ulsim.c 74.1 KB
Newer Older
1
/*******************************************************************************
2
    OpenAirInterface
ghaddab's avatar
ghaddab committed
3
    Copyright(c) 1999 - 2014 Eurecom
4

ghaddab's avatar
ghaddab committed
5
6
7
8
    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
9
10


ghaddab's avatar
ghaddab committed
11
12
13
14
    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
15

ghaddab's avatar
ghaddab committed
16
    You should have received a copy of the GNU General Public License
17
18
    along with OpenAirInterface.The full GNU General Public License is
   included in this distribution in the file called "COPYING". If not,
ghaddab's avatar
ghaddab committed
19
   see <http://www.gnu.org/licenses/>.
20
21

  Contact Information
ghaddab's avatar
ghaddab committed
22
23
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
24
  OpenAirInterface Dev  : openair4g-devel@lists.eurecom.fr
25

ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
27

ghaddab's avatar
ghaddab committed
28
 *******************************************************************************/
29
30
31
32

/*! \file ulsim.c
 \brief Top-level DL simulator
 \author R. Knopp
33
 \date 2011 - 2014
34
35
36
37
38
39
40
 \version 0.1
 \company Eurecom
 \email: knopp@eurecom.fr
 \note
 \warning
*/

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#include <string.h>
#include <math.h>
#include <unistd.h>
#include "SIMULATION/TOOLS/defs.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#include "PHY/vars.h"
#include "MAC_INTERFACE/vars.h"

#include "SCHED/defs.h"
#include "SCHED/vars.h"
#include "LAYER2/MAC/vars.h"
#include "OCG_vars.h"

#ifdef XFORMS
#include "PHY/TOOLS/lte_phy_scope.h"
#endif

extern unsigned short dftsizes[33];
extern short *ul_ref_sigs[30][2][33];
Florian Kaltenberger's avatar
Florian Kaltenberger committed
61

62
63
64
PHY_VARS_eNB *PHY_vars_eNB;
PHY_VARS_UE *PHY_vars_UE;

Florian Kaltenberger's avatar
Florian Kaltenberger committed
65
//#define MCS_COUNT 23//added for PHY abstraction
66
67
68
69

channel_desc_t *eNB2UE[NUMBER_OF_eNB_MAX][NUMBER_OF_UE_MAX];
channel_desc_t *UE2eNB[NUMBER_OF_UE_MAX][NUMBER_OF_eNB_MAX];
//Added for PHY abstraction
70
node_desc_t *enb_data[NUMBER_OF_eNB_MAX];
71
72
73
node_desc_t *ue_data[NUMBER_OF_UE_MAX];
//double sinr_bler_map[MCS_COUNT][2][16];

gauthier's avatar
gauthier committed
74
extern uint16_t beta_ack[16],beta_ri[16],beta_cqi[16];
75
76
77
//extern  char* namepointer_chMag ;


78

79
80
81
82
83
#ifdef XFORMS
FD_lte_phy_scope_enb *form_enb;
char title[255];
#endif

84
85
86
87
88
89
90
91
/*the following parameters are used to control the processing times*/
double t_tx_max = -1000000000; /*!< \brief initial max process time for tx */
double t_rx_max = -1000000000; /*!< \brief initial max process time for rx */
double t_tx_min = 1000000000; /*!< \brief initial min process time for tx */
double t_rx_min = 1000000000; /*!< \brief initial min process time for tx */
int n_tx_dropped = 0; /*!< \brief initial max process time for tx */
int n_rx_dropped = 0; /*!< \brief initial max process time for rx */

92
93
int main(int argc, char **argv)
{
94
95
96
97
98
99
100

  char c;
  int i,j,aa,u;

  int aarx,aatx;
  double channelx,channely;
  double sigma2, sigma2_dB=10,SNR,SNR2,snr0=-2.0,snr1,SNRmeas,rate,saving_bler;
knopp's avatar
   
knopp committed
101
  double input_snr_step=.2,snr_int=30;
102
103
104
105
106
107
108
109
  double blerr;

  int **txdata;

  LTE_DL_FRAME_PARMS *frame_parms;
  double **s_re,**s_im,**r_re,**r_im;
  double forgetting_factor=0.0; //in [0,1] 0 means a new channel every time, 1 means keep the same channel
  double iqim=0.0;
gauthier's avatar
gauthier committed
110
  uint8_t extended_prefix_flag=0;
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
  int cqi_flag=0,cqi_error,cqi_errors,ack_errors,cqi_crc_falsepositives,cqi_crc_falsenegatives;
  int ch_realization;
  int eNB_id = 0;
  int chMod = 0 ;
  int UE_id = 0;
  unsigned char nb_rb=25,first_rb=0,mcs=0,round=0,bundling_flag=1;
  unsigned char l;

  unsigned char awgn_flag = 0 ;
  SCM_t channel_model=Rice1;


  unsigned char *input_buffer,harq_pid;
  unsigned short input_buffer_length;
  unsigned int ret;
  unsigned int coded_bits_per_codeword,nsymb;
  int subframe=3;
128
  unsigned int tx_lev=0,tx_lev_dB,trials,errs[4]= {0,0,0,0},round_trials[4]= {0,0,0,0};
129
  uint8_t transmission_mode=1,n_rx=1,n_tx=1;
130

131
  FILE *bler_fd=NULL;
132
  char bler_fname[512];
133

134
135
  FILE *time_meas_fd=NULL;
  char time_meas_fname[256];
136

137
138
139
  FILE *input_fdUL=NULL,*trch_out_fdUL=NULL;
  //  unsigned char input_file=0;
  char input_val_str[50],input_val_str2[50];
140

141
  //  FILE *rx_frame_file;
142
  FILE *csv_fdUL=NULL;
143

144
  /*
145
  FILE *fperen=NULL;
146
147
  char fperen_name[512];

148
  FILE *fmageren=NULL;
149
  char fmageren_name[512];
150

151
  FILE *flogeren=NULL;
152
  char flogeren_name[512];
153
  */
154
155
156
157

  /* FILE *ftxlev;
     char ftxlev_name[512];
  */
158

159
160
161
  char csv_fname[512];
  int n_frames=5000;
  int n_ch_rlz = 1;
162
163
  int abstx = 0;
  int hold_channel=0;
164
165
  channel_desc_t *UE2eNB;

gauthier's avatar
gauthier committed
166
  uint8_t control_only_flag = 0;
167
168
  int delay = 0;
  double maxDoppler = 0.0;
gauthier's avatar
gauthier committed
169
  uint8_t srs_flag = 0;
170

gauthier's avatar
gauthier committed
171
  uint8_t N_RB_DL=25,osf=1;
172

gauthier's avatar
gauthier committed
173
174
175
176
  uint8_t cyclic_shift = 0;
  uint8_t cooperation_flag = 0; //0 no cooperation, 1 delay diversity, 2 Alamouti
  uint8_t beta_ACK=0,beta_RI=0,beta_CQI=2;
  uint8_t tdd_config=3,frame_type=FDD;
177

gauthier's avatar
gauthier committed
178
  uint8_t N0=30;
179
180
181
182
183
184
185
  double tx_gain=1.0;
  double cpu_freq_GHz;
  int avg_iter,iter_trials;

  uint32_t UL_alloc_pdu;
  int s,Kr,Kr_bytes;
  int dump_perf=0;
186
  int test_perf=0;
187
188
  int dump_table =0;

