa2 * 3^alpha3 * 5^alpha5)
  // for PUCCH 4 -> nrofPRBs = 1
  // uint8_t nrofPRBs;
  // number of symbols, provided by higher layers parameters PUCCH-F0-F2-number-of-symbols or PUCCH-F1-F3-F4-number-of-symbols
  // uint8_t nrofSymbols;
  // complex-valued symbol d(0)
  int16_t *y_n_re = malloc(sizeof(int16_t)*4*M_bit); // 4 is the maximum number n_SF_PUCCH_s, so is the maximunm size of y_n
  int16_t *y_n_im = malloc(sizeof(int16_t)*4*M_bit);
  // Re part orthogonal sequences w_n(k) for PUCCH format 4 when N_SF_PUCCH4 = 2 (Table 6.3.2.6.3-1)
  // k={0,..11} n={0,1,2,3}
  // parameter PUCCH-F4-preDFT-OCC-index set of {0,1,2,3} -> n
1271
   uint16_t table_6_3_2_6_3_1_Wn_Re[2][12] = {{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
1272
1273
1274
                                              {1, 1, 1, 1, 1, 1,-1,-1,-1,-1,-1,-1}};
  // Im part orthogonal sequences w_n(k) for PUCCH format 4 when N_SF_PUCCH4 = 2 (Table 6.3.2.6.3-1)
  // k={0,..11} n={0,1}
1275
  uint16_t table_6_3_2_6_3_1_Wn_Im[2][12] = {{0,0,0,0,0,0,0,0,0,0,0,0},
1276
1277
1278
                                             {0,0,0,0,0,0,0,0,0,0,0,0}};
  // Re part orthogonal sequences w_n(k) for PUCCH format 4 when N_SF_PUCCH4 = 4 (Table 6.3.2.6.3-2)
  // k={0,..11} n={0,1,2.3}
1279
  uint16_t table_6_3_2_6_3_2_Wn_Re[4][12] = {{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
1280
1281
1282
1283
1284
                                             {1, 1, 1, 0, 0, 0,-1,-1,-1, 0, 0, 0},
                                             {1, 1, 1,-1,-1,-1, 1, 1, 1,-1,-1,-1},
                                             {1, 1, 1, 0, 0, 0,-1,-1,-1, 0, 0, 0}};
  // Im part orthogonal sequences w_n(k) for PUCCH format 4 when N_SF_PUCCH4 = 4 (Table 6.3.2.6.3-2)
  // k={0,..11} n={0,1,2,3}
1285
1286
1287
1288
  uint16_t table_6_3_2_6_3_2_Wn_Im[4][12] = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
                                             {0, 0, 0,-1,-1,-1, 0, 0, 0, 1, 1, 1},
                                             {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
                                             {0, 0, 0, 1, 1, 1, 0, 0, 0,-1,-1,-1}};
1289
1290
  uint8_t occ_Length = occ_length_format4; // higher layer parameter occ-Length
  uint8_t occ_Index  = occ_index_format4;  // higher layer parameter occ-Index
1291
//occ_Index = 1; //only for testing purposes; to be removed FIXME!!!
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
  if (fmt == pucch_format3_nr){ // no block-wise spreading for format 3
    n_SF_PUCCH_s = 1;
    for (int l=0; l < floor(m_symbol/(12*nrofPRB)); l++){
      for (int k=0; k < (12*nrofPRB); k++){
        y_n_re[l*(12*nrofPRB)+k] = d_re[l*(12*nrofPRB)+k];
        y_n_im[l*(12*nrofPRB)+k] = d_im[l*(12*nrofPRB)+k];
        #ifdef DEBUG_NR_PUCCH_TX
          printf("\t [nr_generate_pucch3_4] block-wise spreading for format 3 (no block-wise spreading): (l,k)=(%d,%d)\ty_n(%d)   = \t(d_re=%d, d_im=%d)\n",
                  l,k,l*(12*nrofPRB)+k,d_re[l*(12*nrofPRB)+k],d_im[l*(12*nrofPRB)+k]);
        #endif
      }
    }
  }
  if (fmt == pucch_format4_nr){
    nrofPRB = 1;
    for (int l=0; l < floor((n_SF_PUCCH_s*m_symbol)/(12*nrofPRB)); l++){
      for (int k=0; k < (12*nrofPRB); k++){
        if (n_SF_PUCCH_s == 2){
1310
1311
1312
1313
