dlsch_demodulation.c 120 KB
Newer Older
1
/*******************************************************************************
ghaddab's avatar
ghaddab committed
2
3
    OpenAirInterface 
    Copyright(c) 1999 - 2014 Eurecom
4

ghaddab's avatar
ghaddab committed
5
6
7
8
    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
9
10


ghaddab's avatar
ghaddab committed
11
12
13
14
    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
15

ghaddab's avatar
ghaddab committed
16
17
18
19
    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is 
   included in this distribution in the file called "COPYING". If not, 
   see <http://www.gnu.org/licenses/>.
20
21

  Contact Information
ghaddab's avatar
ghaddab committed
22
23
24
25
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
  OpenAirInterface Dev  : openair4g-devel@eurecom.fr
  
ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
27

28
*******************************************************************************/
29
30
31
32
33

/*! \file PHY/LTE_TRANSPORT/dlsch_demodulation.c
 * \brief Top-level routines for demodulating the PDSCH physical channel from 36-211, V8.6 2009-03
 * \author R. Knopp, F. Kaltenberger,A. Bhamri, S. Aubert
 * \date 2011
34
 DEBUG * \version 0.1
35
36
37
38
39
40
41
42
43
44
 * \company Eurecom
 * \email: knopp@eurecom.fr,florian.kaltenberger@eurecom.fr,ankit.bhamri@eurecom.fr,sebastien.aubert@eurecom.fr
 * \note
 * \warning
 */

#include "PHY/defs.h"
#include "PHY/extern.h"
#include "defs.h"
#include "extern.h"
45
#include "PHY/sse_intrin.h"
46
47
48
49
50
51
52
53
54
55



#ifndef USER_MODE
#define NOCYGWIN_STATIC static
#else
#define NOCYGWIN_STATIC 
#endif

//#define DEBUG_PHY 1
56

57
58
59
int avg[4];

// [MCS][i_mod (0,1,2) = (2,4,6)]
60
61
62
63
unsigned char offset_mumimo_llr_drange_fix=0;
/*
//original values from sebastion + same hand tuning
unsigned char offset_mumimo_llr_drange[29][3]={{8,8,8},{7,7,7},{7,7,7},{7,7,7},{6,6,6},{6,6,6},{6,6,6},{5,5,5},{4,4,4},{1,2,4}, // QPSK
64
65
{5,5,4},{5,5,5},{5,5,5},{3,3,3},{2,2,2},{2,2,2},{2,2,2}, // 16-QAM
{2,2,1},{3,3,3},{3,3,3},{3,3,1},{2,2,2},{2,2,2},{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0}}; //64-QAM
66
*/
67
68
69
70
71
72
73
74
 /*
 //first optimization try
 unsigned char offset_mumimo_llr_drange[29][3]={{7, 8, 7},{6, 6, 7},{6, 6, 7},{6, 6, 6},{5, 6, 6},{5, 5, 6},{5, 5, 6},{4, 5, 4},{4, 3, 4},{3, 2, 2},{6, 5, 5},{5, 4, 4},{5, 5, 4},{3, 3, 2},{2, 2, 1},{2, 1, 1},{2, 2, 2},{3, 3, 3},{3, 3, 2},{3, 3, 2},{3, 2, 1},{2, 2, 2},{2, 2, 2},{0, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, 0}};
 */
 //second optimization try
 /*
   unsigned char offset_mumimo_llr_drange[29][3]={{5, 8, 7},{4, 6, 8},{3, 6, 7},{7, 7, 6},{4, 7, 8},{4, 7, 4},{6, 6, 6},{3, 6, 6},{3, 6, 6},{1, 3, 4},{1, 1, 0},{3, 3, 2},{3, 4, 1},{4, 0, 1},{4, 2, 2},{3, 1, 2},{2, 1, 0},{2, 1, 1},{1, 0, 1},{1, 0, 1},{0, 0, 0},{1, 0, 0},{0, 0, 0},{0, 1, 0},{1, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, 0}};  w
 */
75
76
unsigned char offset_mumimo_llr_drange[29][3]={{0, 6, 5},{0, 4, 5},{0, 4, 5},{0, 5, 4},{0, 5, 6},{0, 5, 3},{0, 4, 4},{0, 4, 4},{0, 3, 3},{0, 1, 2},{1, 1, 0},{1, 3, 2},{3, 4, 1},{2, 0, 0},{2, 2, 2},{1, 1, 1},{2, 1, 0},{2, 1, 1},{1, 0, 1},{1, 0, 1},{0, 0, 0},{1, 0, 0},{0, 0, 0},{0, 1, 0},{1, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, 0}};

77

78
79
extern void print_shorts(char *s,__m128i *x);

80
81
82
83
int rx_pdsch(PHY_VARS_UE *phy_vars_ue,
             PDSCH_t type,
             unsigned char eNB_id,
             unsigned char eNB_id_i, //if this == phy_vars_ue->n_connected_eNB, we assume MU interference
gauthier's avatar
gauthier committed
84
             uint8_t subframe,
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
             unsigned char symbol,
             unsigned char first_symbol_flag,
             unsigned char dual_stream_flag,
             unsigned char i_mod,
             unsigned char harq_pid) {
  
  LTE_UE_COMMON *lte_ue_common_vars  = &phy_vars_ue->lte_ue_common_vars;
  LTE_UE_PDSCH **lte_ue_pdsch_vars;
  LTE_DL_FRAME_PARMS *frame_parms    = &phy_vars_ue->lte_frame_parms;
  PHY_MEASUREMENTS *phy_measurements = &phy_vars_ue->PHY_measurements;
  LTE_UE_DLSCH_t   **dlsch_ue;

  unsigned char aatx,aarx;    
  unsigned short nb_rb;
  int avgs, rb;  
100
  LTE_DL_UE_HARQ_t *dlsch0_harq,*dlsch1_harq = 0;
101