189
190
  double effective_rate=0.0;
  char channel_model_input[10];
191

192
193
  uint8_t max_turbo_iterations=4;
  uint8_t llr8_flag=0;
194
  int nb_rb_set = 0;
knopp's avatar
   
knopp committed
195
  int sf;
196

knopp's avatar
   
knopp committed
197
198
  opp_enabled=1; // to enable the time meas

199
  cpu_freq_GHz = (double)get_cpu_freq_GHz();
200
201
202
203
204
205

  printf("Detected cpu_freq %f GHz\n",cpu_freq_GHz);


  logInit();

206
  while ((c = getopt (argc, argv, "hapZbm:n:Y:X:x:s:w:e:q:d:D:O:c:r:i:f:y:c:oA:C:R:g:N:l:S:T:QB:PI:L")) != -1) {
207
208
209
210
211
    switch (c) {
    case 'a':
      channel_model = AWGN;
      chMod = 1;
      break;
212

213
214
215
    case 'b':
      bundling_flag = 0;
      break;
216

217
218
219
    case 'd':
      delay = atoi(optarg);
      break;
220

221
222
223
    case 'D':
      maxDoppler = atoi(optarg);
      break;
224

225
226
227
    case 'm':
      mcs = atoi(optarg);
      break;
228

229
230
231
    case 'n':
      n_frames = atoi(optarg);
      break;
232

233
234
    case 'Y':
      n_ch_rlz = atoi(optarg);
235
236
      break;

237
238
    case 'X':
      abstx= atoi(optarg);
239
240
      break;

241
    case 'g':
242
      sprintf(channel_model_input,optarg,10);
243

244
      switch((char)*optarg) {
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
      case 'A':
        channel_model=SCM_A;
        chMod = 2;
        break;

      case 'B':
        channel_model=SCM_B;
        chMod = 3;
        break;

      case 'C':
        channel_model=SCM_C;
        chMod = 4;
        break;

      case 'D':
        channel_model=SCM_D;
        chMod = 5;
        break;

      case 'E':
        channel_model=EPA;
        chMod = 6;
        break;

      case 'F':
        channel_model=EVA;
        chMod = 7;
        break;

      case 'G':
        channel_model=ETU;
        chMod = 8;
        break;

280
      case 'H':
281
282
283
284
        channel_model=Rayleigh8;
        chMod = 9;
        break;

285
      case 'I':
286
287
288
289
        channel_model=Rayleigh1;
        chMod = 10;
        break;

290
      case 'J':
291
292
293
294
        channel_model=Rayleigh1_corr;
        chMod = 11;
        break;

295
      case 'K':
296
297
298
299
        channel_model=Rayleigh1_anticorr;
        chMod = 12;
        break;

300
      case 'L':
301
302
303
304
        channel_model=Rice8;
        chMod = 13;
        break;

305
      case 'M':
306
307
308
309
        channel_model=Rice1;
        chMod = 14;
        break;

310
      case 'N':
311
312
313
314
        channel_model=AWGN;
        chMod = 1;
        break;

315
      default:
316
317
318
        msg("Unsupported channel model!\n");
        exit(-1);
        break;
319
      }
320

321
      break;
322

323
    case 's':
knopp's avatar
   
knopp committed
324
325
      snr0 = atof(optarg);
      break;
326

knopp's avatar
   
knopp committed
327
328
329
    case 'w':
      snr_int = atof(optarg);
      break;
330

knopp's avatar
   
knopp committed
331
332
    case 'e':
      input_snr_step= atof(optarg);
333
      break;
334

335
336
    case 'x':
      transmission_mode=atoi(optarg);
337

338
      if ((transmission_mode!=1) &&
339
340
341
          (transmission_mode!=2)) {
        msg("Unsupported transmission mode %d\n",transmission_mode);
        exit(-1);
342
      }
343

344
      if (transmission_mode>1) {
345
        n_tx = 1;
346
      }
347

348
      break;
349

350
351
352
    case 'y':
      n_rx = atoi(optarg);
      break;
353

354
355
356
    case 'S':
      subframe = atoi(optarg);
      break;
357

358
359
360
361
    case 'T':
      tdd_config=atoi(optarg);
      frame_type=TDD;
      break;
362

363
364
365
    case 'p':
      extended_prefix_flag=1;
      break;
366

367
368
    case 'r':
      nb_rb = atoi(optarg);
369
      nb_rb_set = 1;
370
      break;
371

372
373
374
    case 'f':
      first_rb = atoi(optarg);
      break;
375

376
377
378
    case 'c':
      cyclic_shift = atoi(optarg);
      break;
379

380
381
382
    case 'N':
      N0 = atoi(optarg);
      break;
383

384
385
386
387
388
389
390
    case 'o':
      srs_flag = 1;
      break;

    case 'i':
      input_fdUL = fopen(optarg,"r");
      msg("Reading in %s (%p)\n",optarg,input_fdUL);
391

392
      if (input_fdUL == (FILE*)NULL) {
393
394
        msg("Unknown file %s\n",optarg);
        exit(-1);
395
      }
396

397
398
      //      input_file=1;
      break;
399

400
401
    case 'A':
      beta_ACK = atoi(optarg);
402

403
      if (beta_ACK>15) {
404
405
        printf("beta_ack must be in (0..15)\n");
        exit(-1);
406
      }
407

408
      break;
409

410
411
    case 'C':
      beta_CQI = atoi(optarg);
412

413
      if ((beta_CQI>15)||(beta_CQI<2)) {
414
415
        printf("beta_cqi must be in (2..15)\n");
        exit(-1);
416
      }
417

418
      break;
419

420
421
    case 'R':
      beta_RI = atoi(optarg);
422

423
      if ((beta_RI>15)||(beta_RI<2)) {
424
425
        printf("beta_ri must be in (0..13)\n");
        exit(-1);
426
      }
427

428
      break;
429

430
431
432
    case 'Q':
      cqi_flag=1;
      break;
433

434
435
436
    case 'B':
      N_RB_DL=atoi(optarg);
      break;
437

438
439
    case 'P':
      dump_perf=1;
440
      opp_enabled=1;
441
      break;
442

443
444
445
446
    case 'O':
      test_perf=atoi(optarg);
      //print_perf =1;
      break;
447

448
449
450
    case 'L':
      llr8_flag=1;
      break;
451

452
453
454
    case 'I':
      max_turbo_iterations=atoi(optarg);
      break;
455

456
457
458
    case 'Z':
      dump_table = 1;
      break;
459

460
461
    case 'h':
    default:
462
463
      printf("%s -h(elp) -a(wgn on) -m mcs -n n_frames -s snr0 -t delay_spread -p (extended prefix on) -r nb_rb -f first_rb -c cyclic_shift -o (srs on) -g channel_model [A:M] Use 3GPP 25.814 SCM-A/B/C/D('A','B','C','D') or 36-101 EPA('E'), EVA ('F'),ETU('G') models (ignores delay spread and Ricean factor), Rayghleigh8 ('H'), Rayleigh1('I'), Rayleigh1_corr('J'), Rayleigh1_anticorr ('K'), Rice8('L'), Rice1('M'), -d Channel delay, -D maximum Doppler shift \n",
             argv[0]);
464
465
466
467
      exit(1);
      break;
    }
  }
468

