pbch.c 23.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*******************************************************************************

  Eurecom OpenAirInterface
  Copyright(c) 1999 - 2011 Eurecom

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information
  Openair Admin: openair_admin@eurecom.fr
  Openair Tech : openair_tech@eurecom.fr
  Forums       : http://forums.eurecom.fsr/openairinterface
  Address      : Eurecom, 2229, route des crêtes, 06560 Valbonne Sophia Antipolis, France

*******************************************************************************/

/*! \file PHY/LTE_TRANSPORT/pbch.c
* \brief Top-level routines for generating and decoding  the PBCH/BCH physical/transport channel V8.6 2009-03
* \author R. Knopp, F. Kaltenberger
* \date 2011
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr,florian.kaltenberger.fr
* \note
* \warning
*/
#include <emmintrin.h>
#include <xmmintrin.h>
#ifdef __SSE3__
#include <pmmintrin.h>
#include <tmmintrin.h>
#endif
#include "PHY/defs.h"
#include "PHY/CODING/extern.h"
#include "PHY/CODING/lte_interleaver_inline.h"
#include "defs.h"
#include "extern.h"
#include "PHY/extern.h"

53 54 55 56
#ifdef PHY_ABSTRACTION
#include "SIMULATION/TOOLS/defs.h"
#endif 

57 58 59 60 61 62 63 64
#ifndef __SSE3__
extern __m128i zero;
#define _mm_abs_epi16(xmmx) _mm_xor_si128((xmmx),_mm_cmpgt_epi16(zero,(xmmx)))
#define _mm_sign_epi16(xmmx,xmmy) _mm_xor_si128((xmmx),_mm_cmpgt_epi16(zero,(xmmy)))
#endif
  
//#define DEBUG_PBCH 1
//#define DEBUG_PBCH_ENCODING
xuhl's avatar
xuhl committed
65
//#define INTERFERENCE_MITIGATION 1
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

#ifdef OPENAIR2
#include "PHY_INTERFACE/defs.h"
#endif

#define PBCH_A 24

//u8 pbch_d[96+(3*(16+PBCH_A))], pbch_w[3*3*(16+PBCH_A)],pbch_e[1920];  //one bit per byte
int generate_pbch(LTE_eNB_PBCH *eNB_pbch,
		  mod_sym_t **txdataF,
		  int amp,
		  LTE_DL_FRAME_PARMS *frame_parms,
		  u8 *pbch_pdu,
		  u8 frame_mod4) {

  int i, l;

  u32  pbch_D,pbch_E;//,pbch_coded_bytes;
  u8 pbch_a[PBCH_A>>3];
  u8 RCC;

  u32 nsymb = (frame_parms->Ncp==NORMAL) ? 14:12;
88 89 90 91
  u32 pilots;
#ifdef INTERFERENCE_MITIGATION
  u32 pilots_2;
#endif
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  u32 second_pilot = (frame_parms->Ncp==NORMAL) ? 4 : 3;
  u32 jj=0;
  u32 re_allocated=0;
  u32 rb, re_offset, symbol_offset;
  u16 amask=0;

  pbch_D    = 16+PBCH_A;

  pbch_E  = (frame_parms->Ncp==NORMAL) ? 1920 : 1728; //RE/RB * #RB * bits/RB (QPSK)
  //  pbch_E_bytes = pbch_coded_bits>>3;

  if (frame_mod4==0) {
    bzero(pbch_a,PBCH_A>>3);
    bzero(eNB_pbch->pbch_e,pbch_E);
    memset(eNB_pbch->pbch_d,LTE_NULL,96);
    // Encode data
    
    // CRC attachment
    //  crc = (u16) (crc16(pbch_pdu, pbch_crc_bits-16) >> 16); 
    
    /*
    // scramble crc with PBCH CRC mask (Table 5.3.1.1-1 of 3GPP 36.212-860)
    switch (frame_parms->nb_antennas_tx_eNB) {
    case 1:
    crc = crc ^ (u16) 0;
    break;
    case 2:
    crc = crc ^ (u16) 0xFFFF;
    break;
    case 4:
    crc = crc ^ (u16) 0xAAAA;
    break;
    default:
    msg("[PBCH] Unknown number of TX antennas!\n");
    break;
    }
    */
    
