random_channel.c 37.2 KB
Newer Older
ghaddab's avatar
ghaddab committed
1
/*******************************************************************************
2
    OpenAirInterface
ghaddab's avatar
ghaddab committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
17
18
    along with OpenAirInterface.The full GNU General Public License is
   included in this distribution in the file called "COPYING". If not,
ghaddab's avatar
ghaddab committed
19
20
21
22
23
   see <http://www.gnu.org/licenses/>.

  Contact Information
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
24
  OpenAirInterface Dev  : openair4g-devel@lists.eurecom.fr
25

ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
ghaddab's avatar
ghaddab committed
27
28

 *******************************************************************************/
29
30
31
32
33
34
35
36
37
38
39
40
41
#include <math.h>
#include <cblas.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>


#include "PHY/TOOLS/defs.h"
#include "defs.h"
#include "scm_corrmat.h"
#include "UTIL/LOG/log.h"
//#define DEBUG_CH

42
void fill_channel_desc(channel_desc_t *chan_desc,
43
44
45
46
47
48
49
50
                       uint8_t nb_tx,
                       uint8_t nb_rx,
                       uint8_t nb_taps,
                       uint8_t channel_length,
                       double *amps,
                       double *delays,
                       struct complex** R_sqrt,
                       double Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
51
52
                       double sampling_rate,
		       double channel_bandwidth,
53
54
55
56
57
58
59
60
61
                       double ricean_factor,
                       double aoa,
                       double forgetting_factor,
                       double max_Doppler,
                       int32_t channel_offset,
                       double path_loss_dB,
                       uint8_t random_aoa)
{

gauthier's avatar
gauthier committed
62
  uint16_t i,j;
63
64
65
  double delta_tau;

  LOG_I(OCM,"[CHANNEL] Getting new channel descriptor, nb_tx %d, nb_rx %d, nb_taps %d, channel_length %d\n",
66
        nb_tx,nb_rx,nb_taps,channel_length);
67
68
69
70
71
72
73

  chan_desc->nb_tx          = nb_tx;
  chan_desc->nb_rx          = nb_rx;
  chan_desc->nb_taps        = nb_taps;
  chan_desc->channel_length = channel_length;
  chan_desc->amps           = amps;
  LOG_D(OCM,"[CHANNEL] Doing delays ...\n");
74

75
76
77
  if (delays==NULL) {
    chan_desc->delays = (double*) malloc(nb_taps*sizeof(double));
    delta_tau = Td/nb_taps;
78

79
80
    for (i=0; i<nb_taps; i++)
      chan_desc->delays[i] = ((double)i)*delta_tau;
81
  } else
82
83
84
    chan_desc->delays         = delays;

  chan_desc->Td             = Td;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
85
86
  chan_desc->sampling_rate             = sampling_rate;
  chan_desc->channel_bandwidth         = channel_bandwidth;
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
  chan_desc->ricean_factor  = ricean_factor;
  chan_desc->aoa            = aoa;
  chan_desc->random_aoa  = random_aoa;
  chan_desc->forgetting_factor = forgetting_factor;
  chan_desc->channel_offset = channel_offset;
  chan_desc->path_loss_dB   = path_loss_dB;
  chan_desc->first_run      = 1;
  chan_desc->ip             = 0.0;
  chan_desc->max_Doppler    = max_Doppler;
  chan_desc->ch             = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
  chan_desc->chF            = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
  chan_desc->a              = (struct complex**) malloc(nb_taps*sizeof(struct complex*));

  LOG_D(OCM,"[CHANNEL] Filling ch \n");

102
103
  for (i = 0; i<nb_tx*nb_rx; i++)
    chan_desc->ch[i] = (struct complex*) malloc(channel_length * sizeof(struct complex));
104

105
  for (i = 0; i<nb_tx*nb_rx; i++)
106
107
108
    chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));  // allocate for up to 100 RBs, 12 samples per RB

  LOG_D(OCM,"[CHANNEL] Filling a (nb_taps %d)\n",nb_taps);
109

110
111
112
113
114
115
  for (i = 0; i<nb_taps; i++) {
    LOG_D(OCM,"tap %d (%p,%d)\n",i,&chan_desc->a[i],nb_tx*nb_rx * sizeof(struct complex));
    chan_desc->a[i]         = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));
  }

  LOG_D(OCM,"[CHANNEL] Doing R_sqrt ...\n");
116

117
  if (R_sqrt == NULL) {
118
119
    chan_desc->R_sqrt         = (struct complex**) calloc(nb_taps,sizeof(struct complex*));

120
    for (i = 0; i<nb_taps; i++) {
121
122
      chan_desc->R_sqrt[i]    = (struct complex*) calloc(nb_tx*nb_rx*nb_tx*nb_rx,sizeof(struct complex));

123
      for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
124
125
        chan_desc->R_sqrt[i][j].x = 1.0;
        chan_desc->R_sqrt[i][j].y = 0.0;
126
127
      }
    }
128
  } else {
129
130
131
132
133
134
135
136
137
138
    chan_desc->R_sqrt = R_sqrt;
  }

  for (i = 0; i<nb_taps; i++) {
    for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
      LOG_D(OCM,"Rsqrt[%d][%d] %f %f\n",i,j,chan_desc->R_sqrt[i][j].x,chan_desc->R_sqrt[i][j].y);
    }
  }

  LOG_D(OCM,"[CHANNEL] RF %f\n",chan_desc->ricean_factor);
139
140

  for (i=0; i<chan_desc->nb_taps; i++)
141
142
143
144
    LOG_D(OCM,"[CHANNEL] tap %d: amp %f, delay %f\n",i,chan_desc->amps[i],chan_desc->delays[i]);

  chan_desc->nb_paths=10;

145
146
147
148
149
  reset_meas(&chan_desc->random_channel);
  reset_meas(&chan_desc->interp_time);
  reset_meas(&chan_desc->interp_freq);
  reset_meas(&chan_desc->convolution);