469
470
471
472
473
474
475
476
477
478
  lte_param_init(1,
		 n_rx,
		 1,
		 extended_prefix_flag,
		 frame_type,
		 0,
		 tdd_config,
		 N_RB_DL,
		 osf,
		 0);
479

480
  if (nb_rb_set == 0)
481
    nb_rb = PHY_vars_eNB->lte_frame_parms.N_RB_UL;
482

483
484
  printf("1 . rxdataF_comp[0] %p\n",PHY_vars_eNB->lte_eNB_pusch_vars[0]->rxdataF_comp[0][0]);
  printf("Setting mcs = %d\n",mcs);
485
  printf("n_frames = %d\n", n_frames);
486

knopp's avatar
   
knopp committed
487
  snr1 = snr0+snr_int;
488
489
490
491
492
493
  printf("SNR0 %f, SNR1 %f\n",snr0,snr1);

  /*
    txdataF    = (int **)malloc16(2*sizeof(int*));
    txdataF[0] = (int *)malloc16(FRAME_LENGTH_BYTES);
    txdataF[1] = (int *)malloc16(FRAME_LENGTH_BYTES);
494

495
496
497
498
499
500
501
502
503
    txdata    = (int **)malloc16(2*sizeof(int*));
    txdata[0] = (int *)malloc16(FRAME_LENGTH_BYTES);
    txdata[1] = (int *)malloc16(FRAME_LENGTH_BYTES);
  */

  frame_parms = &PHY_vars_eNB->lte_frame_parms;

  txdata = PHY_vars_UE->lte_ue_common_vars.txdata;

504

505
506
507
508
509
510
511
512
  s_re = malloc(2*sizeof(double*));
  s_im = malloc(2*sizeof(double*));
  r_re = malloc(2*sizeof(double*));
  r_im = malloc(2*sizeof(double*));
  //  r_re0 = malloc(2*sizeof(double*));
  //  r_im0 = malloc(2*sizeof(double*));

  nsymb = (PHY_vars_eNB->lte_frame_parms.Ncp == 0) ? 14 : 12;
513

514
515
516
517
518
  coded_bits_per_codeword = nb_rb * (12 * get_Qm(mcs)) * nsymb;

  rate = (double)dlsch_tbs25[get_I_TBS(mcs)][nb_rb-1]/(coded_bits_per_codeword);

  printf("Rate = %f (mod %d), coded bits %d\n",rate,get_Qm(mcs),coded_bits_per_codeword);
519

520
  sprintf(bler_fname,"ULbler_mcs%d_nrb%d_ChannelModel%d_nsim%d.csv",mcs,nb_rb,chMod,n_frames);
521
  bler_fd = fopen(bler_fname,"w");
522
523
524
525
  if (bler_fd==NULL) {
    fprintf(stderr,"Problem creating file %s\n",bler_fname);
    exit(-1);
  }
526

527
  fprintf(bler_fd,"#SNR;mcs;nb_rb;TBS;rate;errors[0];trials[0];errors[1];trials[1];errors[2];trials[2];errors[3];trials[3]\n");
528
529

  if (test_perf != 0) {
530
531
532
533
    char hostname[1024];
    hostname[1023] = '\0';
    gethostname(hostname, 1023);
    printf("Hostname: %s\n", hostname);
534
535
536
537
    //char dirname[FILENAME_MAX];
    //sprintf(dirname, "%s//SIMU/USER/pre-ci-logs-%s", getenv("OPENAIR_TARGETS"),hostname);
    //mkdir(dirname, 0777);
    sprintf(time_meas_fname,"time_meas_prb%d_mcs%d_antrx%d_channel%s_tx%d.csv",
538
            N_RB_DL,mcs,n_rx,channel_model_input,transmission_mode);
539
    time_meas_fd = fopen(time_meas_fname,"w");
540
541
542
543
    if (time_meas_fd==NULL) {
      fprintf(stderr,"Cannot create file %s!\n",time_meas_fname);
      exit(-1);
    }
544
  }
545

546
  /*
547
  if(abstx) {
548
549
550
    sprintf(fperen_name,"ULchan_estims_F_mcs%d_rb%d_chanMod%d_nframes%d_chanReal%d.m",mcs,nb_rb,chMod,n_frames,n_ch_rlz);
    fperen = fopen(fperen_name,"a+");
    fprintf(fperen,"chest_f = [");
551
552
    fclose(fperen);

553
554
555
    sprintf(fmageren_name,"ChanMag_F_mcs%d_rb%d_chanMod%d_nframes%d_chanReal%d.m",mcs,nb_rb,chMod,n_frames,n_ch_rlz);
    fmageren = fopen(fmageren_name,"a+");
    fprintf(fmageren,"mag_f = [");
556
557
    fclose(fmageren);

558
559
560
    sprintf(flogeren_name,"Log2Max_mcs%d_rb%d_chanMod%d_nframes%d_chanReal%d.m",mcs,nb_rb,chMod,n_frames,n_ch_rlz);
    flogeren = fopen(flogeren_name,"a+");
    fprintf(flogeren,"mag_f = [");
561
    fclose(flogeren);
562
  }
563
  */
564

565
566
567
568
  /*
    sprintf(ftxlev_name,"txlevel_mcs%d_rb%d_chanMod%d_nframes%d_chanReal%d.m",mcs,nb_rb,chMod,n_frames,n_ch_rlz);
    ftxlev = fopen(ftxlev_name,"a+");
    fprintf(ftxlev,"txlev = [");
569
    fclose(ftexlv);
570
  */
571
572
573

  if(abstx) {
    // CSV file
574
575
    sprintf(csv_fname,"EULdataout_tx%d_mcs%d_nbrb%d_chan%d_nsimus%d_eren.m",transmission_mode,mcs,nb_rb,chMod,n_frames);
    csv_fdUL = fopen(csv_fname,"w");
576
577
578
579
    if (csv_fdUL == NULL) {
      fprintf(stderr,"Problem opening file %s\n",csv_fname);
      exit(-1);
    }
580
581
    fprintf(csv_fdUL,"data_all%d=[",mcs);
  }
582

583
  for (i=0; i<2; i++) {
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
    s_re[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    s_im[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    r_re[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    r_im[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    //    r_re0[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    //    bzero(r_re0[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    //    r_im0[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    //    bzero(r_im0[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
  }


#ifdef XFORMS
  fl_initialize (&argc, argv, NULL, 0, 0);
  form_enb = create_lte_phy_scope_enb();
  sprintf (title, "LTE PHY SCOPE eNB");
599
  fl_show_form (form_enb->lte_phy_scope_enb, FL_PLACE_HOTSPOT, FL_FULLBORDER, title);
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
#endif

  PHY_vars_UE->lte_ue_pdcch_vars[0]->crnti = 14;

  PHY_vars_UE->lte_frame_parms.soundingrs_ul_config_common.srs_BandwidthConfig = 2;
  PHY_vars_UE->lte_frame_parms.soundingrs_ul_config_common.srs_SubframeConfig = 7;
  PHY_vars_UE->soundingrs_ul_config_dedicated[eNB_id].srs_Bandwidth = 0;
  PHY_vars_UE->soundingrs_ul_config_dedicated[eNB_id].transmissionComb = 0;
  PHY_vars_UE->soundingrs_ul_config_dedicated[eNB_id].freqDomainPosition = 0;