    // Fix byte endian of PBCH (bit 23 goes in first)
    for (i=0;i<(PBCH_A>>3);i++) 
      pbch_a[(PBCH_A>>3)-i-1] = pbch_pdu[i];
    //  pbch_data[i] = ((char*) &crc)[0];
    //  pbch_data[i+1] = ((char*) &crc)[1];
#ifdef DEBUG_PBCH
    for (i=0;i<(PBCH_A>>3);i++) 
      msg("[PBCH] pbch_data[%d] = %x\n",i,pbch_a[i]);
#endif
    if (frame_parms->mode1_flag == 1)
      amask = 0x0000;
    else {
      switch (frame_parms->nb_antennas_tx_eNB) {
      case 1:
	amask = 0x0000;
	break;
      case 2:
	amask = 0xffff;
	break;
      case 4:
	amask = 0x5555;
      }
    }
    ccodelte_encode(PBCH_A,2,pbch_a,eNB_pbch->pbch_d+96,amask);

     
#ifdef DEBUG_PBCH_ENCODING
    for (i=0;i<16+PBCH_A;i++)
      msg("%d : (%d,%d,%d)\n",i,*(eNB_pbch->pbch_d+96+(3*i)),*(eNB_pbch->pbch_d+97+(3*i)),*(eNB_pbch->pbch_d+98+(3*i)));
#endif //DEBUG_PBCH_ENCODING
    
    // Bit collection
    /*
      j2=0;
      for (j=0;j<pbch_crc_bits*3+12;j++) {
      if ((pbch_coded_data[j]&0x80) > 0) { // bit is to be transmitted
      pbch_coded_data2[j2++] = pbch_coded_data[j]&1;
      //Bit is repeated
      if ((pbch_coded_data[j]&0x40)>0)
      pbch_coded_data2[j2++] = pbch_coded_data[j]&1;
      }
      }
      
      #ifdef DEBUG_PBCH			
      msg("[PBCH] rate matched bits=%d, pbch_coded_bits=%d, pbch_crc_bits=%d\n",j2,pbch_coded_bits,pbch_crc_bits);
      #endif
      
      #ifdef DEBUG_PBCH
      #ifdef USER_MODE
      write_output("pbch_encoded_output2.m","pbch_encoded_out2",
      pbch_coded_data2,
      pbch_coded_bits,
      1,
      4);
      #endif //USER_MODE
      #endif //DEBUG_PBCH
    */
#ifdef DEBUG_PBCH_ENCODING
    msg("Doing PBCH interleaving for %d coded bits, e %p\n",pbch_D,eNB_pbch->pbch_e);
#endif
    RCC = sub_block_interleaving_cc(pbch_D,eNB_pbch->pbch_d+96,eNB_pbch->pbch_w);
    
    lte_rate_matching_cc(RCC,pbch_E,eNB_pbch->pbch_w,eNB_pbch->pbch_e);

#ifdef DEBUG_PBCH_ENCODING
    msg("PBCH_e:\n");
    for (i=0;i<pbch_E;i++)
      msg("%d %d\n",i,*(eNB_pbch->pbch_e+i));
    msg("\n");
#endif


   
#ifdef DEBUG_PBCH
#ifdef USER_MODE
    if (frame_mod4==0) {
      write_output("pbch_e.m","pbch_e",
		   eNB_pbch->pbch_e,
		   pbch_E,
		   1,
		   4);
      for (i=0;i<16;i++)
	printf("e[%d] %d\n",i,eNB_pbch->pbch_e[i]);
    }
#endif //USER_MODE
#endif //DEBUG_PBCH
    // scrambling

    pbch_scrambling(frame_parms,
		    eNB_pbch->pbch_e,
		    pbch_E);
#ifdef DEBUG_PBCH
#ifdef USER_MODE
    if (frame_mod4==0) {
      write_output("pbch_e_s.m","pbch_e_s",
		   eNB_pbch->pbch_e,
		   pbch_E,
		   1,
		   4);
      for (i=0;i<16;i++)
	printf("e_s[%d] %d\n",i,eNB_pbch->pbch_e[i]);
    }
#endif //USER_MODE
#endif //DEBUG_PBCH 
  } // frame_mod4==0