102
103
104
105
  switch (type) {
  case SI_PDSCH:
    lte_ue_pdsch_vars = &phy_vars_ue->lte_ue_pdsch_vars_SI[eNB_id];
    dlsch_ue          = &phy_vars_ue->dlsch_ue_SI[eNB_id];
106
    dlsch0_harq       = dlsch_ue[0]->harq_processes[harq_pid];
107
108
109
110
    break;
  case RA_PDSCH:
    lte_ue_pdsch_vars = &phy_vars_ue->lte_ue_pdsch_vars_ra[eNB_id];
    dlsch_ue          = &phy_vars_ue->dlsch_ue_ra[eNB_id];
111
    dlsch0_harq       = dlsch_ue[0]->harq_processes[harq_pid];
112
113
114
115
    break;
  case PDSCH:
    lte_ue_pdsch_vars = &phy_vars_ue->lte_ue_pdsch_vars[eNB_id];
    dlsch_ue          = phy_vars_ue->dlsch_ue[eNB_id];
116
117
    dlsch0_harq       = dlsch_ue[0]->harq_processes[harq_pid];
    dlsch1_harq       = dlsch_ue[1]->harq_processes[harq_pid];
118
119
120
121
122
123
124
125
    break;

  default:
    //msg("[PHY][UE %d][FATAL] Frame %d subframe %d: Unknown PDSCH format %d\n",phy_vars_ue->frame,subframe,type);
    mac_xface->macphy_exit("");
    return(-1);
    break;
  }
126
127


128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
  if (eNB_id > 2) {
    msg("dlsch_demodulation.c: Illegal eNB_id %d\n",eNB_id);
    return(-1);
  }
    
  if (!lte_ue_common_vars) {
    msg("dlsch_demodulation.c: Null lte_ue_common_vars\n");
    return(-1);
  }

  if (!dlsch_ue[0]) {
    msg("dlsch_demodulation.c: Null dlsch_ue pointer\n");
    return(-1);
  }

  if (!lte_ue_pdsch_vars) {
    msg("dlsch_demodulation.c: Null lte_ue_pdsch_vars pointer\n");
    return(-1);
  }
    
  if (!frame_parms) {
    msg("dlsch_demodulation.c: Null lte_frame_parms\n");
    return(-1);
  }
knopp's avatar
   
knopp committed
152
  //  printf("rx_dlsch subframe %d symbol %d: eNB_id %d, eNB_id_i %d, dual_stream_flag %d\n",subframe,symbol,eNB_id,eNB_id_i,dual_stream_flag); 
153
154
155
156
157
158
159
160
161
162
163
  //  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;

  /*
    if ((symbol_mod == 0) || (symbol_mod == (4-frame_parms->Ncp)))
    pilots=1;
    else 
    pilots=0;
  */

  if (frame_parms->nb_antennas_tx_eNB>1) {
#ifdef DEBUG_DLSCH_MOD     
164
    LOG_I(PHY,"dlsch: using pmi %x (%p), rb_alloc %x\n",pmi2hex_2Ar1(dlsch0_harq->pmi_alloc),dlsch_ue[0],dlsch0_harq->rb_alloc[0]);
165
166
167
168
169
#endif
    nb_rb = dlsch_extract_rbs_dual(lte_ue_common_vars->rxdataF,
				   lte_ue_common_vars->dl_ch_estimates[eNB_id],
				   lte_ue_pdsch_vars[eNB_id]->rxdataF_ext,
				   lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext,
170
				   dlsch0_harq->pmi_alloc,
171
				   lte_ue_pdsch_vars[eNB_id]->pmi_ext,
172
				   dlsch0_harq->rb_alloc,
173
174
				   symbol,
				   subframe,
175
				   phy_vars_ue->high_speed_flag,
176
177
178
179
180
181
182
183
				   frame_parms);

    if (dual_stream_flag==1) {
      if (eNB_id_i<phy_vars_ue->n_connected_eNB)
	nb_rb = dlsch_extract_rbs_dual(lte_ue_common_vars->rxdataF,
				       lte_ue_common_vars->dl_ch_estimates[eNB_id_i],
				       lte_ue_pdsch_vars[eNB_id_i]->rxdataF_ext,
				       lte_ue_pdsch_vars[eNB_id_i]->dl_ch_estimates_ext,
184
				       dlsch0_harq->pmi_alloc,
185
				       lte_ue_pdsch_vars[eNB_id_i]->pmi_ext,
186
				       dlsch0_harq->rb_alloc,
187
188
				       symbol,
				       subframe,
189
				       phy_vars_ue->high_speed_flag,
190
191
192
193
194
195
				       frame_parms);
      else 
	nb_rb = dlsch_extract_rbs_dual(lte_ue_common_vars->rxdataF,
				       lte_ue_common_vars->dl_ch_estimates[eNB_id],
				       lte_ue_pdsch_vars[eNB_id_i]->rxdataF_ext,
				       lte_ue_pdsch_vars[eNB_id_i]->dl_ch_estimates_ext,
196
				       dlsch0_harq->pmi_alloc,
197
				       lte_ue_pdsch_vars[eNB_id_i]->pmi_ext,
198
				       dlsch0_harq->rb_alloc,
199
200
				       symbol,
				       subframe,
201
				       phy_vars_ue->high_speed_flag,
202
203
204
205
206
207
208
209
				       frame_parms);
    }
  } // if n_tx>1
  else {     
    nb_rb = dlsch_extract_rbs_single(lte_ue_common_vars->rxdataF,
				     lte_ue_common_vars->dl_ch_estimates[eNB_id],
				     lte_ue_pdsch_vars[eNB_id]->rxdataF_ext,
				     lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext,
210
				     dlsch0_harq->pmi_alloc,
211
				     lte_ue_pdsch_vars[eNB_id]->pmi_ext,
212
				     dlsch0_harq->rb_alloc,
213
214
				     symbol,
				     subframe,
215
				     phy_vars_ue->high_speed_flag,
216
217
218
219
220
221
222
223
				     frame_parms);
        