          y_n_re[l*(12*nrofPRB)+k] = (uint16_t)(((uint32_t)d_re[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_1_Wn_Re[occ_Index][k])
                                              - ((uint32_t)d_im[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_1_Wn_Im[occ_Index][k]));
          y_n_im[l*(12*nrofPRB)+k] = (uint16_t)(((uint32_t)d_im[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_1_Wn_Re[occ_Index][k])
                                              + ((uint32_t)d_re[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_1_Wn_Im[occ_Index][k]));
1314
          #ifdef DEBUG_NR_PUCCH_TX
1315
1316
1317
1318
1319
1320
            printf("\t [nr_generate_pucch3_4] block-wise spreading for format 4 (n_SF_PUCCH_s 2) (occ_Index=%d): (l,k)=(%d,%d)\ty_n(%d)   = \t(d_re=%d, d_im=%d)\n",
                    occ_Index,l,k,l*(12*nrofPRB)+k,y_n_re[l*(12*nrofPRB)+k],y_n_im[l*(12*nrofPRB)+k]);
//            printf("\t\t d_re[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] = %d\n",d_re[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)]);
//            printf("\t\t d_im[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] = %d\n",d_im[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)]);
//            printf("\t\t table_6_3_2_6_3_1_Wn_Re[%d][%d] = %d\n",occ_Index,k,table_6_3_2_6_3_1_Wn_Re[occ_Index][k]);
//            printf("\t\t table_6_3_2_6_3_1_Wn_Im[%d][%d] = %d\n",occ_Index,k,table_6_3_2_6_3_1_Wn_Im[occ_Index][k]);
1321
1322
1323
          #endif
        }
        if (n_SF_PUCCH_s == 4){
1324
1325
1326
1327
          y_n_re[l*(12*nrofPRB)+k] = (uint16_t)(((uint32_t)d_re[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_2_Wn_Re[occ_Index][k])
                                              - ((uint32_t)d_im[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_2_Wn_Im[occ_Index][k]));
          y_n_im[l*(12*nrofPRB)+k] = (uint16_t)(((uint32_t)d_im[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_2_Wn_Re[occ_Index][k])
                                              + ((uint32_t)d_re[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_2_Wn_Im[occ_Index][k]));
1328
          #ifdef DEBUG_NR_PUCCH_TX
1329
1330
            printf("\t [nr_generate_pucch3_4] block-wise spreading for format 4 (n_SF_PUCCH_s 4) (occ_Index=%d): (l,k)=(%d,%d)\ty_n(%d)   = \t(d_re=%d, d_im=%d)\n",
                    occ_Index,l,k,l*(12*nrofPRB)+k,y_n_re[l*(12*nrofPRB)+k],y_n_im[l*(12*nrofPRB)+k]);
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
          #endif
        }
      }
    }
  }

  /*
   * Implementing Transform pre-coding subclause 6.3.2.6.4
   */
  int16_t *z_re = malloc(sizeof(int16_t)*4*M_bit); // 4 is the maximum number n_SF_PUCCH_s
  int16_t *z_im = malloc(sizeof(int16_t)*4*M_bit);
1342
  #define M_PI 3.14159265358979323846 // pi
1343
1344
1345
1346
1347
  //int16_t inv_sqrt_nrofPRBs = (int16_t)round(32767/sqrt(12*nrofPRB));
  for (int l=0; l<floor((n_SF_PUCCH_s*m_symbol)/(12*nrofPRB)); l++){
    for (int k=0; k<(12*nrofPRB); k++){
      z_re[l*(12*nrofPRB)+k] = 0;
      z_im[l*(12*nrofPRB)+k] = 0;
1348
1349
//      int16_t z_re_tmp[240] = {0};
//      int16_t z_im_tmp[240] = {0};
1350
1351
      for (int m=0; m<(12*nrofPRB); m++){
        //z_re[l*(12*nrofPRB)+k] = y_n_re[l*(12*nrofPRB)+m] * (int16_t)(round(32767*cos((2*M_PI*m*k)/(12*nrofPRB))));