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
}

double mbsfn_delays[] = {0,.03,.15,.31,.37,1.09,12.490,12.52,12.64,12.80,12.86,13.58,27.49,27.52,27.64,27.80,27.86,28.58};
double mbsfn_amps_dB[] = {0,-1.5,-1.4,-3.6,-0.6,-7.0,-10,-11.5,-11.4,-13.6,-10.6,-17.0,-20,-21.5,-21.4,-23.6,-20.6,-27};

double scm_c_delays[] = {0, 0.0125, 0.0250, 0.3625, 0.3750, 0.3875, 0.2500, 0.2625, 0.2750, 1.0375, 1.0500, 1.0625, 2.7250, 2.7375, 2.7500, 4.6000, 4.6125, 4.6250};
double scm_c_amps_dB[] = {0.00, -2.22, -3.98, -1.86, -4.08, -5.84, -1.08, -3.30, -5.06, -9.08, -11.30, -13.06, -15.14, -17.36, -19.12, -20.64, -22.85, -24.62};

double epa_delays[] = { 0,.03,.07,.09,.11,.19,.41};
double epa_amps_dB[] = {0.0,-1.0,-2.0,-3.0,-8.0,-17.2,-20.8};

double eva_delays[] = { 0,.03,.15,.31,.37,.71,1.09,1.73,2.51};
double eva_amps_dB[] = {0.0,-1.5,-1.4,-3.6,-0.6,-9.1,-7.0,-12.0,-16.9};

double etu_delays[] = { 0,.05,.12,.2,.23,.5,1.6,2.3,5.0};
double etu_amps_dB[] = {-1.0,-1.0,-1.0,0.0,0.0,0.0,-3.0,-5.0,-7.0};

double default_amps_lin[] = {0.3868472 , 0.3094778 , 0.1547389 , 0.0773694 , 0.0386847 , 0.0193424 , 0.0096712 , 0.0038685};
double default_amp_lin[] = {1};

170
171
172
173
174
175
//correlation matrix for a 2x2 channel with full Tx correlation
struct complex R_sqrt_22_corr_tap[16] = {{0.70711,0}, {0.0, 0.0}, {0.70711,0}, {0.0, 0.0},
  {0.0, 0.0}, {0.70711,0}, {0.0, 0.0}, {0.70711,0},
  {0.70711,0}, {0.0, 0.0}, {0.70711,0}, {0.0, 0.0},
  {0.0, 0.0}, {0.70711,0}, {0.0, 0.0}, {0.70711,0}
};
176
177
178
struct complex *R_sqrt_22_corr[1]     = {R_sqrt_22_corr_tap};

//correlation matrix for a fully correlated 2x1 channel (h1==h2)
179
struct complex R_sqrt_21_corr_tap[4]  = {{0.70711,0}, {0.70711,0}, {0.70711,0}, {0.70711,0}};
180
181
struct complex *R_sqrt_21_corr[1]      = {R_sqrt_21_corr_tap};

182
183
184
185
186
187
//correlation matrix for a 2x2 channel with full Tx anti-correlation
struct complex R_sqrt_22_anticorr_tap[16] = {{0.70711,0}, {0.0, 0.0}, {-0.70711,0}, {0.0, 0.0},
  {0.0, 0.0}, {0.70711,0}, {0.0, 0.0}, {-0.70711,0},
  {-0.70711,0}, {0.0, 0.0}, {0.70711,0}, {0.0, 0.0},
  {0.0, 0.0}, {-0.70711,0}, {0.0, 0.0}, {0.70711,0}
};
188
189
190
struct complex *R_sqrt_22_anticorr[1]     = {R_sqrt_22_anticorr_tap};

//correlation matrix for a fully anti-correlated 2x1 channel (h1==-h2)
191
struct complex R_sqrt_21_anticorr_tap[4]  = {{0.70711,0}, {-0.70711,0}, {-0.70711,0}, {0.70711,0}};
192
193
194
195
196
struct complex *R_sqrt_21_anticorr[1]     = {R_sqrt_21_anticorr_tap};

struct complex **R_sqrt_ptr2;


197
198
199
channel_desc_t *new_channel_desc_scm(uint8_t nb_tx,
                                     uint8_t nb_rx,
                                     SCM_t channel_model,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
200
201
                                     double sampling_rate,
				     double channel_bandwidth,
202
203
204
205
                                     double forgetting_factor,
                                     int32_t channel_offset,
                                     double path_loss_dB)
{
206
207

  channel_desc_t *chan_desc = (channel_desc_t *)malloc(sizeof(channel_desc_t));
gauthier's avatar
gauthier committed
208
  uint16_t i,j;
209
210
211
212
213
214
  double sum_amps;
  double aoa,ricean_factor,Td,maxDoppler;
  int channel_length,nb_taps;

  chan_desc->nb_tx          = nb_tx;
  chan_desc->nb_rx          = nb_rx;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
215
216
  chan_desc->sampling_rate             = sampling_rate;
  chan_desc->channel_bandwidth         = channel_bandwidth;
217
218
219
220
221
222
223
224
225
226
227
228
229
  chan_desc->forgetting_factor = forgetting_factor;
  chan_desc->channel_offset = channel_offset;
  chan_desc->path_loss_dB   = path_loss_dB;
  chan_desc->first_run      = 1;
  chan_desc->ip             = 0.0;

  LOG_I(OCM,"Channel Model (inside of new_channel_desc_scm)=%d\n\n", channel_model);

  switch (channel_model) {
  case SCM_A:
    LOG_W(OCM,"channel model not yet supported\n");
    free(chan_desc);
    return(NULL);
230

231
232
233
234
  case SCM_B:
    LOG_W(OCM,"channel model not yet supported\n");
    free(chan_desc);
    return(NULL);
235