    if (dual_stream_flag==1) {
      if (eNB_id_i<phy_vars_ue->n_connected_eNB)
	nb_rb = dlsch_extract_rbs_single(lte_ue_common_vars->rxdataF,
					 lte_ue_common_vars->dl_ch_estimates[eNB_id_i],
					 lte_ue_pdsch_vars[eNB_id_i]->rxdataF_ext,
					 lte_ue_pdsch_vars[eNB_id_i]->dl_ch_estimates_ext,    
224
					 dlsch0_harq->pmi_alloc,
225
					 lte_ue_pdsch_vars[eNB_id_i]->pmi_ext,
226
					 dlsch0_harq->rb_alloc,
227
228
					 symbol,
					 subframe,
229
					 phy_vars_ue->high_speed_flag,
230
231
232
233
234
235
					 frame_parms);
      else 
	nb_rb = dlsch_extract_rbs_single(lte_ue_common_vars->rxdataF,
					 lte_ue_common_vars->dl_ch_estimates[eNB_id],
					 lte_ue_pdsch_vars[eNB_id_i]->rxdataF_ext,
					 lte_ue_pdsch_vars[eNB_id_i]->dl_ch_estimates_ext,    
236
					 dlsch0_harq->pmi_alloc,
237
					 lte_ue_pdsch_vars[eNB_id_i]->pmi_ext,
238
					 dlsch0_harq->rb_alloc,
239
240
					 symbol,
					 subframe,
241
					 phy_vars_ue->high_speed_flag,
242
243
244
245
246
247
248
249
250
					 frame_parms);
    }
  } //else n_tx>1
  
    //  printf("nb_rb = %d, eNB_id %d\n",nb_rb,eNB_id);
  if (nb_rb==0) {
    msg("dlsch_demodulation.c: nb_rb=0\n");
    return(-1);
  }
knopp's avatar
   
knopp committed
251
  /*
252
253
  // DL power control: Scaling of Channel estimates for PDSCH
  dlsch_scale_channel(lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext,
254
255
256
257
  frame_parms,
  dlsch_ue,
  symbol,
  nb_rb);
knopp's avatar
   
knopp committed
258
  */
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
  if (first_symbol_flag==1) {
    dlsch_channel_level(lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext,
			frame_parms,
			avg,
			symbol,
			nb_rb);
#ifdef DEBUG_PHY
    msg("[DLSCH] avg[0] %d\n",avg[0]);
#endif
      
    // the channel gain should be the effective gain of precoding + channel
    // however lets be more conservative and set maxh = nb_tx*nb_rx*max(h_i)
    // in case of precoding we add an additional factor of two for the precoding gain
    avgs = 0;
    for (aatx=0;aatx<frame_parms->nb_antennas_tx_eNB;aatx++)
      for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++)
	avgs = cmax(avgs,avg[(aatx<<1)+aarx]);
    //	avgs = cmax(avgs,avg[(aarx<<1)+aatx]);
        
    
279
    lte_ue_pdsch_vars[eNB_id]->log2_maxh = (log2_approx(avgs)/2);
280
281
    // + log2_approx(frame_parms->nb_antennas_tx_eNB-1) //-1 because log2_approx counts the number of bits
    //      + log2_approx(frame_parms->nb_antennas_rx-1);
282

283
284
285
    if ((dlsch0_harq->mimo_mode>=UNIFORM_PRECODING11) &&
	(dlsch0_harq->mimo_mode< DUALSTREAM_UNIFORM_PRECODING1) &&
	(dlsch0_harq->dl_power_off==1)) // we are in TM 6
286
287
288
289
290
291
292
293
      lte_ue_pdsch_vars[eNB_id]->log2_maxh++;

    // this version here applies the factor .5 also to the extra terms. however, it does not work so well as the one above
    /* K = Nb_rx         in TM1 
       Nb_tx*Nb_rx   in TM2,4,5
       Nb_tx^2*Nb_rx in TM6 */
    /*
      K = frame_parms->nb_antennas_rx*frame_parms->nb_antennas_tx_eNB; //that also covers TM1 since Nb_tx=1
294
295
296
      if ((dlsch0_harq->mimo_mode>=UNIFORM_PRECODING11) &&
      (dlsch0_harq->mimo_mode< DUALSTREAM_UNIFORM_PRECODING1) &&
      (dlsch0_harq->dl_power_off==1)) // we are in TM 6
297
298
299
300
301
302
303
      K *= frame_parms->nb_antennas_tx_eNB;

      lte_ue_pdsch_vars[eNB_id]->log2_maxh = (log2_approx(K*avgs)/2);
    */

#ifdef DEBUG_PHY
    msg("[DLSCH] log2_maxh = %d (%d,%d)\n",lte_ue_pdsch_vars[eNB_id]->log2_maxh,avg[0],avgs);
304
    msg("[DLSCH] mimo_mode = %d\n", dlsch0_harq->mimo_mode);
305
306
307
308
309
#endif
  }
  aatx = frame_parms->nb_antennas_tx_eNB;
  aarx = frame_parms->nb_antennas_rx;

310
  if (dlsch0_harq->mimo_mode<LARGE_CDD) {// SISO or ALAMOUTI
311
312
313

    dlsch_channel_compensation(lte_ue_pdsch_vars[eNB_id]->rxdataF_ext,
			       lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext,
314
315
316
			       lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
			       lte_ue_pdsch_vars[eNB_id]->dl_ch_magb0,
			       lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
317
318
319
320
			       (aatx>1) ? lte_ue_pdsch_vars[eNB_id]->rho : NULL,
			       frame_parms,
			       symbol,
			       first_symbol_flag,
321
			       get_Qm(dlsch0_harq->mcs),
322
323
324
325
326
			       nb_rb,
			       lte_ue_pdsch_vars[eNB_id]->log2_maxh,
			       phy_measurements); // log2_maxh+I0_shift
#ifdef DEBUG_PHY
    if (symbol==5)
327
      write_output("rxF_comp_d.m","rxF_c_d",&lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0[0][symbol*frame_parms->N_RB_DL*12],frame_parms->N_RB_DL*12,1,1);
328
329
330
331
332
333
334
#endif
      