  PHY_vars_eNB->lte_frame_parms.soundingrs_ul_config_common.srs_BandwidthConfig = 2;
  PHY_vars_eNB->lte_frame_parms.soundingrs_ul_config_common.srs_SubframeConfig = 7;

  PHY_vars_eNB->soundingrs_ul_config_dedicated[UE_id].srs_ConfigIndex = 1;
  PHY_vars_eNB->soundingrs_ul_config_dedicated[UE_id].srs_Bandwidth = 0;
  PHY_vars_eNB->soundingrs_ul_config_dedicated[UE_id].transmissionComb = 0;
  PHY_vars_eNB->soundingrs_ul_config_dedicated[UE_id].freqDomainPosition = 0;
  PHY_vars_eNB->cooperation_flag = cooperation_flag;
  //  PHY_vars_eNB->eNB_UE_stats[0].SRS_parameters = PHY_vars_UE->SRS_parameters;

  PHY_vars_eNB->pusch_config_dedicated[UE_id].betaOffset_ACK_Index = beta_ACK;
  PHY_vars_eNB->pusch_config_dedicated[UE_id].betaOffset_RI_Index  = beta_RI;
  PHY_vars_eNB->pusch_config_dedicated[UE_id].betaOffset_CQI_Index = beta_CQI;
  PHY_vars_UE->pusch_config_dedicated[eNB_id].betaOffset_ACK_Index = beta_ACK;
  PHY_vars_UE->pusch_config_dedicated[eNB_id].betaOffset_RI_Index  = beta_RI;
  PHY_vars_UE->pusch_config_dedicated[eNB_id].betaOffset_CQI_Index = beta_CQI;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
626
627

  PHY_vars_UE->ul_power_control_dedicated[eNB_id].deltaMCS_Enabled = 1;
628

629
630
631
632
633
  printf("PUSCH Beta : ACK %f, RI %f, CQI %f\n",(double)beta_ack[beta_ACK]/8,(double)beta_ri[beta_RI]/8,(double)beta_cqi[beta_CQI]/8);

  UE2eNB = new_channel_desc_scm(PHY_vars_eNB->lte_frame_parms.nb_antennas_tx,
                                PHY_vars_UE->lte_frame_parms.nb_antennas_rx,
                                channel_model,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
634
635
				N_RB2sampling_rate(PHY_vars_eNB->lte_frame_parms.N_RB_UL),
				N_RB2channel_bandwidth(PHY_vars_eNB->lte_frame_parms.N_RB_UL),
636
637
638
639
640
641
642
643
644
                                forgetting_factor,
                                delay,
                                0);
  // set Doppler
  UE2eNB->max_Doppler = maxDoppler;

  // NN: N_RB_UL has to be defined in ulsim
  PHY_vars_eNB->ulsch_eNB[0] = new_eNB_ulsch(8,max_turbo_iterations,N_RB_DL,0);
  PHY_vars_UE->ulsch_ue[0]   = new_ue_ulsch(8,N_RB_DL,0);
645

646
  // Create transport channel structures for 2 transport blocks (MIMO)
647
  for (i=0; i<2; i++) {
648
649
    PHY_vars_eNB->dlsch_eNB[0][i] = new_eNB_dlsch(1,8,N_RB_DL,0);
    PHY_vars_UE->dlsch_ue[0][i]  = new_ue_dlsch(1,8,MAX_TURBO_ITERATIONS,N_RB_DL,0);
650

651
652
653
654
    if (!PHY_vars_eNB->dlsch_eNB[0][i]) {
      printf("Can't get eNB dlsch structures\n");
      exit(-1);
    }
655

656
657
658
659
    if (!PHY_vars_UE->dlsch_ue[0][i]) {
      printf("Can't get ue dlsch structures\n");
      exit(-1);
    }
660

661
662
663
664
    PHY_vars_eNB->dlsch_eNB[0][i]->rnti = 14;
    PHY_vars_UE->dlsch_ue[0][i]->rnti   = 14;

  }
665

666
667
668
669

  switch (PHY_vars_eNB->lte_frame_parms.N_RB_UL) {
  case 6:
    break;
670

671
672
673
674
675
676
677
678
679
680
681
  case 25:
    if (PHY_vars_eNB->lte_frame_parms.frame_type == TDD) {
      ((DCI0_5MHz_TDD_1_6_t*)&UL_alloc_pdu)->type    = 0;
      ((DCI0_5MHz_TDD_1_6_t*)&UL_alloc_pdu)->rballoc = computeRIV(PHY_vars_eNB->lte_frame_parms.N_RB_UL,first_rb,nb_rb);// 12 RBs from position 8
      printf("nb_rb %d/%d, rballoc %d (dci %x)\n",nb_rb,PHY_vars_eNB->lte_frame_parms.N_RB_UL,((DCI0_5MHz_TDD_1_6_t*)&UL_alloc_pdu)->rballoc,*(uint32_t *)&UL_alloc_pdu);
      ((DCI0_5MHz_TDD_1_6_t*)&UL_alloc_pdu)->mcs     = mcs;
      ((DCI0_5MHz_TDD_1_6_t*)&UL_alloc_pdu)->ndi     = 1;
      ((DCI0_5MHz_TDD_1_6_t*)&UL_alloc_pdu)->TPC     = 0;
      ((DCI0_5MHz_TDD_1_6_t*)&UL_alloc_pdu)->cqi_req = cqi_flag&1;
      ((DCI0_5MHz_TDD_1_6_t*)&UL_alloc_pdu)->cshift  = 0;
      ((DCI0_5MHz_TDD_1_6_t*)&UL_alloc_pdu)->dai     = 1;
682
    } else {
683
684
      ((DCI0_5MHz_FDD_t*)&UL_alloc_pdu)->type    = 0;
      ((DCI0_5MHz_FDD_t*)&UL_alloc_pdu)->rballoc = computeRIV(PHY_vars_eNB->lte_frame_parms.N_RB_UL,first_rb,nb_rb);// 12 RBs from position 8
gauthier's avatar
gauthier committed
685
      printf("nb_rb %d/%d, rballoc %d (dci %x)\n",nb_rb,PHY_vars_eNB->lte_frame_parms.N_RB_UL,((DCI0_5MHz_FDD_t*)&UL_alloc_pdu)->rballoc,*(uint32_t *)&UL_alloc_pdu);
686
687
688
689
690
691
      ((DCI0_5MHz_FDD_t*)&UL_alloc_pdu)->mcs     = mcs;
      ((DCI0_5MHz_FDD_t*)&UL_alloc_pdu)->ndi     = 1;
      ((DCI0_5MHz_FDD_t*)&UL_alloc_pdu)->TPC     = 0;
      ((DCI0_5MHz_FDD_t*)&UL_alloc_pdu)->cqi_req = cqi_flag&1;
      ((DCI0_5MHz_FDD_t*)&UL_alloc_pdu)->cshift  = 0;
    }
692