236
237
238
  case SCM_C:
    chan_desc->nb_taps        = 18;
    chan_desc->Td             = 4.625;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
239
    chan_desc->channel_length = (int) (2*chan_desc->sampling_rate*chan_desc->Td + 1 + 2/(M_PI*M_PI)*log(4*M_PI*chan_desc->sampling_rate*chan_desc->Td));
240
241
    sum_amps = 0;
    chan_desc->amps           = (double*) malloc(chan_desc->nb_taps*sizeof(double));
242

243
    for (i = 0; i<chan_desc->nb_taps; i++) {
244
      chan_desc->amps[i]      = pow(10,.1*scm_c_amps_dB[i]);
245
246
      sum_amps += chan_desc->amps[i];
    }
247

248
249
    for (i = 0; i<chan_desc->nb_taps; i++)
      chan_desc->amps[i] /= sum_amps;
250

251
252
253
254
255
256
257
    chan_desc->delays         = scm_c_delays;
    chan_desc->ricean_factor  = 1;
    chan_desc->aoa            = 0;
    chan_desc->random_aoa     = 0;
    chan_desc->ch             = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->chF            = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->a              = (struct complex**) malloc(chan_desc->nb_taps*sizeof(struct complex*));
258
259
260
261
262
263
264
265

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));

    for (i = 0; i<chan_desc->nb_taps; i++)
266
267
268
      chan_desc->a[i]         = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));

    chan_desc->R_sqrt  = (struct complex**) malloc(6*sizeof(struct complex**));
269

270
    if (nb_tx==2 && nb_rx==2) {
271
272
273
274
275
276
277
278
279
      for (i = 0; i<6; i++)
        chan_desc->R_sqrt[i] = (struct complex*) &R22_sqrt[i][0];
    } else if (nb_tx==2 && nb_rx==1) {
      for (i = 0; i<6; i++)
        chan_desc->R_sqrt[i] = (struct complex*) &R21_sqrt[i][0];
    } else if (nb_tx==1 && nb_rx==2) {
      for (i = 0; i<6; i++)
        chan_desc->R_sqrt[i] = (struct complex*) &R12_sqrt[i][0];
    } else {
280
      for (i = 0; i<6; i++) {
281
282
283
284
285
286
287
288
        chan_desc->R_sqrt[i]    = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));

        for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
          chan_desc->R_sqrt[i][j].x = 1.0;
          chan_desc->R_sqrt[i][j].y = 0.0;
        }

        LOG_W(OCM,"correlation matrix not implemented for nb_tx==%d and nb_rx==%d, using identity\n", nb_tx, nb_rx);
289
290
      }
    }
291

292
    break;
293

294
  case SCM_D:
295
296
297
    LOG_W(OCM,"This is not the real SCM-D model! It is just SCM-C with an additional Rice factor!\n");
    chan_desc->nb_taps        = 18;
    chan_desc->Td             = 4.625;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
298
    chan_desc->channel_length = (int) (2*chan_desc->sampling_rate*chan_desc->Td + 1 + 2/(M_PI*M_PI)*log(4*M_PI*chan_desc->sampling_rate*chan_desc->Td));
299
300
    sum_amps = 0;
    chan_desc->amps           = (double*) malloc(chan_desc->nb_taps*sizeof(double));
301

302
    for (i = 0; i<chan_desc->nb_taps; i++) {
303
      chan_desc->amps[i]      = pow(10,.1*scm_c_amps_dB[i]);
304
305
      sum_amps += chan_desc->amps[i];
    }
306

307
308
    for (i = 0; i<chan_desc->nb_taps; i++)
      chan_desc->amps[i] /= sum_amps;
309

310
311
312
313
314
315
316
    chan_desc->delays         = scm_c_delays;
    chan_desc->ricean_factor  = 0.1;
    chan_desc->aoa            = 0;
    chan_desc->random_aoa     = 0;
    chan_desc->ch             = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->chF            = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->a              = (struct complex**) malloc(chan_desc->nb_taps*sizeof(struct complex*));
317
318
319
320
321
322
323
324

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));

    for (i = 0; i<chan_desc->nb_taps; i++)
325
326
327
      chan_desc->a[i]         = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));

    chan_desc->R_sqrt  = (struct complex**) malloc(6*sizeof(struct complex**));
328

329
    if (nb_tx==2 && nb_rx==2) {
330
331
332
333
334
335
336
337
338
      for (i = 0; i<6; i++)
        chan_desc->R_sqrt[i] = (struct complex*) &R22_sqrt[i][0];
    } else if (nb_tx==2 && nb_rx==1) {
      for (i = 0; i<6; i++)
        chan_desc->R_sqrt[i] = (struct complex*) &R21_sqrt[i][0];
    } else if (nb_tx==1 && nb_rx==2) {
      for (i = 0; i<6; i++)
        chan_desc->R_sqrt[i] = (struct complex*) &R12_sqrt[i][0];
    } else {
339
      for (i = 0; i<6; i++) {
340
341
342
343
344
345
346
347
        chan_desc->R_sqrt[i]    = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));

        for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
          chan_desc->R_sqrt[i][j].x = 1.0;
          chan_desc->R_sqrt[i][j].y = 0.0;
        }

        LOG_W(OCM,"correlation matrix not implemented for nb_tx==%d and nb_rx==%d, using identity\n", nb_tx, nb_rx);
348
349
      }
    }
350

351
    break;
352

353
354
355
  case EPA:
    chan_desc->nb_taps        = 7;
    chan_desc->Td             = .410;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
356
    chan_desc->channel_length = (int) (2*chan_desc->sampling_rate*chan_desc->Td + 1 + 2/(M_PI*M_PI)*log(4*M_PI*chan_desc->sampling_rate*chan_desc->Td));
357
358
    sum_amps = 0;
    chan_desc->amps           = (double*) malloc(chan_desc->nb_taps*sizeof(double));
359