    if ((dual_stream_flag==1) && 
	(eNB_id_i<phy_vars_ue->n_connected_eNB)) {
      // get MF output for interfering stream
      dlsch_channel_compensation(lte_ue_pdsch_vars[eNB_id_i]->rxdataF_ext,
				 lte_ue_pdsch_vars[eNB_id_i]->dl_ch_estimates_ext,
335
336
337
				 lte_ue_pdsch_vars[eNB_id_i]->dl_ch_mag0,
				 lte_ue_pdsch_vars[eNB_id_i]->dl_ch_magb0,
				 lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
338
339
340
341
342
343
344
345
346
347
				 (aatx>1) ? lte_ue_pdsch_vars[eNB_id_i]->rho : NULL,
				 frame_parms,
				 symbol,
				 first_symbol_flag,
				 i_mod,
				 nb_rb,
				 lte_ue_pdsch_vars[eNB_id]->log2_maxh,
				 phy_measurements); // log2_maxh+I0_shift
#ifdef DEBUG_PHY
      if (symbol == 5) {
348
349
	write_output("rxF_comp_d.m","rxF_c_d",&lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0[0][symbol*frame_parms->N_RB_DL*12],frame_parms->N_RB_DL*12,1,1);
	write_output("rxF_comp_i.m","rxF_c_i",&lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0[0][symbol*frame_parms->N_RB_DL*12],frame_parms->N_RB_DL*12,1,1);     
350
351
352
353
354
355
356
357
358
359
360
361
362
      }
#endif 
	
      // compute correlation between signal and interference channels
      dlsch_dual_stream_correlation(frame_parms,
				    symbol,
				    nb_rb,
				    lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext,
				    lte_ue_pdsch_vars[eNB_id_i]->dl_ch_estimates_ext,
				    lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
				    lte_ue_pdsch_vars[eNB_id]->log2_maxh);
    }
  }
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
  else if (dlsch0_harq->mimo_mode == LARGE_CDD) {  // TM3
    //   LOG_I(PHY,"Running PDSCH RX for TM3\n");
    if (frame_parms->nb_antennas_tx_eNB == 2) {
      if (first_symbol_flag==1) {
	// effective channel of desired user is always stronger than interfering eff. channel
	dlsch_channel_level_TM3(lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext, 
				frame_parms, 
				avg, symbol, nb_rb);
	
	//	msg("llr_offset = %d\n",offset_mumimo_llr_drange[dlsch0_harq->mcs][(dlsch1_harq->mcs>>1)-1]);
	avg[0] = log2_approx(avg[0]) - 13 + offset_mumimo_llr_drange[dlsch0_harq->mcs][(get_Qm(dlsch1_harq->mcs)>>1)-1];

	lte_ue_pdsch_vars[eNB_id]->log2_maxh = cmax(avg[0],0);
	//	printf("log2_maxh =%d\n",lte_ue_pdsch_vars[eNB_id]->log2_maxh);
      }    
      dlsch_channel_compensation_TM3(frame_parms, 
				     lte_ue_pdsch_vars[eNB_id],
				     phy_measurements, 
				     eNB_id, 
				     symbol, 
				     get_Qm(dlsch0_harq->mcs), 
knopp's avatar
knopp committed
384
385
				     get_Qm(dlsch1_harq->mcs),
				     dlsch0_harq->round,
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
				     nb_rb, 
				     lte_ue_pdsch_vars[eNB_id]->log2_maxh); 
      // compute correlation between signal and interference channels
      dlsch_dual_stream_correlation(frame_parms,
				    symbol,
				    nb_rb,
				    lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext,
				    NULL,
				    lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
				    lte_ue_pdsch_vars[eNB_id]->log2_maxh);
      //printf("TM3 log2_maxh : %d\n",lte_ue_pdsch_vars[eNB_id]->log2_maxh);

    }
    else {

    }
  }
  else if (dlsch0_harq->mimo_mode<DUALSTREAM_UNIFORM_PRECODING1) {// single-layer precoding, TM4 (Single-codeword)/5 (single or 2 user)/6
404
405
    //    printf("Channel compensation for precoding\n");
    //    if ((dual_stream_flag==1) && (eNB_id_i==NUMBER_OF_CONNECTED_eNB_MAX)) {
406
    if ((dual_stream_flag==1) && (eNB_id_i==phy_vars_ue->n_connected_eNB)) {  // TM5 two-user
407
408
409

      // Scale the channel estimates for interfering stream

410
      dlsch_scale_channel(lte_ue_pdsch_vars[eNB_id_i]->dl_ch_estimates_ext,
411
412
413
			  frame_parms,
			  dlsch_ue,
			  symbol,
414
			  nb_rb);     
415
416
417
418

      /* compute new log2_maxh for effective channel */
      if (first_symbol_flag==1) {
	// effective channel of desired user is always stronger than interfering eff. channel
419
	dlsch_channel_level_TM56(lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext, frame_parms, lte_ue_pdsch_vars[eNB_id]->pmi_ext,	avg, symbol, nb_rb);
420
	
421
422
	//    msg("llr_offset = %d\n",offset_mumimo_llr_drange[dlsch0_harq->mcs][(i_mod>>1)-1]);
	avg[0] = log2_approx(avg[0]) - 13 + offset_mumimo_llr_drange[dlsch0_harq->mcs][(i_mod>>1)-1];
423
424
425
426
427

	lte_ue_pdsch_vars[eNB_id]->log2_maxh = cmax(avg[0],0);
	//printf("log1_maxh =%d\n",lte_ue_pdsch_vars[eNB_id]->log2_maxh);
      }      

428
429
430
431
432
433
434
435
436
437
438
439
440
441
      dlsch_channel_compensation_TM56(lte_ue_pdsch_vars[eNB_id]->rxdataF_ext, 
				      lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext, 
				      lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0, 
				      lte_ue_pdsch_vars[eNB_id]->dl_ch_magb0, 
				      lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0, 
				      lte_ue_pdsch_vars[eNB_id]->pmi_ext, 
				      frame_parms, 
				      phy_measurements, 
				      eNB_id, 
				      symbol, 
				      get_Qm(dlsch0_harq->mcs), 
				      nb_rb, 
				      lte_ue_pdsch_vars[eNB_id]->log2_maxh, 
				      dlsch0_harq->dl_power_off);
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