693
    break;
694

695
696
697
698
699
700
701
702
703
704
705
  case 50:
    if (PHY_vars_eNB->lte_frame_parms.frame_type == TDD) {
      ((DCI0_10MHz_TDD_1_6_t*)&UL_alloc_pdu)->type    = 0;
      ((DCI0_10MHz_TDD_1_6_t*)&UL_alloc_pdu)->rballoc = computeRIV(PHY_vars_eNB->lte_frame_parms.N_RB_UL,first_rb,nb_rb);// 12 RBs from position 8
      printf("nb_rb %d/%d, rballoc %d (dci %x)\n",nb_rb,PHY_vars_eNB->lte_frame_parms.N_RB_UL,((DCI0_10MHz_TDD_1_6_t*)&UL_alloc_pdu)->rballoc,*(uint32_t *)&UL_alloc_pdu);
      ((DCI0_10MHz_TDD_1_6_t*)&UL_alloc_pdu)->mcs     = mcs;
      ((DCI0_10MHz_TDD_1_6_t*)&UL_alloc_pdu)->ndi     = 1;
      ((DCI0_10MHz_TDD_1_6_t*)&UL_alloc_pdu)->TPC     = 0;
      ((DCI0_10MHz_TDD_1_6_t*)&UL_alloc_pdu)->cqi_req = cqi_flag&1;
      ((DCI0_10MHz_TDD_1_6_t*)&UL_alloc_pdu)->cshift  = 0;
      ((DCI0_10MHz_TDD_1_6_t*)&UL_alloc_pdu)->dai     = 1;
706
    } else {
707
708
      ((DCI0_10MHz_FDD_t*)&UL_alloc_pdu)->type    = 0;
      ((DCI0_10MHz_FDD_t*)&UL_alloc_pdu)->rballoc = computeRIV(PHY_vars_eNB->lte_frame_parms.N_RB_UL,first_rb,nb_rb);// 12 RBs from position 8
gauthier's avatar
gauthier committed
709
      printf("nb_rb %d/%d, rballoc %d (dci %x)\n",nb_rb,PHY_vars_eNB->lte_frame_parms.N_RB_UL,((DCI0_10MHz_FDD_t*)&UL_alloc_pdu)->rballoc,*(uint32_t *)&UL_alloc_pdu);
710
711
712
713
714
715
      ((DCI0_10MHz_FDD_t*)&UL_alloc_pdu)->mcs     = mcs;
      ((DCI0_10MHz_FDD_t*)&UL_alloc_pdu)->ndi     = 1;
      ((DCI0_10MHz_FDD_t*)&UL_alloc_pdu)->TPC     = 0;
      ((DCI0_10MHz_FDD_t*)&UL_alloc_pdu)->cqi_req = cqi_flag&1;
      ((DCI0_10MHz_FDD_t*)&UL_alloc_pdu)->cshift  = 0;
    }
716

717
    break;
718

719
720
721
722
723
724
725
726
727
728
729
  case 100:
    if (PHY_vars_eNB->lte_frame_parms.frame_type == TDD) {
      ((DCI0_20MHz_TDD_1_6_t*)&UL_alloc_pdu)->type    = 0;
      ((DCI0_20MHz_TDD_1_6_t*)&UL_alloc_pdu)->rballoc = computeRIV(PHY_vars_eNB->lte_frame_parms.N_RB_UL,first_rb,nb_rb);// 12 RBs from position 8
      printf("nb_rb %d/%d, rballoc %d (dci %x)\n",nb_rb,PHY_vars_eNB->lte_frame_parms.N_RB_UL,((DCI0_20MHz_TDD_1_6_t*)&UL_alloc_pdu)->rballoc,*(uint32_t *)&UL_alloc_pdu);
      ((DCI0_20MHz_TDD_1_6_t*)&UL_alloc_pdu)->mcs     = mcs;
      ((DCI0_20MHz_TDD_1_6_t*)&UL_alloc_pdu)->ndi     = 1;
      ((DCI0_20MHz_TDD_1_6_t*)&UL_alloc_pdu)->TPC     = 0;
      ((DCI0_20MHz_TDD_1_6_t*)&UL_alloc_pdu)->cqi_req = cqi_flag&1;
      ((DCI0_20MHz_TDD_1_6_t*)&UL_alloc_pdu)->cshift  = 0;
      ((DCI0_20MHz_TDD_1_6_t*)&UL_alloc_pdu)->dai     = 1;
730
    } else {
731
732
      ((DCI0_20MHz_FDD_t*)&UL_alloc_pdu)->type    = 0;
      ((DCI0_20MHz_FDD_t*)&UL_alloc_pdu)->rballoc = computeRIV(PHY_vars_eNB->lte_frame_parms.N_RB_UL,first_rb,nb_rb);// 12 RBs from position 8
gauthier's avatar
gauthier committed
733
      printf("nb_rb %d/%d, rballoc %d (dci %x)\n",nb_rb,PHY_vars_eNB->lte_frame_parms.N_RB_UL,((DCI0_20MHz_FDD_t*)&UL_alloc_pdu)->rballoc,*(uint32_t *)&UL_alloc_pdu);
734
735
736
737
738
739
      ((DCI0_20MHz_FDD_t*)&UL_alloc_pdu)->mcs     = mcs;
      ((DCI0_20MHz_FDD_t*)&UL_alloc_pdu)->ndi     = 1;
      ((DCI0_20MHz_FDD_t*)&UL_alloc_pdu)->TPC     = 0;
      ((DCI0_20MHz_FDD_t*)&UL_alloc_pdu)->cqi_req = cqi_flag&1;
      ((DCI0_20MHz_FDD_t*)&UL_alloc_pdu)->cshift  = 0;
    }
740

741
    break;
742

743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
  default:
    break;
  }


  PHY_vars_UE->PHY_measurements.rank[0] = 0;
  PHY_vars_UE->transmission_mode[0] = 2;
  PHY_vars_UE->pucch_config_dedicated[0].tdd_AckNackFeedbackMode = bundling_flag == 1 ? bundling : multiplexing;
  PHY_vars_eNB->transmission_mode[0] = 2;
  PHY_vars_eNB->pucch_config_dedicated[0].tdd_AckNackFeedbackMode = bundling_flag == 1 ? bundling : multiplexing;
  PHY_vars_UE->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = 1;
  PHY_vars_eNB->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = 1;
  PHY_vars_UE->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = 0;
  PHY_vars_eNB->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = 0;
  PHY_vars_UE->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = 0;
  PHY_vars_eNB->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = 0;
knopp's avatar
   
knopp committed
759
  PHY_vars_UE->frame_tx=1;
knopp's avatar
   
knopp committed
760

761
762
  for (sf=0; sf<10; sf++) {
    PHY_vars_eNB->proc[sf].frame_tx=1;
knopp's avatar
   
knopp committed
763
764
765
766
    PHY_vars_eNB->proc[sf].subframe_tx=sf;
    PHY_vars_eNB->proc[sf].frame_rx=1;
    PHY_vars_eNB->proc[sf].subframe_rx=sf;
  }
knopp's avatar
   
knopp committed
767

768
769
770
771
772
  msg("Init UL hopping UE\n");
  init_ul_hopping(&PHY_vars_UE->lte_frame_parms);
  msg("Init UL hopping eNB\n");
  init_ul_hopping(&PHY_vars_eNB->lte_frame_parms);

knopp's avatar
   
knopp committed
773
  PHY_vars_eNB->proc[subframe].frame_rx = PHY_vars_UE->frame_tx;
774

knopp's avatar
   
knopp committed
775
  if (ul_subframe2pdcch_alloc_subframe(&PHY_vars_eNB->lte_frame_parms,subframe) > subframe) // allocation was in previous frame
knopp's avatar
   