360
    for (i = 0; i<chan_desc->nb_taps; i++) {
361
      chan_desc->amps[i]      = pow(10,.1*epa_amps_dB[i]);
362
363
      sum_amps += chan_desc->amps[i];
    }
364

365
366
    for (i = 0; i<chan_desc->nb_taps; i++)
      chan_desc->amps[i] /= sum_amps;
367

368
369
370
371
372
373
374
    chan_desc->delays         = epa_delays;
    chan_desc->ricean_factor  = 1;
    chan_desc->aoa            = 0;
    chan_desc->random_aoa     = 0;
    chan_desc->ch             = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->chF            = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->a              = (struct complex**) malloc(chan_desc->nb_taps*sizeof(struct complex*));
375
376
377
378
379
380
381
382

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));

    for (i = 0; i<chan_desc->nb_taps; i++)
383
      chan_desc->a[i]         = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));
384

385
386
    if (nb_tx==2 && nb_rx==2) {
      chan_desc->R_sqrt  = (struct complex**) malloc(6*sizeof(struct complex**));
387
388
389
390

      for (i = 0; i<6; i++)
        chan_desc->R_sqrt[i] = (struct complex*) &R22_sqrt[i][0];
    } else {
391
      chan_desc->R_sqrt         = (struct complex**) malloc(6*sizeof(struct complex**));
392

393
      for (i = 0; i<6; i++) {
394
395
396
397
398
399
400
401
        chan_desc->R_sqrt[i]    = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));

        for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
          chan_desc->R_sqrt[i][j].x = 1.0;
          chan_desc->R_sqrt[i][j].y = 0.0;
        }

        LOG_W(OCM,"correlation matrix only implemented for nb_tx==2 and nb_rx==2, using identity\n");
402
403
      }
    }
404

405
    break;
406

407
408
409
  case EVA:
    chan_desc->nb_taps        = 9;
    chan_desc->Td             = 2.51;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
410
    chan_desc->channel_length = (int) (2*chan_desc->sampling_rate*chan_desc->Td + 1 + 2/(M_PI*M_PI)*log(4*M_PI*chan_desc->sampling_rate*chan_desc->Td));
411
412
    sum_amps = 0;
    chan_desc->amps           = (double*) malloc(chan_desc->nb_taps*sizeof(double));
413

414
    for (i = 0; i<chan_desc->nb_taps; i++) {
415
      chan_desc->amps[i]      = pow(10,.1*eva_amps_dB[i]);
416
417
      sum_amps += chan_desc->amps[i];
    }
418

419
420
    for (i = 0; i<chan_desc->nb_taps; i++)
      chan_desc->amps[i] /= sum_amps;
421

422
423
424
425
426
427
428
    chan_desc->delays         = eva_delays;
    chan_desc->ricean_factor  = 1;
    chan_desc->aoa            = 0;
    chan_desc->random_aoa     = 0;
    chan_desc->ch             = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->chF            = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->a              = (struct complex**) malloc(chan_desc->nb_taps*sizeof(struct complex*));
429
430
431
432
433
434
435
436

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));

    for (i = 0; i<chan_desc->nb_taps; i++)
437
      chan_desc->a[i]         = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));
438

439
440
    if (nb_tx==2 && nb_rx==2) {
      chan_desc->R_sqrt  = (struct complex**) malloc(6*sizeof(struct complex**));
441
442
443
444

      for (i = 0; i<6; i++)
        chan_desc->R_sqrt[i] = (struct complex*) &R22_sqrt[i][0];
    } else {
445
      chan_desc->R_sqrt         = (struct complex**) malloc(6*sizeof(struct complex**));
446

447
      for (i = 0; i<6; i++) {
448
449
450
451
452
453
454
455
        chan_desc->R_sqrt[i]    = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));

        for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
          chan_desc->R_sqrt[i][j].x = 1.0;
          chan_desc->R_sqrt[i][j].y = 0.0;
        }

        LOG_W(OCM,"correlation matrix only implemented for nb_tx==2 and nb_rx==2, using identity\n");
456
457
      }
    }
458

459
    break;
460

461
462
463
  case ETU:
    chan_desc->nb_taps        = 9;
    chan_desc->Td             = 5.0;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
464
    chan_desc->channel_length = (int) (2*chan_desc->sampling_rate*chan_desc->Td + 1 + 2/(M_PI*M_PI)*log(4*M_PI*chan_desc->sampling_rate*chan_desc->Td));
465
466
    sum_amps = 0;
    chan_desc->amps           = (double*) malloc(chan_desc->nb_taps*sizeof(double));
467

468
    for (i = 0; i<chan_desc->nb_taps; i++) {
469
      chan_desc->amps[i]      = pow(10,.1*etu_amps_dB[i]);
470
471
      sum_amps += chan_desc->amps[i];
    }
472

473
474
    for (i = 0; i<chan_desc->nb_taps; i++)
      chan_desc->amps[i] /= sum_amps;
475

476
477
478
479
480
481
482
    chan_desc->delays         = etu_delays;
    chan_desc->ricean_factor  = 1;
    chan_desc->aoa            = 0;
    chan_desc->random_aoa     = 0;
    chan_desc->ch             = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->chF            = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->a              = (struct complex**) malloc(chan_desc->nb_taps*sizeof(struct complex*));
483
484
485
486
487
488
489
490

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));

    for (i = 0; i<chan_desc->nb_taps; i++)
491
      chan_desc->a[i]         = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));
492

493
494
    if (nb_tx==2 && nb_rx==2) {
      chan_desc->R_sqrt  = (struct complex**) malloc(6*sizeof(struct complex**));
495
496
497
498

      for (i = 0; i<6; i++)
        chan_desc->R_sqrt[i] = (struct complex*) &R22_sqrt[i][0];
    } else {
499
      chan_desc->R_sqrt         = (struct complex**) malloc(6*sizeof(struct complex**));
500