      // if interference source is MU interference, assume opposite precoder was used at eNB

      // calculate opposite PMI
      for (rb=0;rb<nb_rb;rb++) {
	switch(lte_ue_pdsch_vars[eNB_id]->pmi_ext[rb]) {
	case 0:
	  lte_ue_pdsch_vars[eNB_id_i]->pmi_ext[rb]=1;
	  break;
	case 1:
	  lte_ue_pdsch_vars[eNB_id_i]->pmi_ext[rb]=0;
	  break;
	case 2:
	  lte_ue_pdsch_vars[eNB_id_i]->pmi_ext[rb]=3;
	  break;
	case 3:
	  lte_ue_pdsch_vars[eNB_id_i]->pmi_ext[rb]=2;
	  break;
	}
	//	if (rb==0)
	//	  printf("pmi %d, pmi_i %d\n",lte_ue_pdsch_vars[eNB_id]->pmi_ext[rb],lte_ue_pdsch_vars[eNB_id_i]->pmi_ext[rb]);
	
      }

466
467
468
469
470
471
472
473
474
475
476
477
478
479
      dlsch_channel_compensation_TM56(lte_ue_pdsch_vars[eNB_id_i]->rxdataF_ext, 
				      lte_ue_pdsch_vars[eNB_id_i]->dl_ch_estimates_ext, 
				      lte_ue_pdsch_vars[eNB_id_i]->dl_ch_mag0, 
				      lte_ue_pdsch_vars[eNB_id_i]->dl_ch_magb0, 
				      lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0, 
				      lte_ue_pdsch_vars[eNB_id_i]->pmi_ext, 
				      frame_parms, 
				      phy_measurements, 
				      eNB_id_i, 
				      symbol, 
				      i_mod, 
				      nb_rb, 
				      lte_ue_pdsch_vars[eNB_id]->log2_maxh, 
				      dlsch0_harq->dl_power_off);
480
481
482
        
#ifdef DEBUG_PHY
      if (symbol==5) {
483
484
	write_output("rxF_comp_d.m","rxF_c_d",&lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0[0][symbol*frame_parms->N_RB_DL*12],frame_parms->N_RB_DL*12,1,1);
	write_output("rxF_comp_i.m","rxF_c_i",&lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0[0][symbol*frame_parms->N_RB_DL*12],frame_parms->N_RB_DL*12,1,1);    
485
486
487
488
489
490
491
      }
#endif  

      dlsch_dual_stream_correlation(frame_parms, symbol, nb_rb, lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext, lte_ue_pdsch_vars[eNB_id_i]->dl_ch_estimates_ext, lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext, lte_ue_pdsch_vars[eNB_id]->log2_maxh);

    }
    else {
492
      dlsch_channel_compensation_TM56(lte_ue_pdsch_vars[eNB_id]->rxdataF_ext,
493
				      lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext,
494
495
496
				      lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
				      lte_ue_pdsch_vars[eNB_id]->dl_ch_magb0,
				      lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
497
498
499
500
501
				      lte_ue_pdsch_vars[eNB_id]->pmi_ext,
				      frame_parms,
				      phy_measurements,
				      eNB_id,
				      symbol,
502
				      get_Qm(dlsch0_harq->mcs),
503
504
505
506
507
508
509
				      nb_rb,
				      lte_ue_pdsch_vars[eNB_id]->log2_maxh,
				      1);
    }
  }

  //  printf("MRC\n");
510
511
512
513
514
  if (frame_parms->nb_antennas_rx > 1) {
    if (dlsch0_harq->mimo_mode == LARGE_CDD) {
      if (frame_parms->nb_antennas_tx_eNB == 2) {
	dlsch_detection_mrc(frame_parms,
			    lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
knopp's avatar
knopp committed
515
			    lte_ue_pdsch_vars[eNB_id]->rxdataF_comp1[dlsch0_harq->round],
516
517
518
519
520
521
522
523
524
525
526
527
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			    lte_ue_pdsch_vars[eNB_id]->rho,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_magb0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_mag1,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_magb1,
			    symbol,
			    nb_rb,
			    dual_stream_flag); 			    
      }
    }
    else {
528
      
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
      dlsch_detection_mrc(frame_parms,
			  lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
			  lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
			  lte_ue_pdsch_vars[eNB_id]->rho,
			  lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			  lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
			  lte_ue_pdsch_vars[eNB_id]->dl_ch_magb0,
			  lte_ue_pdsch_vars[eNB_id_i]->dl_ch_mag0,
			  lte_ue_pdsch_vars[eNB_id_i]->dl_ch_magb0,
			  symbol,
			  nb_rb,
			  dual_stream_flag); 
    }
  }
  //  printf("Combining");
  if ((dlsch0_harq->mimo_mode == SISO) ||
      ((dlsch0_harq->mimo_mode >= UNIFORM_PRECODING11) &&
       (dlsch0_harq->mimo_mode <= PUSCH_PRECODING0))) {

    /*
      dlsch_siso(frame_parms,
      lte_ue_pdsch_vars[eNB_id]->rxdataF_comp,
      lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp,
      symbol,
      nb_rb);
    */
  } else if (dlsch0_harq->mimo_mode == ALAMOUTI) {

    dlsch_alamouti(frame_parms,
		   lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
		   lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
		   lte_ue_pdsch_vars[eNB_id]->dl_ch_magb0,
		   symbol,
		   nb_rb);
563
          