knopp committed
776
    PHY_vars_eNB->proc[ul_subframe2pdcch_alloc_subframe(&PHY_vars_eNB->lte_frame_parms,subframe)].frame_tx = (PHY_vars_UE->frame_tx-1)&1023;
knopp's avatar
   
knopp committed
777

778
779
780
  PHY_vars_UE->dlsch_ue[0][0]->harq_ack[ul_subframe2pdcch_alloc_subframe(&PHY_vars_eNB->lte_frame_parms,subframe)].send_harq_status = 1;


knopp's avatar
   
knopp committed
781
  //  printf("UE frame %d, eNB frame %d (eNB frame_tx %d)\n",PHY_vars_UE->frame,PHY_vars_eNB->proc[subframe].frame_rx,PHY_vars_eNB->proc[ul_subframe2pdcch_alloc_subframe(&PHY_vars_eNB->lte_frame_parms,subframe)].frame_tx);
knopp's avatar
   
knopp committed
782
  PHY_vars_UE->frame_tx = (PHY_vars_UE->frame_tx-1)&1023;
783
784

  generate_ue_ulsch_params_from_dci((void *)&UL_alloc_pdu,
785
786
787
788
789
790
791
792
793
794
                                    14,
                                    ul_subframe2pdcch_alloc_subframe(&PHY_vars_UE->lte_frame_parms,subframe),
                                    format0,
                                    PHY_vars_UE,
                                    SI_RNTI,
                                    0,
                                    P_RNTI,
                                    CBA_RNTI,
                                    0,
                                    srs_flag);
795
796
797
798

  //  printf("RIV %d\n",UL_alloc_pdu.rballoc);

  generate_eNB_ulsch_params_from_dci((void *)&UL_alloc_pdu,
799
800
801
802
803
804
805
806
807
808
                                     14,
                                     ul_subframe2pdcch_alloc_subframe(&PHY_vars_eNB->lte_frame_parms,subframe),
                                     format0,
                                     0,
                                     PHY_vars_eNB,
                                     SI_RNTI,
                                     0,
                                     P_RNTI,
                                     CBA_RNTI,
                                     srs_flag);
809
810
811



knopp's avatar
   
knopp committed
812
  PHY_vars_UE->frame_tx = (PHY_vars_UE->frame_tx+1)&1023;
813
814
815
816


  for (ch_realization=0; ch_realization<n_ch_rlz; ch_realization++) {

817
818
819
820
821
822
    /*
      if(abstx){
      int ulchestim_f[300*12];
      int ulchestim_t[2*(frame_parms->ofdm_symbol_size)];
      }
    */
823
824

    if(abstx) {
825
826
827
      printf("**********************Channel Realization Index = %d **************************\n", ch_realization);
      saving_bler=1;
    }
828

829

knopp's avatar
   
knopp committed
830
831
    //    if ((subframe>5) || (subframe < 4))
    //      PHY_vars_UE->frame++;
832
833

    for (SNR=snr0; SNR<snr1; SNR+=input_snr_step) {
834
835
836
837
838
839
840
841
842
843
844
845
846
      errs[0]=0;
      errs[1]=0;
      errs[2]=0;
      errs[3]=0;
      round_trials[0] = 0;
      round_trials[1] = 0;
      round_trials[2] = 0;
      round_trials[3] = 0;
      cqi_errors=0;
      ack_errors=0;
      cqi_crc_falsepositives=0;
      cqi_crc_falsenegatives=0;
      round=0;
847

848
849
      //randominit(0);

knopp's avatar
   
knopp committed
850

knopp's avatar
   
knopp committed
851
      harq_pid = subframe2harq_pid(&PHY_vars_UE->lte_frame_parms,PHY_vars_UE->frame_tx,subframe);
852

knopp's avatar
   
knopp committed
853
      //      printf("UL frame %d/subframe %d, harq_pid %d\n",PHY_vars_UE->frame,subframe,harq_pid);
854
      if (input_fdUL == NULL) {
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
        input_buffer_length = PHY_vars_UE->ulsch_ue[0]->harq_processes[harq_pid]->TBS/8;
        input_buffer = (unsigned char *)malloc(input_buffer_length+4);

        if (n_frames == 1) {
          trch_out_fdUL= fopen("ulsch_trchUL.txt","w");

          for (i=0; i<input_buffer_length; i++) {
            input_buffer[i] = taus()&0xff;

            for (j=0; j<8; j++)
              fprintf(trch_out_fdUL,"%d\n",(input_buffer[i]>>(7-j))&1);
          }

          fclose(trch_out_fdUL);
        } else {
          for (i=0; i<input_buffer_length; i++)
            input_buffer[i] = taus()&0xff;
        }
      } else {
        n_frames=1;
        i=0;

        while (!feof(input_fdUL)) {
          fscanf(input_fdUL,"%s %s",input_val_str,input_val_str2);//&input_val1,&input_val2);

          if ((i%4)==0) {
            ((short*)txdata[0])[i/2] = (short)((1<<15)*strtod(input_val_str,NULL));
            ((short*)txdata[0])[(i/2)+1] = (short)((1<<15)*strtod(input_val_str2,NULL));

            if ((i/4)<100)
              printf("sample %d => %e + j%e (%d +j%d)\n",i/4,strtod(input_val_str,NULL),strtod(input_val_str2,NULL),((short*)txdata[0])[i/4],((short*)txdata[0])[(i/4)+1]);//1,input_val2,);
          }

          i++;

          if (i>(FRAME_LENGTH_SAMPLES))
            break;
        }

        printf("Read in %d samples\n",i/4);
        //      write_output("txsig0UL.m","txs0", txdata[0],2*frame_parms->samples_per_tti,1,1);
        //    write_output("txsig1.m","txs1", txdata[1],FRAME_LENGTH_COMPLEX_SAMPLES,1,1);
        tx_lev = signal_energy(&txdata[0][0],
                               OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
        tx_lev_dB = (unsigned int) dB_fixed(tx_lev);

901
902
      }

903
904
      avg_iter = 0;
      iter_trials=0;
905
      reset_meas(&PHY_vars_UE->phy_proc_tx);
906
907
908
909
910
911
912
913
      reset_meas(&PHY_vars_UE->ofdm_mod_stats);
      reset_meas(&PHY_vars_UE->ulsch_modulation_stats);
      reset_meas(&PHY_vars_UE->ulsch_encoding_stats);
      reset_meas(&PHY_vars_UE->ulsch_interleaving_stats);
      reset_meas(&PHY_vars_UE->ulsch_rate_matching_stats);
      reset_meas(&PHY_vars_UE->ulsch_turbo_encoding_stats);
      reset_meas(&PHY_vars_UE->ulsch_segmentation_stats);
      reset_meas(&PHY_vars_UE->ulsch_multiplexing_stats);
914