501
      for (i = 0; i<6; i++) {
502
503
504
505
506
507
508
509
        chan_desc->R_sqrt[i]    = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));

        for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
          chan_desc->R_sqrt[i][j].x = 1.0;
          chan_desc->R_sqrt[i][j].y = 0.0;
        }

        LOG_W(OCM,"correlation matrix only implemented for nb_tx==2 and nb_rx==2, using identity\n");
510
511
      }
    }
512

513
    break;
514

515
516
517
  case MBSFN:
    chan_desc->nb_taps        = 18;
    chan_desc->Td             = 28.58;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
518
    chan_desc->channel_length = (int) (2*chan_desc->sampling_rate*chan_desc->Td + 1 + 2/(M_PI*M_PI)*log(4*M_PI*chan_desc->sampling_rate*chan_desc->Td));
519
520
    sum_amps = 0;
    chan_desc->amps           = (double*) malloc(chan_desc->nb_taps*sizeof(double));
521

522
    for (i = 0; i<chan_desc->nb_taps; i++) {
523
      chan_desc->amps[i]      = pow(10,.1*mbsfn_amps_dB[i]);
524
525
      sum_amps += chan_desc->amps[i];
    }
526

527
528
    for (i = 0; i<chan_desc->nb_taps; i++)
      chan_desc->amps[i] /= sum_amps;
529

530
531
532
533
534
535
536
    chan_desc->delays         = mbsfn_delays;
    chan_desc->ricean_factor  = 1;
    chan_desc->aoa            = 0;
    chan_desc->random_aoa     = 0;
    chan_desc->ch             = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->chF            = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->a              = (struct complex**) malloc(chan_desc->nb_taps*sizeof(struct complex*));
537
538
539
540
541
542
543
544

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));

    for (i = 0; i<chan_desc->nb_taps; i++)
545
546
      chan_desc->a[i]         = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));

nikaeinn's avatar
nikaeinn committed
547
    chan_desc->R_sqrt  = (struct complex**) malloc(6*sizeof(struct complex*));
548

549
550
    for (i = 0; i<6; i++) {
      chan_desc->R_sqrt[i]    = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));
551

552
      for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
553
554
        chan_desc->R_sqrt[i][j].x = 1.0;
        chan_desc->R_sqrt[i][j].y = 0.0;
555
      }
556

557
558
      LOG_W(OCM,"correlation matrix only implemented for nb_tx==2 and nb_rx==2, using identity\n");
    }
559

560
    break;
561

562
  case Rayleigh8:
563
564
    nb_taps = 8;
    Td = 0.8;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
565
    channel_length = (int)11+2*sampling_rate*Td;
566
567
568
569
570
571
572
573
574
575
576
577
578
    ricean_factor = 1;
    aoa = .03;
    maxDoppler = 0;

    fill_channel_desc(chan_desc,
                      nb_tx,
                      nb_rx,
                      nb_taps,
                      channel_length,
                      default_amps_lin,
                      NULL,
                      NULL,
                      Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
579
580
                      sampling_rate,
		      channel_bandwidth,
581
582
583
584
585
586
587
588
                      ricean_factor,
                      aoa,
                      forgetting_factor,
                      maxDoppler,
                      channel_offset,
                      path_loss_dB,
                      0);
    break;
589
590

  case Rice8:
591
592
    nb_taps = 8;
    Td = 0.8;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
593
    channel_length = (int)11+2*sampling_rate*Td;
594
595
596
597
598
599
600
601
602
603
604
605
    ricean_factor = 0.1;
    aoa = .03;
    maxDoppler = 0;

    fill_channel_desc(chan_desc,nb_tx,
                      nb_rx,
                      nb_taps,
                      channel_length,
                      default_amps_lin,
                      NULL,
                      NULL,
                      Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
606
607
                      sampling_rate,
		      channel_bandwidth,
608
609
610
611
612
613
614
615
                      ricean_factor,
                      aoa,
                      forgetting_factor,
                      maxDoppler,
                      channel_offset,
                      path_loss_dB,
                      1);
    break;
616
617

  case Rayleigh1:
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
    nb_taps = 1;
    Td = 0;
    channel_length = 1;
    ricean_factor = 1;
    aoa = .03;
    maxDoppler = 0;

    fill_channel_desc(chan_desc,nb_tx,
                      nb_rx,
                      nb_taps,
                      channel_length,
                      default_amp_lin,
                      NULL,
                      NULL,
                      Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
633
634
                      sampling_rate,
		      channel_bandwidth,
635
636
637
638
639
640
641
642
                      ricean_factor,
                      aoa,
                      forgetting_factor,
                      maxDoppler,
                      channel_offset,
                      path_loss_dB,
                      0);
    break;
643
644

  case Rayleigh1_800:
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
    nb_taps = 1;
    Td = 0;
    channel_length = 1;
    ricean_factor = 1;
    aoa = .03;
    maxDoppler = 800;

    fill_channel_desc(chan_desc,nb_tx,
                      nb_rx,
                      nb_taps,
                      channel_length,
                      default_amp_lin,
                      NULL,
                      NULL,
                      Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
660
661
                      sampling_rate,
		      channel_bandwidth,
662
663
664
665
666
667
668
669
                      ricean_factor,
                      aoa,
                      forgetting_factor,
                      maxDoppler,
                      channel_offset,
                      path_loss_dB,
                      0);
    break;
670
671

  case Rayleigh1_corr:
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
    nb_taps = 1;
    Td = 0;
    channel_length = 1;
    ricean_factor = 1;
    aoa = .03;
    maxDoppler = 0;

    if ((nb_tx==2) && (nb_rx==1)) {
      R_sqrt_ptr2 = R_sqrt_21_corr;
    } else if ((nb_tx==2) && (nb_rx==2)) {
      R_sqrt_ptr2 = R_sqrt_22_corr;
    } else
      R_sqrt_ptr2 = NULL;