1352
1353
1354
1355
//        z_re_tmp[m] = (int16_t)(((int32_t)round(32767/sqrt(12*nrofPRB))*(int16_t)((((int32_t)y_n_re[l*(12*nrofPRB)+m] * (int16_t)round(32767 * cos(2*M_PI*m*k/(12*nrofPRB))))>>15)
//                + (((int32_t)y_n_im[l*(12*nrofPRB)+m] * (int16_t)round(32767 * sin(2*M_PI*m*k/(12*nrofPRB))))>>15)))>>15);
//        z_im_tmp[m] = (int16_t)(((int32_t)round(32767/sqrt(12*nrofPRB))*(int16_t)((((int32_t)y_n_im[l*(12*nrofPRB)+m] * (int16_t)round(32767 * cos(2*M_PI*m*k/(12*nrofPRB))))>>15)
//                - (((int32_t)y_n_re[l*(12*nrofPRB)+m] * (int16_t)round(32767 * sin(2*M_PI*m*k/(12*nrofPRB))))>>15)))>>15);
1356
1357
1358
1359
1360
1361
        z_re[l*(12*nrofPRB)+k] = z_re[l*(12*nrofPRB)+k]
                               + (int16_t)(((int32_t)round(32767/sqrt(12*nrofPRB))*(int16_t)((((int32_t)y_n_re[l*(12*nrofPRB)+m] * (int16_t)round(32767 * cos(2*M_PI*m*k/(12*nrofPRB))))>>15)
                                                                                           + (((int32_t)y_n_im[l*(12*nrofPRB)+m] * (int16_t)round(32767 * sin(2*M_PI*m*k/(12*nrofPRB))))>>15)))>>15);
        z_im[l*(12*nrofPRB)+k] = z_im[l*(12*nrofPRB)+k]
                               + (int16_t)(((int32_t)round(32767/sqrt(12*nrofPRB))*(int16_t)((((int32_t)y_n_im[l*(12*nrofPRB)+m] * (int16_t)round(32767 * cos(2*M_PI*m*k/(12*nrofPRB))))>>15)
                                                                                           - (((int32_t)y_n_re[l*(12*nrofPRB)+m] * (int16_t)round(32767 * sin(2*M_PI*m*k/(12*nrofPRB))))>>15)))>>15);
1362
        #ifdef DEBUG_NR_PUCCH_TX
1363
1364
1365
1366
//        printf("\t\t z_re_tmp[%d] = %d\n",m,z_re_tmp[m]);
//        printf("\t\t z_im_tmp[%d] = %d\n",m,z_im_tmp[m]);
//          printf("\t [nr_generate_pucch3_4] transform precoding for formats 3 and 4: (l,k,m)=(%d,%d,%d)\tz(%d)   = \t(%d, %d)\n",
//                  l,k,m,l*(12*nrofPRB)+k,z_re[l*(12*nrofPRB)+k],z_im[l*(12*nrofPRB)+k]);
1367
1368
1369
        #endif
      }
      #ifdef DEBUG_NR_PUCCH_TX
1370
        printf("\t [nr_generate_pucch3_4] transform precoding for formats 3 and 4: (l,k)=(%d,%d)\tz(%d)   = \t(%d, %d)\n",
1371
1372
1373
1374
1375
1376
                l,k,l*(12*nrofPRB)+k,z_re[l*(12*nrofPRB)+k],z_im[l*(12*nrofPRB)+k]);
      #endif
    }
  }

  /*
1377
   * Implementing TS 38.211 Subclauses 6.3.2.5.3 and 6.3.2.6.5 Mapping to physical resources
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
   */
  // the value of u,v (delta always 0 for PUCCH) has to be calculated according to TS 38.211 Subclause 6.3.2.2.1
  uint8_t u=0,v=0,delta=0;
  // if frequency hopping is disabled, intraSlotFrequencyHopping is not provided
  //              n_hop = 0
  // if frequency hopping is enabled,  intraSlotFrequencyHopping is     provided
  //              n_hop = 0 for first hop
  //              n_hop = 1 for second hop
  uint8_t n_hop = 0;
  // lnormal is the OFDM symbol number in the PUCCH transmission where l=0 corresponds to the first OFDM symbol of the PUCCH transmission
  uint8_t lnormal = 0 ;
  // lprime is the index of the OFDM symbol in the slot that corresponds to the first OFDM symbol of the PUCCH transmission in the slot given by [5, TS 38.213]
  uint8_t lprime = startingSymbolIndex;