915
      reset_meas(&PHY_vars_eNB->phy_proc_rx);
916
917
918
919
920
921
922
923
924
      reset_meas(&PHY_vars_eNB->ofdm_demod_stats);
      reset_meas(&PHY_vars_eNB->ulsch_channel_estimation_stats);
      reset_meas(&PHY_vars_eNB->ulsch_freq_offset_estimation_stats);
      reset_meas(&PHY_vars_eNB->rx_dft_stats);
      reset_meas(&PHY_vars_eNB->ulsch_decoding_stats);
      reset_meas(&PHY_vars_eNB->ulsch_turbo_decoding_stats);
      reset_meas(&PHY_vars_eNB->ulsch_deinterleaving_stats);
      reset_meas(&PHY_vars_eNB->ulsch_demultiplexing_stats);
      reset_meas(&PHY_vars_eNB->ulsch_rate_unmatching_stats);
925
      reset_meas(&PHY_vars_eNB->ulsch_tc_init_stats);
926
927
928
929
930
931
932
      reset_meas(&PHY_vars_eNB->ulsch_tc_alpha_stats);
      reset_meas(&PHY_vars_eNB->ulsch_tc_beta_stats);
      reset_meas(&PHY_vars_eNB->ulsch_tc_gamma_stats);
      reset_meas(&PHY_vars_eNB->ulsch_tc_ext_stats);
      reset_meas(&PHY_vars_eNB->ulsch_tc_intl1_stats);
      reset_meas(&PHY_vars_eNB->ulsch_tc_intl2_stats);

933
934
935
      // initialization
      struct list time_vector_tx;
      initialize(&time_vector_tx);
936
937
938
939
940
941
942
      struct list time_vector_tx_ifft;
      initialize(&time_vector_tx_ifft);
      struct list time_vector_tx_mod;
      initialize(&time_vector_tx_mod);
      struct list time_vector_tx_enc;
      initialize(&time_vector_tx_enc);

943
944
      struct list time_vector_rx;
      initialize(&time_vector_rx);
945
946
947
948
949
950
      struct list time_vector_rx_fft;
      initialize(&time_vector_rx_fft);
      struct list time_vector_rx_demod;
      initialize(&time_vector_rx_demod);
      struct list time_vector_rx_dec;
      initialize(&time_vector_rx_dec);
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997

      for (trials = 0; trials<n_frames; trials++) {
        //      printf("*");
        //        PHY_vars_UE->frame++;
        //        PHY_vars_eNB->frame++;

        fflush(stdout);
        round=0;

        while (round < 4) {
          PHY_vars_eNB->ulsch_eNB[0]->harq_processes[harq_pid]->round=round;
          PHY_vars_UE->ulsch_ue[0]->harq_processes[harq_pid]->round=round;
          //  printf("Trial %d : Round %d ",trials,round);
          round_trials[round]++;

          if (round == 0) {
            //PHY_vars_eNB->ulsch_eNB[0]->harq_processes[harq_pid]->Ndi = 1;
            PHY_vars_eNB->ulsch_eNB[0]->harq_processes[harq_pid]->rvidx = round>>1;
            //PHY_vars_UE->ulsch_ue[0]->harq_processes[harq_pid]->Ndi = 1;
            PHY_vars_UE->ulsch_ue[0]->harq_processes[harq_pid]->rvidx = round>>1;
          } else {
            //PHY_vars_eNB->ulsch_eNB[0]->harq_processes[harq_pid]->Ndi = 0;
            PHY_vars_eNB->ulsch_eNB[0]->harq_processes[harq_pid]->rvidx = round>>1;
            //PHY_vars_UE->ulsch_ue[0]->harq_processes[harq_pid]->Ndi = 0;
            PHY_vars_UE->ulsch_ue[0]->harq_processes[harq_pid]->rvidx = round>>1;
          }


          /////////////////////
          if (abstx) {
            if (trials==0 && round==0 && SNR==snr0) { //generate a new channel
              hold_channel = 0;
              flagMag=0;
            } else {
              hold_channel = 1;
              flagMag = 1;
            }
          } else {
            hold_channel = 0;
            flagMag=1;
          }

          ///////////////////////////////////////

          if (input_fdUL == NULL) {

            start_meas(&PHY_vars_UE->phy_proc_tx);
998

999
#ifdef OFDMA_ULSCH
1000
1001
1002
1003
1004
1005

            if (srs_flag)
              generate_srs_tx(PHY_vars_UE,0,AMP,subframe);

            generate_drs_pusch(PHY_vars_UE,0,AMP,subframe,first_rb,nb_rb,0);

1006
#else
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042

            if (srs_flag)
              generate_srs_tx(PHY_vars_UE,0,AMP,subframe);

            generate_drs_pusch(PHY_vars_UE,0,
                               AMP,subframe,
                               PHY_vars_UE->ulsch_ue[0]->harq_processes[harq_pid]->first_rb,
                               PHY_vars_UE->ulsch_ue[0]->harq_processes[harq_pid]->nb_rb,
                               0);
#endif

            if ((cqi_flag == 1) && (n_frames == 1) ) {
              printf("CQI information (O %d) %d %d\n",PHY_vars_UE->ulsch_ue[0]->O,
                     PHY_vars_UE->ulsch_ue[0]->o[0],PHY_vars_UE->ulsch_ue[0]->o[1]);
              print_CQI(PHY_vars_UE->ulsch_ue[0]->o,PHY_vars_UE->ulsch_ue[0]->uci_format,PHY_vars_UE->lte_frame_parms.N_RB_DL,0);
            }

            PHY_vars_UE->ulsch_ue[0]->o_ACK[0] = taus()&1;

            start_meas(&PHY_vars_UE->ulsch_encoding_stats);

            if (ulsch_encoding(input_buffer,
                               PHY_vars_UE,
                               harq_pid,
                               eNB_id,
                               2, // transmission mode
                               control_only_flag,
                               1// Nbundled
                              )==-1) {
              printf("ulsim.c Problem with ulsch_encoding\n");
              exit(-1);
            }

            stop_meas(&PHY_vars_UE->ulsch_encoding_stats);

            start_meas(&PHY_vars_UE->ulsch_modulation_stats);
1043
#ifdef OFDMA_ULSCH
1044
1045
1046
1047
1048
1049
1050
            ulsch_modulation(PHY_vars_UE->lte_ue_common_vars.txdataF,AMP,
                             PHY_vars_UE->frame_tx,subframe,&PHY_vars_UE->lte_frame_parms,PHY_vars_UE->ulsch_ue[0]);
#else
            //    printf("Generating PUSCH in subframe %d with amp %d, nb_rb %d\n",subframe,AMP,nb_rb);
            ulsch_modulation(PHY_vars_UE->lte_ue_common_vars.txdataF,AMP,
                             PHY_vars_UE->frame_tx,subframe,&PHY_vars_UE->lte_frame_parms,
                             PHY_vars_UE->ulsch_ue[0]);
1051
#endif
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
            stop_meas(&PHY_vars_UE->ulsch_modulation_stats);

            if (n_frames==1) {
              write_output("txsigF0UL.m","txsF0", &PHY_vars_UE->lte_ue_common_vars.txdataF[0][PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size*nsymb*subframe],PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size*nsymb,1,
                           1);
              //write_output("txsigF1.m","txsF1", PHY_vars_UE->lte_ue_common_vars.txdataF[0],FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,1,1);
            }

            tx_lev=0;
            start_meas(&PHY_vars_UE->ofdm_mod_stats);

            for (aa=0; aa<1; aa++) {
              if (frame_parms->Ncp == 1)
                PHY_ofdm_mod(&PHY_vars_UE->lte_ue_common_vars.txdataF[aa][subframe*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES_NO_PREFIX],        // input
                             &txdata[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe],         // output
1067
                             PHY_vars_UE->lte_frame_parms.ofdm_symbol_size,
1068
1069
1070
1071
1072
1073
1074
1075
1076
                             nsymb,                 // number of symbols
                             PHY_vars_UE->lte_frame_parms.nb_prefix_samples,               // number of prefix samples
                             CYCLIC_PREFIX);
              else
                normal_prefix_mod(&PHY_vars_UE->lte_ue_common_vars.txdataF[aa][subframe*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES_NO_PREFIX],
                                  &txdata[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe],
                                  nsymb,
                                  frame_parms);