    fill_channel_desc(chan_desc,nb_tx,
                      nb_rx,
                      nb_taps,
                      channel_length,
                      default_amp_lin,
                      NULL,
                      R_sqrt_ptr2,
                      Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
694
695
                      sampling_rate,
		      channel_bandwidth,
696
697
698
699
700
701
702
703
                      ricean_factor,
                      aoa,
                      forgetting_factor,
                      maxDoppler,
                      channel_offset,
                      path_loss_dB,
                      0);
    break;
704
705

  case Rayleigh1_anticorr:
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
    nb_taps = 1;
    Td = 0;
    channel_length = 1;
    ricean_factor = 1;
    aoa = .03;
    maxDoppler = 0;

    if ((nb_tx==2) && (nb_rx==1)) {
      R_sqrt_ptr2 = R_sqrt_21_anticorr;
    } else if ((nb_tx==2) && (nb_rx==2)) {
      R_sqrt_ptr2 = R_sqrt_22_anticorr;
    } else
      R_sqrt_ptr2 = NULL;

    fill_channel_desc(chan_desc,nb_tx,
                      nb_rx,
                      nb_taps,
                      channel_length,
                      default_amp_lin,
                      NULL,
                      R_sqrt_ptr2,
                      Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
728
729
                      sampling_rate,
		      channel_bandwidth,
730
731
732
733
734
735
736
737
                      ricean_factor,
                      aoa,
                      forgetting_factor,
                      maxDoppler,
                      channel_offset,
                      path_loss_dB,
                      0);
    break;
738
739

  case Rice1:
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
    nb_taps = 1;
    Td = 0;
    channel_length = 1;
    ricean_factor = 0.1;
    aoa = .03;
    maxDoppler = 0;

    fill_channel_desc(chan_desc,nb_tx,
                      nb_rx,
                      nb_taps,
                      channel_length,
                      default_amp_lin,
                      NULL,
                      NULL,
                      Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
755
756
                      sampling_rate,
		      channel_bandwidth,
757
758
759
760
761
762
763
764
                      ricean_factor,
                      aoa,
                      forgetting_factor,
                      maxDoppler,
                      channel_offset,
                      path_loss_dB,
                      0);
    break;
765
766

  case AWGN:
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
    nb_taps = 1;
    Td = 0;
    channel_length = 1;
    ricean_factor = 0.0;
    aoa = 0.0;
    maxDoppler = 0;

    fill_channel_desc(chan_desc,nb_tx,
                      nb_rx,
                      nb_taps,
                      channel_length,
                      default_amp_lin,
                      NULL,
                      NULL,
                      Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
782
783
                      sampling_rate,
		      channel_bandwidth,
784
785
786
787
788
789
790
791
792
793
                      ricean_factor,
                      aoa,
                      forgetting_factor,
                      maxDoppler,
                      channel_offset,
                      path_loss_dB,
                      0);
    printf("AWGN: ricean_factor %f\n",chan_desc->ricean_factor);

    break;
794
795

  case Rice1_corr:
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
    nb_taps = 1;
    Td = 0;
    channel_length = 1;
    ricean_factor = 0.1;
    aoa = .03;
    maxDoppler = 0;

    if ((nb_tx==2) && (nb_rx==1)) {
      R_sqrt_ptr2 = R_sqrt_21_corr;
    } else if ((nb_tx==2) && (nb_rx==2)) {
      R_sqrt_ptr2 = R_sqrt_22_corr;
    } else
      R_sqrt_ptr2 = NULL;

    fill_channel_desc(chan_desc,nb_tx,
                      nb_rx,
                      nb_taps,
                      channel_length,
                      default_amp_lin,
                      NULL,
                      R_sqrt_ptr2,
                      Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
818
819
                      sampling_rate,
		      channel_bandwidth,
820
821
822
823
824
825
826
827
                      ricean_factor,
                      aoa,
                      forgetting_factor,
                      maxDoppler,
                      channel_offset,
                      path_loss_dB,
                      1);
    break;
828
829

  case Rice1_anticorr:
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
    nb_taps = 1;
    Td = 0;
    channel_length = 1;
    ricean_factor = 0.1;
    aoa = .03;
    maxDoppler = 0;

    if ((nb_tx==2) && (nb_rx==1)) {
      R_sqrt_ptr2 = R_sqrt_21_anticorr;
    } else if ((nb_tx==2) && (nb_rx==2)) {
      R_sqrt_ptr2 = R_sqrt_22_anticorr;
    } else
      R_sqrt_ptr2 = NULL;

    fill_channel_desc(chan_desc,nb_tx,
                      nb_rx,
                      nb_taps,
                      channel_length,
                      default_amp_lin,
                      NULL,
                      R_sqrt_ptr2,
                      Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
852
853
                      sampling_rate,
		      channel_bandwidth,
854
855
856
857
858
859
860
861
                      ricean_factor,
                      aoa,
                      forgetting_factor,
                      maxDoppler,
                      channel_offset,
                      path_loss_dB,
                      1);
    break;
862
863
864
865
866
867

  default:
    LOG_W(OCM,"channel model not yet supported\n");
    free(chan_desc);
    return(NULL);
  }
868

869
  LOG_D(OCM,"[CHANNEL] RF %f\n",chan_desc->ricean_factor);
870
871

  for (i=0; i<chan_desc->nb_taps; i++)
872
873
874
875
876
877
878
879
    LOG_D(OCM,"[CHANNEL] tap %d: amp %f, delay %f\n",i,chan_desc->amps[i],chan_desc->delays[i]);

  chan_desc->nb_paths = 10;

  return(chan_desc);
}


880
881
882
int random_channel(channel_desc_t *desc, uint8_t abstraction_flag)
{

883
884
885
886
  double s;
  int i,k,l,aarx,aatx;
  struct complex anew[NB_ANTENNAS_TX*NB_ANTENNAS_RX],acorr[NB_ANTENNAS_TX*NB_ANTENNAS_RX];
  struct complex phase, alpha, beta;
887