564
  } 
565
          
566
567
568
569
570
571
572
  else if (dlsch0_harq->mimo_mode == LARGE_CDD) {
	
  }
  else {
    msg("dlsch_rx: Unknown MIMO mode\n");
    return (-1);
  }
573

574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
  //    printf("LLR");

  switch (get_Qm(dlsch0_harq->mcs)) {
  case 2 : 
    if (dlsch0_harq->mimo_mode != LARGE_CDD) { 
      if (dual_stream_flag == 0)
	dlsch_qpsk_llr(frame_parms,
		       lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
		       lte_ue_pdsch_vars[eNB_id]->llr[0],
		       symbol,first_symbol_flag,nb_rb,
		       adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
		       lte_ue_pdsch_vars[eNB_id]->llr128);
      else if (i_mod == 2) {
	dlsch_qpsk_qpsk_llr(frame_parms,
			    lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
			    lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			    lte_ue_pdsch_vars[eNB_id]->llr[0],
			    symbol,first_symbol_flag,nb_rb,
			    adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			    lte_ue_pdsch_vars[eNB_id]->llr128);
595
      }
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
      else if (i_mod == 4) { 
	dlsch_qpsk_16qam_llr(frame_parms,
			     lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
			     lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
			     lte_ue_pdsch_vars[eNB_id_i]->dl_ch_mag0,
			     lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			     lte_ue_pdsch_vars[eNB_id]->llr[0],
			     symbol,first_symbol_flag,nb_rb,
			     adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			     lte_ue_pdsch_vars[eNB_id]->llr128);
      }
      else {
	dlsch_qpsk_64qam_llr(frame_parms,
			     lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
			     lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
			     lte_ue_pdsch_vars[eNB_id_i]->dl_ch_mag0,
			     lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			     lte_ue_pdsch_vars[eNB_id]->llr[0],
			     symbol,first_symbol_flag,nb_rb,
			     adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			     lte_ue_pdsch_vars[eNB_id]->llr128);
	    
      }          
    }
    else { // TM3
621
      DevAssert(dlsch1_harq);
622
623
624
625
626
627
628
629
630
631
      if (get_Qm(dlsch1_harq->mcs) == 2) {
	/*	dlsch_qpsk_llr(frame_parms,
		       lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
		       lte_ue_pdsch_vars[eNB_id]->llr[0],
		       symbol,first_symbol_flag,nb_rb,
		       adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
		       lte_ue_pdsch_vars[eNB_id]->llr128);
	*/
	dlsch_qpsk_qpsk_llr(frame_parms,
			    lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
knopp's avatar
knopp committed
632
			    lte_ue_pdsch_vars[eNB_id]->rxdataF_comp1[dlsch0_harq->round],
633
634
635
636
637
638
639
640
641
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			    lte_ue_pdsch_vars[eNB_id]->llr[0],
			    symbol,first_symbol_flag,nb_rb,
			    adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			    lte_ue_pdsch_vars[eNB_id]->llr128);
      }
      else if (get_Qm(dlsch1_harq->mcs) == 4) { 
	dlsch_qpsk_16qam_llr(frame_parms,
			     lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
knopp's avatar
knopp committed
642
			     lte_ue_pdsch_vars[eNB_id]->rxdataF_comp1[dlsch0_harq->round],
643
644
645
646
647
648
649
650
651
652
			     lte_ue_pdsch_vars[eNB_id]->dl_ch_mag1,
			     lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			     lte_ue_pdsch_vars[eNB_id]->llr[0],
			     symbol,first_symbol_flag,nb_rb,
			     adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			     lte_ue_pdsch_vars[eNB_id]->llr128);
      }
      else {
	dlsch_qpsk_64qam_llr(frame_parms,
			     lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
knopp's avatar
knopp committed
653
			     lte_ue_pdsch_vars[eNB_id]->rxdataF_comp1[dlsch0_harq->round],
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
			     lte_ue_pdsch_vars[eNB_id]->dl_ch_mag1,
			     lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			     lte_ue_pdsch_vars[eNB_id]->llr[0],
			     symbol,first_symbol_flag,nb_rb,
			     adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			     lte_ue_pdsch_vars[eNB_id]->llr128);
	
      }          
    }
    break;
  case 4 :
    if (dual_stream_flag == 0) {
      dlsch_16qam_llr(frame_parms,
		      lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
		      lte_ue_pdsch_vars[eNB_id]->llr[0],
		      lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
		      symbol,first_symbol_flag,nb_rb,
		      adjust_G2(frame_parms,dlsch0_harq->rb_alloc,4,subframe,symbol),
		      lte_ue_pdsch_vars[eNB_id]->llr128);
    }
    else if (i_mod == 2) {
      dlsch_16qam_qpsk_llr(frame_parms,
			   lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
			   lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
			   lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
			   lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			   lte_ue_pdsch_vars[eNB_id]->llr[0],
			   symbol,first_symbol_flag,nb_rb,
			   adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			   lte_ue_pdsch_vars[eNB_id]->llr128);
    } 
    else if (i_mod == 4) {
      dlsch_16qam_16qam_llr(frame_parms,
			    lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
			    lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
			    lte_ue_pdsch_vars[eNB_id_i]->dl_ch_mag0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			    lte_ue_pdsch_vars[eNB_id]->llr[0],
			    symbol,first_symbol_flag,nb_rb,
			    adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			    lte_ue_pdsch_vars[eNB_id]->llr128);
    } else {
      dlsch_16qam_64qam_llr(frame_parms,
			    lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
			    lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
			    lte_ue_pdsch_vars[eNB_id_i]->dl_ch_mag0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			    lte_ue_pdsch_vars[eNB_id]->llr[0],
			    symbol,first_symbol_flag,nb_rb,
			    adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			    lte_ue_pdsch_vars[eNB_id]->llr128);
    }
    break;
  case 6 :
    if (dual_stream_flag == 0) {
      dlsch_64qam_llr(frame_parms,
		      lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
		      lte_ue_pdsch_vars[eNB_id]->llr[0],
		      lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
		      lte_ue_pdsch_vars[eNB_id]->dl_ch_magb0,
		      symbol,first_symbol_flag,nb_rb,
		      adjust_G2(frame_parms,dlsch0_harq->rb_alloc,6,subframe,symbol),
		      lte_ue_pdsch_vars[eNB_id]->llr128);
    }
    else if (i_mod == 2) {              
      dlsch_64qam_qpsk_llr(frame_parms,
			   lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
			   lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
			   lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
			   lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			   lte_ue_pdsch_vars[eNB_id]->llr[0],
			   symbol,first_symbol_flag,nb_rb,
			   adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			   lte_ue_pdsch_vars[eNB_id]->llr128);
    }
    else if (i_mod == 4) {
      dlsch_64qam_16qam_llr(frame_parms,
			    lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
			    lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
			    lte_ue_pdsch_vars[eNB_id_i]->dl_ch_mag0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			    lte_ue_pdsch_vars[eNB_id]->llr[0],
			    symbol,first_symbol_flag,nb_rb,
			    adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			    lte_ue_pdsch_vars[eNB_id]->llr128);
	