1077
#ifndef OFDMA_ULSCH
1078
1079
              apply_7_5_kHz(PHY_vars_UE,PHY_vars_UE->lte_ue_common_vars.txdata[aa],subframe<<1);
              apply_7_5_kHz(PHY_vars_UE,PHY_vars_UE->lte_ue_common_vars.txdata[aa],1+(subframe<<1));
1080
#endif
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

              stop_meas(&PHY_vars_UE->ofdm_mod_stats);
              stop_meas(&PHY_vars_UE->phy_proc_tx);
              tx_lev += signal_energy(&txdata[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe],
                                      PHY_vars_eNB->lte_frame_parms.samples_per_tti);

            }
          }  // input_fd == NULL


          tx_lev_dB = (unsigned int) dB_fixed_times10(tx_lev);

          if (n_frames==1) {
            write_output("txsig0UL.m","txs0", &txdata[0][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe],2*frame_parms->samples_per_tti,1,1);
            //        write_output("txsig1UL.m","txs1", &txdata[1][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe],2*frame_parms->samples_per_tti,1,1);
          }

          //AWGN
          //Set target wideband RX noise level to N0
          sigma2_dB = N0;//10*log10((double)tx_lev)  +10*log10(PHY_vars_UE->lte_frame_parms.ofdm_symbol_size/(PHY_vars_UE->lte_frame_parms.N_RB_DL*12)) - SNR;
          sigma2 = pow(10,sigma2_dB/10);

          // compute tx_gain to achieve target SNR (per resource element!)
          tx_gain = sqrt(pow(10.0,.1*(N0+SNR))*(nb_rb*12/(double)PHY_vars_UE->lte_frame_parms.ofdm_symbol_size)/(double)tx_lev);

          if (n_frames==1)
            printf("tx_lev = %d (%d.%d dB,%f), gain %f\n",tx_lev,tx_lev_dB/10,tx_lev_dB,10*log10((double)tx_lev),10*log10(tx_gain));


          // fill measurement symbol (19) with noise
          for (i=0; i<OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
            for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_rx; aa++) {

              ((short*) &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][aa][(frame_parms->samples_per_tti<<1) -frame_parms->ofdm_symbol_size])[2*i] = (short) ((sqrt(sigma2/2)*gaussdouble(0.0,1.0)));
              ((short*) &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][aa][(frame_parms->samples_per_tti<<1) -frame_parms->ofdm_symbol_size])[2*i+1] = (short) ((sqrt(sigma2/2)*gaussdouble(0.0,1.0)));
            }
          }

          // multipath channel

          for (i=0; i<PHY_vars_eNB->lte_frame_parms.samples_per_tti; i++) {
            for (aa=0; aa<1; aa++) {
              s_re[aa][i] = ((double)(((short *)&txdata[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe]))[(i<<1)]);
              s_im[aa][i] = ((double)(((short *)&txdata[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe]))[(i<<1)+1]);
            }
          }

          if (awgn_flag == 0) {
            if (UE2eNB->max_Doppler == 0) {
              multipath_channel(UE2eNB,s_re,s_im,r_re,r_im,
                                PHY_vars_eNB->lte_frame_parms.samples_per_tti,hold_channel);
            } else {
              multipath_tv_channel(UE2eNB,s_re,s_im,r_re,r_im,
                                   2*PHY_vars_eNB->lte_frame_parms.samples_per_tti,hold_channel);
            }
          }

          if(abstx) {
            if(saving_bler==0)
              if (trials==0 && round==0) {
                // calculate freq domain representation to compute SINR
                freq_channel(UE2eNB, N_RB_DL,12*N_RB_DL + 1);

                // snr=pow(10.0,.1*SNR);
                fprintf(csv_fdUL,"%f,%d,%d,%f,%f,%f,",SNR,tx_lev,tx_lev_dB,sigma2_dB,tx_gain,SNR2);

                //fprintf(csv_fdUL,"%f,",SNR);
                for (u=0; u<12*nb_rb; u++) {
                  for (aarx=0; aarx<UE2eNB->nb_rx; aarx++) {
                    for (aatx=0; aatx<UE2eNB->nb_tx; aatx++) {
                      // abs_channel = (eNB2UE->chF[aarx+(aatx*eNB2UE->nb_rx)][u].x*eNB2UE->chF[aarx+(aatx*eNB2UE->nb_rx)][u].x + eNB2UE->chF[aarx+(aatx*eNB2UE->nb_rx)][u].y*eNB2UE->chF[aarx+(aatx*eNB2UE->nb_rx)][u].y);
                      channelx = UE2eNB->chF[aarx+(aatx*UE2eNB->nb_rx)][u].x;
                      channely = UE2eNB->chF[aarx+(aatx*UE2eNB->nb_rx)][u].y;
                      // if(transmission_mode==5){
                      fprintf(csv_fdUL,"%e+i*(%e),",channelx,channely);
                      // }
                      // else{
                      //  pilot_sinr = 10*log10(snr*abs_channel);
                      //  fprintf(csv_fd,"%e,",pilot_sinr);
                      // }
                    }
                  }
                }
              }
          }

          if (n_frames==1)
            printf("Sigma2 %f (sigma2_dB %f), tx_gain %f (%f dB)\n",sigma2,sigma2_dB,tx_gain,20*log10(tx_gain));

          for (i=0; i<PHY_vars_eNB->lte_frame_parms.samples_per_tti; i++) {
            for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_rx; aa++) {
              ((short*) &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe])[2*i] = (short) ((tx_gain*r_re[aa][i]) + sqrt(sigma2/2)*gaussdouble(0.0,1.0));
              ((short*) &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe])[2*i+1] = (short) ((tx_gain*r_im[aa][i]) + (iqim*tx_gain*r_re[aa][i]) + sqrt(
                    sigma2/2)*gaussdouble(0.0,1.0));
            }
          }

          if (n_frames==1) {
            printf("rx_level Null symbol %f\n",10*log10((double)signal_energy((int*)
                   &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][(PHY_vars_eNB->lte_frame_parms.samples_per_tti<<1) -PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size],OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
            printf("rx_level data symbol %f\n",10*log10(signal_energy((int*)&PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][160+(PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe)],
                   OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
          }

          SNRmeas = 10*log10(((double)signal_energy((int*)&PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][160+(PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe)],
                              OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2))/((double)signal_energy((int*)
                                  &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][(PHY_vars_eNB->lte_frame_parms.samples_per_tti<<1) -PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size],
                                  OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)) - 1)+10*log10(PHY_vars_eNB->lte_frame_parms.N_RB_UL/nb_rb);

          if (n_frames==1) {
            printf("SNRmeas %f\n",SNRmeas);

            //    write_output("rxsig0UL.m","rxs0", &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe],PHY_vars_eNB->lte_frame_parms.samples_per_tti,1,1);
            //write_output("rxsig1UL.m","rxs1", &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe],PHY_vars_eNB->lte_frame_parms.samples_per_tti,1,1);
          }

1197
#ifndef OFDMA_ULSCH
1198
1199
1200
1201
1202
1203
1204
1205
1206