888
  if ((desc->nb_tx>NB_ANTENNAS_TX) || (desc->nb_rx > NB_ANTENNAS_RX)) {
889
    msg("random_channel.c: Error: temporary buffer for channel not big enough (%d,%d)\n",desc->nb_tx,desc->nb_rx);
890
891
892
    return(-1);
  }

893
  start_meas(&desc->random_channel);
894

895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
  for (i=0; i<(int)desc->nb_taps; i++) {
    for (aarx=0; aarx<desc->nb_rx; aarx++) {
      for (aatx=0; aatx<desc->nb_tx; aatx++) {

        anew[aarx+(aatx*desc->nb_rx)].x = sqrt(desc->ricean_factor*desc->amps[i]/2) * gaussdouble(0.0,1.0);
        anew[aarx+(aatx*desc->nb_rx)].y = sqrt(desc->ricean_factor*desc->amps[i]/2) * gaussdouble(0.0,1.0);

        if ((i==0) && (desc->ricean_factor != 1.0)) {
          if (desc->random_aoa==1) {
            desc->aoa = uniformrandom()*2*M_PI;
          }

          // this assumes that both RX and TX have linear antenna arrays with lambda/2 antenna spacing.
          // Furhter it is assumed that the arrays are parallel to each other and that they are far enough apart so
          // that we can safely assume plane wave propagation.
          phase.x = cos(M_PI*((aarx-aatx)*sin(desc->aoa)));
          phase.y = sin(M_PI*((aarx-aatx)*sin(desc->aoa)));

          anew[aarx+(aatx*desc->nb_rx)].x += phase.x * sqrt(1.0-desc->ricean_factor);
          anew[aarx+(aatx*desc->nb_rx)].y += phase.y * sqrt(1.0-desc->ricean_factor);
        }

917
#ifdef DEBUG_CH
918
919
        printf("(%d,%d,%d) %f->(%f,%f) (%f,%f) phase (%f,%f)\n",aarx,aatx,i,desc->amps[i],anew[aarx+(aatx*desc->nb_rx)].x,anew[aarx+(aatx*desc->nb_rx)].y,desc->aoa,desc->ricean_factor,phase.x,phase.y);
#endif
920
921
922
923
924
925
926
      } //aatx
    } //aarx

    /*
    // for debugging set a=anew;
    for (aarx=0;aarx<desc->nb_rx;aarx++) {
      for (aatx=0;aatx<desc->nb_tx;aatx++) {
927
928
929
    desc->a[i][aarx+(aatx*desc->nb_rx)].x = anew[aarx+(aatx*desc->nb_rx)].x;
    desc->a[i][aarx+(aatx*desc->nb_rx)].y = anew[aarx+(aatx*desc->nb_rx)].y;
    printf("anew(%d,%d) = %f+1j*%f\n",aatx,aarx,anew[aarx+(aatx*desc->nb_rx)].x, anew[aarx+(aatx*desc->nb_rx)].y);
930
931
932
933
934
935
936
937
938
939
     }
    }
    */
    //apply correlation matrix
    //compute acorr = R_sqrt[i] * anew
    alpha.x = 1.0;
    alpha.y = 0.0;
    beta.x = 0.0;
    beta.y = 0.0;

940
941
942
    cblas_zgemv(CblasRowMajor, CblasNoTrans, desc->nb_tx*desc->nb_rx, desc->nb_tx*desc->nb_rx,
                (void*) &alpha, (void*) desc->R_sqrt[i/3], desc->nb_rx*desc->nb_tx,
                (void*) anew, 1, (void*) &beta, (void*) acorr, 1);
943
944
945
946

    /*
    for (aarx=0;aarx<desc->nb_rx;aarx++) {
      for (aatx=0;aatx<desc->nb_tx;aatx++) {
947
948
949
    desc->a[i][aarx+(aatx*desc->nb_rx)].x = acorr[aarx+(aatx*desc->nb_rx)].x;
    desc->a[i][aarx+(aatx*desc->nb_rx)].y = acorr[aarx+(aatx*desc->nb_rx)].y;
    printf("tap %d, acorr1(%d,%d) = %f+1j*%f\n",i,aatx,aarx,acorr[aarx+(aatx*desc->nb_rx)].x, acorr[aarx+(aatx*desc->nb_rx)].y);
950
951
952
953
      }
    }
    */

954
    if (desc->first_run==1) {
955
      cblas_zcopy(desc->nb_tx*desc->nb_rx, (void*) acorr, 1, (void*) desc->a[i], 1);
956
    } else {
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
      // a = alpha*acorr+beta*a
      // a = beta*a
      // a = a+alpha*acorr
      alpha.x = sqrt(1-desc->forgetting_factor);
      alpha.y = 0;
      beta.x = sqrt(desc->forgetting_factor);
      beta.y = 0;
      cblas_zscal(desc->nb_tx*desc->nb_rx, (void*) &beta, (void*) desc->a[i], 1);
      cblas_zaxpy(desc->nb_tx*desc->nb_rx, (void*) &alpha, (void*) acorr, 1, (void*) desc->a[i], 1);

      //  desc->a[i][aarx+(aatx*desc->nb_rx)].x = (sqrt(desc->forgetting_factor)*desc->a[i][aarx+(aatx*desc->nb_rx)].x) + sqrt(1-desc->forgetting_factor)*anew.x;
      //  desc->a[i][aarx+(aatx*desc->nb_rx)].y = (sqrt(desc->forgetting_factor)*desc->a[i][aarx+(aatx*desc->nb_rx)].y) + sqrt(1-desc->forgetting_factor)*anew.y;
    }