    }
    else {	  
      dlsch_64qam_64qam_llr(frame_parms,
			    lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
			    lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
			    lte_ue_pdsch_vars[eNB_id_i]->dl_ch_mag0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			    lte_ue_pdsch_vars[eNB_id]->llr[0],
			    symbol,first_symbol_flag,nb_rb,
			    adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			    lte_ue_pdsch_vars[eNB_id]->llr128);
    }
    break;
  default:
    msg("rx_dlsch.c : Unknown mod_order!!!!\n");
759
    return(-1);
760
    break;
761
  }
762

763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
  return(0);    
}

//==============================================================================================
// Pre-processing for LLR computation
//==============================================================================================

void dlsch_channel_compensation(int **rxdataF_ext,
                                int **dl_ch_estimates_ext,
                                int **dl_ch_mag,
                                int **dl_ch_magb,
                                int **rxdataF_comp,
                                int **rho,
                                LTE_DL_FRAME_PARMS *frame_parms,
                                unsigned char symbol,
gauthier's avatar
gauthier committed
778
                                uint8_t first_symbol_flag,
779
780
781
782
783
784
785
786
                                unsigned char mod_order,
                                unsigned short nb_rb,
                                unsigned char output_shift,
                                PHY_MEASUREMENTS *phy_measurements) {

  unsigned short rb;
  unsigned char aatx,aarx,symbol_mod,pilots=0;
  __m128i *dl_ch128,*dl_ch128_2,*dl_ch_mag128,*dl_ch_mag128b,*rxdataF128,*rxdataF_comp128,*rho128;
787
  __m128i mmtmpD0,mmtmpD1,mmtmpD2,mmtmpD3,QAM_amp128,QAM_amp128b;
788
789
790
791
792
793
794
795
796
797
798
799
800
801

  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;

  if ((symbol_mod == 0) || (symbol_mod == (4-frame_parms->Ncp))) {
      
    if (frame_parms->mode1_flag==1) // 10 out of 12 so don't reduce size    
      nb_rb=1+(5*nb_rb/6);
    else  
      pilots=1;    
  }

  for (aatx=0;aatx<frame_parms->nb_antennas_tx_eNB;aatx++) {
    if (mod_order == 4) {
      QAM_amp128 = _mm_set1_epi16(QAM16_n1);  // 2/sqrt(10)
802
      QAM_amp128b = _mm_setzero_si128();
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
    }    
    else if (mod_order == 6) {
      QAM_amp128  = _mm_set1_epi16(QAM64_n1); // 
      QAM_amp128b = _mm_set1_epi16(QAM64_n2);
    }
    
    //    printf("comp: rxdataF_comp %p, symbol %d\n",rxdataF_comp[0],symbol);

    for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {

      dl_ch128          = (__m128i *)&dl_ch_estimates_ext[(aatx<<1)+aarx][symbol*frame_parms->N_RB_DL*12];
      dl_ch_mag128      = (__m128i *)&dl_ch_mag[(aatx<<1)+aarx][symbol*frame_parms->N_RB_DL*12];
      dl_ch_mag128b     = (__m128i *)&dl_ch_magb[(aatx<<1)+aarx][symbol*frame_parms->N_RB_DL*12];
      rxdataF128        = (__m128i *)&rxdataF_ext[aarx][symbol*frame_parms->N_RB_DL*12];
      rxdataF_comp128   = (__m128i *)&rxdataF_comp[(aatx<<1)+aarx][symbol*frame_parms->N_RB_DL*12];


      for (rb=0;rb<nb_rb;rb++) {
	if (mod_order>2) {  
	  // get channel amplitude if not QPSK
                
	  mmtmpD0 = _mm_madd_epi16(dl_ch128[0],dl_ch128[0]);
	  mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
                
	  mmtmpD1 = _mm_madd_epi16(dl_ch128[1],dl_ch128[1]);
	  mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
                
	  mmtmpD0 = _mm_packs_epi32(mmtmpD0,mmtmpD1);
                
	  // store channel magnitude here in a new field of dlsch
                
	  dl_ch_mag128[0] = _mm_unpacklo_epi16(mmtmpD0,mmtmpD0);
	  dl_ch_mag128b[0] = dl_ch_mag128[0];
	  dl_ch_mag128[0] = _mm_mulhi_epi16(dl_ch_mag128[0],QAM_amp128);
	  dl_ch_mag128[0] = _mm_slli_epi16(dl_ch_mag128[0],1);
                
	  dl_ch_mag128[1] = _mm_unpackhi_epi16(mmtmpD0,mmtmpD0);
	  dl_ch_mag128b[1] = dl_ch_mag128[1];
	  dl_ch_mag128[1] = _mm_mulhi_epi16(dl_ch_mag128[1],QAM_amp128);
	  dl_ch_mag128[1] = _mm_slli_epi16(dl_ch_mag128[1],1);
                
	  if (pilots==0) {
	    mmtmpD0 = _mm_madd_epi16(dl_ch128[2],dl_ch128[2]);
	    mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
	    mmtmpD1 = _mm_packs_epi32(mmtmpD0,mmtmpD0);
                    
	    dl_ch_mag128[2] = _mm_unpacklo_epi16(mmtmpD1,mmtmpD1);
	    dl_ch_mag128b[2] = dl_ch_mag128[2];
                    