  // m0 is the cyclic shift index calculated depending on the Orthogonal sequence index n, according to table 6.4.1.3.3.1-1 from TS 38.211 subclause 6.4.1.3.3.1
  uint8_t m0;
  uint8_t mcs=0;
  if (fmt == pucch_format3_nr) m0 = 0;
  if (fmt == pucch_format4_nr) {
    if (n_SF_PUCCH_s == 2) {
      m0 = (occ_Index == 0) ? 0 : 6;
    }
    if (n_SF_PUCCH_s == 4) {
      m0 = (occ_Index == 3) ? 9 : ((occ_Index == 2) ? 3 : ((occ_Index == 1) ? 6 : 0));
    }
  }
  double alpha;
  uint8_t N_ZC = 12*nrofPRB;
  int16_t *r_u_v_base_re        = malloc(sizeof(int16_t)*12*nrofPRB);
  int16_t *r_u_v_base_im        = malloc(sizeof(int16_t)*12*nrofPRB);
  int16_t *r_u_v_alpha_delta_re = malloc(sizeof(int16_t)*12*nrofPRB);
  int16_t *r_u_v_alpha_delta_im = malloc(sizeof(int16_t)*12*nrofPRB);
1409

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
  // Next we proceed to mapping to physical resources according to TS 38.211, subclause 6.3.2.6.5 dor PUCCH formats 3 and 4 and subclause 6.4.1.3.3.2 for DM-RS
  int32_t *txptr;
  uint32_t re_offset;
  uint32_t x1, x2, s=0;
  // intraSlotFrequencyHopping
  // uint8_t intraSlotFrequencyHopping = 0;
  uint8_t table_6_4_1_3_3_2_1_dmrs_positions[11][14] ={
  {(intraSlotFrequencyHopping==0)?0:1,(intraSlotFrequencyHopping==0)?1:0,(intraSlotFrequencyHopping==0)?0:1,0,0,0,0,0,0,0,0,0,0,0}, // PUCCH length = 4
  {1,0,0,1,0,0,0,0,0,0,0,0,0,0}, // PUCCH length = 5
  {0,1,0,0,1,0,0,0,0,0,0,0,0,0}, // PUCCH length = 6
  {0,1,0,0,1,0,0,0,0,0,0,0,0,0}, // PUCCH length = 7
  {0,1,0,0,0,1,0,0,0,0,0,0,0,0}, // PUCCH length = 8
  {0,1,0,0,0,0,1,0,0,0,0,0,0,0}, // PUCCH length = 9
  {0,(add_dmrs==0?0:1),(add_dmrs==0?1:0),(add_dmrs==0?0:1),0,0,(add_dmrs==0?0:1),(add_dmrs==0?1:0),(add_dmrs==0?0:1),0,0,0,0,0}, // PUCCH length = 10
  {0,(add_dmrs==0?0:1),(add_dmrs==0?1:0),(add_dmrs==0?0:1),0,0,(add_dmrs==0?0:1),(add_dmrs==0?1:0),0,(add_dmrs==0?0:1),0,0,0,0}, // PUCCH length = 11
  {0,(add_dmrs==0?0:1),(add_dmrs==0?1:0),0,(add_dmrs==0?0:1),0,0,(add_dmrs==0?0:1),(add_dmrs==0?1:0),0,(add_dmrs==0?0:1),0,0,0}, // PUCCH length = 12
  {0,(add_dmrs==0?0:1),(add_dmrs==0?1:0),0,(add_dmrs==0?0:1),0,0,(add_dmrs==0?0:1),0,(add_dmrs==0?1:0),0,(add_dmrs==0?0:1),0,0}, // PUCCH length = 13
  {0,(add_dmrs==0?0:1),0,(add_dmrs==0?1:0),0,(add_dmrs==0?0:1),0,0,(add_dmrs==0?0:1),0,(add_dmrs==0?1:0),0,(add_dmrs==0?0:1),0}  // PUCCH length = 14
  };
  uint16_t k=0;
  for (int l=0; l<nrofSymbols; l++) {
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475

    if ((intraSlotFrequencyHopping == 1) && (l >= (int)floor(nrofSymbols/2))) n_hop = 1; // n_hop = 1 for second hop
    nr_group_sequence_hopping(ue,n_hop,nr_tti_tx,&u,&v); // calculating u and v value


    // Next we proceed to calculate base sequence for DM-RS signal, according to TS 38.211 subclause 6.4.1.33
    if (nrofPRB >= 3) { // TS 38.211 subclause 5.2.2.1 (Base sequences of length 36 or larger) applies
      int i = 4;
      while (list_of_prime_numbers[i] < (12*nrofPRB)) i++;
      N_ZC = list_of_prime_numbers[i+1]; // N_ZC is given by the largest prime number such that N_ZC < (12*nrofPRB)
      double q_base = (N_ZC*(u+1))/31;
      int8_t q = (uint8_t)floor(q_base + (1/2));
      q = ((uint8_t)floor(2*q_base)%2 == 0 ? q+v : q-v);
      for (int n=0; n<(12*nrofPRB); n++){
        r_u_v_base_re[n] =  (int16_t)(((int32_t)amp*(int16_t)(32767*cos(M_PI*q*(n%N_ZC)*((n%N_ZC)+1)/N_ZC)))>>15);