  // modulation and mapping (slot 1, symbols 0..3)
  for (l=(nsymb>>1);l<(nsymb>>1)+4;l++) {
    
    pilots=0;
240
#ifdef INTERFERENCE_MITIGATION
241
    pilots_2 = 0;
242
#endif
243 244
    if ((l==0) || (l==(nsymb>>1))){
      pilots=1;
245
#ifdef INTERFERENCE_MITIGATION
246
      pilots_2=1;
247
#endif
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
    }

    if ((l==1) || (l==(nsymb>>1)+1)){
      pilots=1;
    }

    if ((l==second_pilot)||(l==(second_pilot+(nsymb>>1)))) {
      pilots=1;
    }

#ifdef DEBUG_PBCH
    msg("[PBCH] l=%d, pilots=%d\n",l,pilots);
#endif

    
#ifdef IFFT_FPGA
    re_offset = frame_parms->N_RB_DL*12-3*12;
    symbol_offset = frame_parms->N_RB_DL*12*l;
#else
    re_offset = frame_parms->ofdm_symbol_size-3*12;
    symbol_offset = frame_parms->ofdm_symbol_size*l;
#endif
    
    for (rb=0;rb<6;rb++) {

#ifdef DEBUG_PBCH
      msg("RB %d, jj %d, re_offset %d, symbol_offset %d, pilots %d, nushift %d\n",rb,jj,re_offset, symbol_offset, pilots,frame_parms->nushift);
#endif
      allocate_REs_in_RB(txdataF,
			 &jj,
			 re_offset,
			 symbol_offset,
			 &eNB_pbch->pbch_e[frame_mod4*(pbch_E>>2)],
			 (frame_parms->mode1_flag == 1) ? SISO : ALAMOUTI,
			 0,
			 pilots,
			 2,
			 0,
#ifdef INTERFERENCE_MITIGATION
			 (pilots_2==1)?(amp/3):amp,
#else
			 amp,
#endif
			 NULL,
			 &re_allocated,
			 0,
			 0,
			 0,
			 frame_parms);
      
      re_offset+=12; // go to next RB
      
      // check if we crossed the symbol boundary and skip DC
#ifdef IFFT_FPGA
      if (re_offset >= frame_parms->N_RB_DL*12) 
	re_offset = 0;
#else
      if (re_offset >= frame_parms->ofdm_symbol_size)
	re_offset=1;
#endif
    }
    
    //    }
  }
#ifdef DEBUG_PBCH
  msg("[PBCH] txdataF=\n");
  for (i=0;i<frame_parms->ofdm_symbol_size;i++) 
    msg("%d=>(%d,%d)\n",i,((short*)&txdataF[0][frame_parms->ofdm_symbol_size*(nsymb>>1)+i])[0],
	((short*)&txdataF[0][frame_parms->ofdm_symbol_size*(nsymb>>1)+i])[1]);
#endif
  
  
  return(0);
}

s32 generate_pbch_emul(PHY_VARS_eNB *phy_vars_eNB,u8 *pbch_pdu) {
  
  LOG_D(PHY,"[eNB %d] generate_pbch_emul \n",phy_vars_eNB->Mod_id);
  eNB_transport_info[phy_vars_eNB->Mod_id].cntl.pbch_flag=1;
  // Copy PBCH payload 
  eNB_transport_info[phy_vars_eNB->Mod_id].cntl.pbch_payload=*(u32 *)pbch_pdu;
  return(0);
}

u16 pbch_extract(int **rxdataF,
		 int **dl_ch_estimates,
		 int **rxdataF_ext,
		 int **dl_ch_estimates_ext,
		 u32 symbol,
		 LTE_DL_FRAME_PARMS *frame_parms) {
  

  u16 rb,nb_rb=6;
  u8 i,j,aarx,aatx;
  int *dl_ch0,*dl_ch0_ext,*rxF,*rxF_ext;
 
  u32 nsymb = (frame_parms->Ncp==0) ? 7:6;
  u32 symbol_mod = symbol % nsymb;

  int rx_offset = frame_parms->ofdm_symbol_size-3*12;
  int ch_offset = frame_parms->N_RB_DL*6-3*12;
  int nushiftmod3 = frame_parms->nushift%3;