	    dl_ch_mag128[2] = _mm_mulhi_epi16(dl_ch_mag128[2],QAM_amp128);
	    dl_ch_mag128[2] = _mm_slli_epi16(dl_ch_mag128[2],1);	  
	  }
                
	  dl_ch_mag128b[0] = _mm_mulhi_epi16(dl_ch_mag128b[0],QAM_amp128b);
	  dl_ch_mag128b[0] = _mm_slli_epi16(dl_ch_mag128b[0],1);
                
                
	  dl_ch_mag128b[1] = _mm_mulhi_epi16(dl_ch_mag128b[1],QAM_amp128b);
	  dl_ch_mag128b[1] = _mm_slli_epi16(dl_ch_mag128b[1],1);
                
	  if (pilots==0) {
	    dl_ch_mag128b[2] = _mm_mulhi_epi16(dl_ch_mag128b[2],QAM_amp128b);
	    dl_ch_mag128b[2] = _mm_slli_epi16(dl_ch_mag128b[2],1);	  
	  }
	}
	
	// multiply by conjugated channel
	mmtmpD0 = _mm_madd_epi16(dl_ch128[0],rxdataF128[0]);
	//	print_ints("re",&mmtmpD0);
            
	// mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
	mmtmpD1 = _mm_shufflelo_epi16(dl_ch128[0],_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)&conjugate[0]);
	//	print_ints("im",&mmtmpD1);
	mmtmpD1 = _mm_madd_epi16(mmtmpD1,rxdataF128[0]);
	// mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
	mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
	//	print_ints("re(shift)",&mmtmpD0);
	mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
	//	print_ints("im(shift)",&mmtmpD1);
	mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
	mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
	//       	print_ints("c0",&mmtmpD2);
	//	print_ints("c1",&mmtmpD3);
	rxdataF_comp128[0] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
	//	print_shorts("rx:",rxdataF128);
	//	print_shorts("ch:",dl_ch128);
	//	print_shorts("pack:",rxdataF_comp128);
            
	// multiply by conjugated channel
	mmtmpD0 = _mm_madd_epi16(dl_ch128[1],rxdataF128[1]);
	// mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
	mmtmpD1 = _mm_shufflelo_epi16(dl_ch128[1],_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)conjugate);
	mmtmpD1 = _mm_madd_epi16(mmtmpD1,rxdataF128[1]);
	// mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
	mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
	mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
	mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
	mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
            
	rxdataF_comp128[1] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
	//	print_shorts("rx:",rxdataF128+1);
	//	print_shorts("ch:",dl_ch128+1);
	//	print_shorts("pack:",rxdataF_comp128+1);	
            
	if (pilots==0) {
	  // multiply by conjugated channel
	  mmtmpD0 = _mm_madd_epi16(dl_ch128[2],rxdataF128[2]);
	  // mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
	  mmtmpD1 = _mm_shufflelo_epi16(dl_ch128[2],_MM_SHUFFLE(2,3,0,1));
	  mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
	  mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)conjugate);
	  mmtmpD1 = _mm_madd_epi16(mmtmpD1,rxdataF128[2]);
	  // mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
	  mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
	  mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
	  mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
	  mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
                
	  rxdataF_comp128[2] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
	  //	print_shorts("rx:",rxdataF128+2);
	  //	print_shorts("ch:",dl_ch128+2);
	  //      	print_shorts("pack:",rxdataF_comp128+2);
                
	  dl_ch128+=3;
	  dl_ch_mag128+=3;
	  dl_ch_mag128b+=3;
	  rxdataF128+=3;
	  rxdataF_comp128+=3;
	}
	else { // we have a smaller PDSCH in symbols with pilots so skip last group of 4 REs and increment less
	  dl_ch128+=2;
	  dl_ch_mag128+=2;
	  dl_ch_mag128b+=2;
	  rxdataF128+=2;
	  rxdataF_comp128+=2;
	}
            
      }
    }
  }
  
  if (rho) {
      
      
    for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
      rho128        = (__m128i *)&rho[aarx][symbol*frame_parms->N_RB_DL*12];
      dl_ch128      = (__m128i *)&dl_ch_estimates_ext[aarx][symbol*frame_parms->N_RB_DL*12];
      dl_ch128_2    = (__m128i *)&dl_ch_estimates_ext[2+aarx][symbol*frame_parms->N_RB_DL*12];
          
      for (rb=0;rb<nb_rb;rb++) {
	// multiply by conjugated channel
	mmtmpD0 = _mm_madd_epi16(dl_ch128[0],dl_ch128_2[0]);
	//	print_ints("re",&mmtmpD0);
              
	// mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
	mmtmpD1 = _mm_shufflelo_epi16(dl_ch128[0],_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)&conjugate[0]);
	//	print_ints("im",&mmtmpD1);
	mmtmpD1 = _mm_madd_epi16(mmtmpD1,dl_ch128_2[0]);
	// mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
	mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
	//	print_ints("re(shift)",&mmtmpD0);
	mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
	//	print_ints("im(shift)",&mmtmpD1);
	mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
	mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
	//       	print_ints("c0",&mmtmpD2);
	//	print_ints("c1",&mmtmpD3);
	rho128[0] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
              
	//print_shorts("rx:",dl_ch128_2);
	//print_shorts("ch:",dl_ch128);
	//print_shorts("pack:",rho128);
              
	// multiply by conjugated channel
	mmtmpD0 = _mm_madd_epi16(dl_ch128[1],dl_ch128_2[1]);
	// mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
	mmtmpD1 = _mm_shufflelo_epi16(dl_ch128[1],_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)conjugate);
	mmtmpD1 = _mm_madd_epi16(mmtmpD1,dl_ch128_2[1]);
	// mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
	mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
	mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
	mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
	mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);

	
	rho128[1] =_mm_packs_epi32(mmtmpD2,mmtmpD3);
	//print_shorts("rx:",dl_ch128_2+1);
	//print_shorts("ch:",dl_ch128+1);
	//print_shorts("pack:",rho128+1);	
	// multiply by conjugated channel
For faster browsing, not all history is shown. View entire blame