        r_u_v_base_im[n] = -(int16_t)(((int32_t)amp*(int16_t)(32767*sin(M_PI*q*(n%N_ZC)*((n%N_ZC)+1)/N_ZC)))>>15);
        #ifdef DEBUG_NR_PUCCH_TX
          printf("\t [nr_generate_pucch3_4] generation DM-RS base sequence when nrofPRB=%d >= 3: r_u_v_base[n=%d]=(%d,%d)\n",
                  nrofPRB,n,r_u_v_base_re[n],r_u_v_base_im[n]);
        #endif
      }
    }
    if (nrofPRB == 2) { // TS 38.211 subclause 5.2.2.2 (Base sequences of length less than 36 using table 5.2.2.2-4) applies
      for (int n=0; n<(12*nrofPRB); n++){
        r_u_v_base_re[n] =  (int16_t)(((int32_t)amp*table_5_2_2_2_4_Re[u][n])>>15);
        r_u_v_base_im[n] =  (int16_t)(((int32_t)amp*table_5_2_2_2_4_Im[u][n])>>15);
        #ifdef DEBUG_NR_PUCCH_TX
          printf("\t [nr_generate_pucch3_4] generation DM-RS base sequence when nrofPRB=%d == 2: r_u_v_base[n=%d]=(%d,%d)\n",
                  nrofPRB,n,r_u_v_base_re[n],r_u_v_base_im[n]);
        #endif
      }
    }
    if (nrofPRB == 1) { // TS 38.211 subclause 5.2.2.2 (Base sequences of length less than 36 using table 5.2.2.2-2) applies
      for (int n=0; n<(12*nrofPRB); n++){
        r_u_v_base_re[n] =  (int16_t)(((int32_t)amp*table_5_2_2_2_2_Re[u][n])>>15);
        r_u_v_base_im[n] =  (int16_t)(((int32_t)amp*table_5_2_2_2_2_Im[u][n])>>15);
        #ifdef DEBUG_NR_PUCCH_TX
          printf("\t [nr_generate_pucch3_4] generation DM-RS base sequence when nrofPRB=%d == 1: r_u_v_base[n=%d]=(%d,%d)\n",
                  nrofPRB,n,r_u_v_base_re[n],r_u_v_base_im[n]);
        #endif
      }
    }



1476
    uint16_t j=0;
1477
    alpha = nr_cyclic_shift_hopping(ue,m0,mcs,l,startingSymbolIndex,nr_tti_tx);
1478
    for (int rb=0; rb<nrofPRB; rb++){
1479
1480
1481
      if ((intraSlotFrequencyHopping == 1) && (l<floor(nrofSymbols/2))) { // intra-slot hopping enabled, we need to calculate new offset PRB
        startingPRB = startingPRB + startingPRB_intraSlotHopping;
      }
1482
1483
1484
      //startingPRB = startingPRB + rb;
      if (((rb+startingPRB) <  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is lower band
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(rb+startingPRB)) + frame_parms->first_carrier_offset;
1485
1486
1487
        #ifdef DEBUG_NR_PUCCH_TX
          printf("1   ");
        #endif
1488
1489
1490
      }
      if (((rb+startingPRB) >= (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is upper band
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*((rb+startingPRB)-(frame_parms->N_RB_DL>>1)));
1491
1492
1493
        #ifdef DEBUG_NR_PUCCH_TX
          printf("2   ");
        #endif
1494
1495
1496
      }
      if (((rb+startingPRB) <  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB is lower band
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(rb+startingPRB)) + frame_parms->first_carrier_offset;
1497
1498
1499
        #ifdef DEBUG_NR_PUCCH_TX
          printf("3   ");
        #endif
1500
1501
1502
      }
      if (((rb+startingPRB) >  (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd  and current PRB is upper band
        re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*((rb+startingPRB)-(frame_parms->N_RB_DL>>1))) + 6;
1503
1504
1505
        #ifdef DEBUG_NR_PUCCH_TX
          printf("4   ");
        #endif