    /*
    for (aarx=0;aarx<desc->nb_rx;aarx++) {
      for (aatx=0;aatx<desc->nb_tx;aatx++) {
974
975
976
    //desc->a[i][aarx+(aatx*desc->nb_rx)].x = acorr[aarx+(aatx*desc->nb_rx)].x;
    //desc->a[i][aarx+(aatx*desc->nb_rx)].y = acorr[aarx+(aatx*desc->nb_rx)].y;
    printf("tap %d, a(%d,%d) = %f+1j*%f\n",i,aatx,aarx,desc->a[i][aarx+(aatx*desc->nb_rx)].x, desc->a[i][aarx+(aatx*desc->nb_rx)].y);
977
978
979
980
      }
    }
    */

981
982
  } //nb_taps

983
  stop_meas(&desc->random_channel);
984
985

  //memset((void *)desc->ch[aarx+(aatx*desc->nb_rx)],0,(int)(desc->channel_length)*sizeof(struct complex));
986

987
  if (abstraction_flag==0) {
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
    start_meas(&desc->interp_time);

    for (aarx=0; aarx<desc->nb_rx; aarx++) {
      for (aatx=0; aatx<desc->nb_tx; aatx++) {
        if (desc->channel_length == 1) {
          desc->ch[aarx+(aatx*desc->nb_rx)][0].x = desc->a[0][aarx+(aatx*desc->nb_rx)].x;
          desc->ch[aarx+(aatx*desc->nb_rx)][0].y = desc->a[0][aarx+(aatx*desc->nb_rx)].y;
        } else {

          for (k=0; k<(int)desc->channel_length; k++) {
            desc->ch[aarx+(aatx*desc->nb_rx)][k].x = 0.0;
            desc->ch[aarx+(aatx*desc->nb_rx)][k].y = 0.0;

            for (l=0; l<desc->nb_taps; l++) {
Florian Kaltenberger's avatar
Florian Kaltenberger committed
1002
              if ((k - (desc->delays[l]*desc->sampling_rate) - NB_SAMPLES_CHANNEL_OFFSET) == 0)
1003
1004
                s = 1.0;
              else
Florian Kaltenberger's avatar
Florian Kaltenberger committed
1005
1006
                s = sin(M_PI*(k - (desc->delays[l]*desc->sampling_rate) - NB_SAMPLES_CHANNEL_OFFSET))/
                    (M_PI*(k - (desc->delays[l]*desc->sampling_rate) - NB_SAMPLES_CHANNEL_OFFSET));
1007
1008
1009
1010
1011
1012
1013

              desc->ch[aarx+(aatx*desc->nb_rx)][k].x += s*desc->a[l][aarx+(aatx*desc->nb_rx)].x;
              desc->ch[aarx+(aatx*desc->nb_rx)][k].y += s*desc->a[l][aarx+(aatx*desc->nb_rx)].y;
              //    printf("l %d : desc->ch.x %f\n",l,desc->a[l][aarx+(aatx*desc->nb_rx)].x);

            } //nb_taps

1014
#ifdef DEBUG_CH
1015
            printf("(%d,%d,%d)->(%f,%f)\n",k,aarx,aatx,desc->ch[aarx+(aatx*desc->nb_rx)][k].x,desc->ch[aarx+(aatx*desc->nb_rx)][k].y);
1016
#endif
1017
1018
1019
1020
1021
1022
          }
        } //channel_length
      } //aatx
    } //aarx

    stop_meas(&desc->interp_time);
1023
  }
1024
1025
1026
1027
1028
1029
1030

  if (desc->first_run==1)
    desc->first_run = 0;

  return (0);
}

Florian Kaltenberger's avatar
Florian Kaltenberger committed
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
double N_RB2sampling_rate(uint16_t N_RB)
{
  double sampling_rate;
  switch (N_RB) {
  case 6:
    sampling_rate = 1.92;
    break;
    
  case 25:
    sampling_rate = 7.68;
    break;
    
  case 50:
    sampling_rate = 15.36;
    break;
    
  case 100:
    sampling_rate = 30.72;
    break;
    
  default:
    LOG_E(PHY,"Unknown N_PRB\n");
    return(-1);  
  }

  return(sampling_rate);
}

double N_RB2channel_bandwidth(uint16_t N_RB)
{
  double channel_bandwidth;
  switch (N_RB) {
  case 6:
    channel_bandwidth = 1.25;
    break;
    
  case 25:
    channel_bandwidth = 5.00;
    break;
    
  case 50:
    channel_bandwidth = 10.00;
    break;
    
  case 100:
    channel_bandwidth = 20.00;
    break;
    
  default:
    LOG_E(PHY,"Unknown N_PRB\n");
    return(-1);  
  }
  return(channel_bandwidth);
}

1086
#ifdef RANDOM_CHANNEL_MAIN
Florian Kaltenberger's avatar
Florian Kaltenberger committed
1087
#define sampling_rate 5.0
1088
#define Td 2.0
1089
1090
main(int argc,char **argv)
{
1091
1092

  double amps[8] = {.8,.2,.1,.04,.02,.01,.005};
Florian Kaltenberger's avatar
Florian Kaltenberger committed
1093
  struct complex ch[(int)(1+2*sampling_rate*Td)],phase;
1094
  int i;
1095

1096
1097
1098
  randominit();
  phase.x = 1.0;
  phase.y = 0;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
1099
  random_channel(amps,Td, 8,sampling_rate,ch,(double)1.0,&phase);
1100
  /*
Florian Kaltenberger's avatar
Florian Kaltenberger committed
1101
  for (i=0;i<(11+2*sampling_rate*Td);i++){
1102
1103
1104
1105
1106
1107
    printf("%f + sqrt(-1)*%f\n",ch[i].x,ch[i].y);
  }
  */
}

#endif