  for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
    /*
    printf("extract_rbs (nushift %d): symbol_mod=%d, rx_offset=%d, ch_offset=%d\n",frame_parms->nushift,symbol_mod,
	   (rx_offset + (symbol*(frame_parms->ofdm_symbol_size)))*2,
	   LTE_CE_OFFSET+ch_offset+(symbol_mod*(frame_parms->ofdm_symbol_size)));
    */
#ifndef NEW_FFT
    rxF        = &rxdataF[aarx][(rx_offset + (symbol*(frame_parms->ofdm_symbol_size)))*2];
#else
    rxF        = &rxdataF[aarx][(rx_offset + (symbol*(frame_parms->ofdm_symbol_size)))];
#endif
    rxF_ext    = &rxdataF_ext[aarx][symbol_mod*(6*12)];

    for (rb=0; rb<nb_rb; rb++) {
      // skip DC carrier
      if (rb==3) {
#ifndef NEW_FFT
	rxF       = &rxdataF[aarx][(1 + (symbol*(frame_parms->ofdm_symbol_size)))*2];
#else
	rxF       = &rxdataF[aarx][(1 + (symbol*(frame_parms->ofdm_symbol_size)))];
#endif
      }
      if ((symbol_mod==0) || (symbol_mod==1)) {
	j=0;
	for (i=0;i<12;i++) {
	  if ((i!=nushiftmod3) && 
	      (i!=(nushiftmod3+3)) && 
	      (i!=(nushiftmod3+6)) && 
	      (i!=(nushiftmod3+9))) {
#ifndef NEW_FFT
	    rxF_ext[j++]=rxF[i<<1];
#else
	    rxF_ext[j++]=rxF[i];
#endif
	  }
	}
#ifndef NEW_FFT
	rxF+=24;
#else
	rxF+=12;
#endif
	rxF_ext+=8;
      }
      else {
	for (i=0;i<12;i++) {
#ifndef NEW_FFT
	  rxF_ext[i]=rxF[i<<1];
#else
	  rxF_ext[i]=rxF[i];
#endif
	}
#ifndef NEW_FFT
	rxF+=24;
#else
	rxF+=12;
#endif
	rxF_ext+=12;
      }
    }

    for (aatx=0;aatx<4;aatx++) {//frame_parms->nb_antennas_tx_eNB;aatx++) {
      dl_ch0     = &dl_ch_estimates[(aatx<<1)+aarx][LTE_CE_OFFSET+ch_offset+(symbol*(frame_parms->ofdm_symbol_size))];
      dl_ch0_ext = &dl_ch_estimates_ext[(aatx<<1)+aarx][symbol_mod*(6*12)];

      for (rb=0; rb<nb_rb; rb++) {
	// skip DC carrier
	// if (rb==3) dl_ch0++;
	if (symbol_mod>1) {
	  memcpy(dl_ch0_ext,dl_ch0,12*sizeof(int));
	  dl_ch0+=12;
	  dl_ch0_ext+=12;
	}
	else {
	  j=0;
	  for (i=0;i<12;i++) {
	    if ((i!=nushiftmod3) && 
		(i!=(nushiftmod3+3)) && 
		(i!=(nushiftmod3+6)) && 
		(i!=(nushiftmod3+9))){
	      //	      printf("PBCH extract i %d j %d => (%d,%d)\n",i,j,*(short *)&dl_ch0[i],*(1+(short*)&dl_ch0[i]));
	      dl_ch0_ext[j++]=dl_ch0[i];
	    }
	  }	    
	  dl_ch0+=12;
	  dl_ch0_ext+=8;
	}
     }
    }  //tx antenna loop

  }

  return(0);
}

__m128i avg128;

//compute average channel_level on each (TX,RX) antenna pair
int pbch_channel_level(int **dl_ch_estimates_ext,
		       LTE_DL_FRAME_PARMS *frame_parms,
		       u32 symbol) {

  s16 rb, nb_rb=6;
  u8 aatx,aarx;
  __m128i *dl_ch128;
  int avg1=0,avg2=0;

  u32 nsymb = (frame_parms->Ncp==0) ? 7:6;
  u32 symbol_mod = symbol % nsymb;

  for (aatx=0;aatx<4;aatx++) //frame_parms->nb_antennas_tx_eNB;aatx++)
    for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
      //clear average level
      avg128 = _mm_xor_si128(avg128,avg128);
      dl_ch128=(__m128i *)&dl_ch_estimates_ext[(aatx<<1)+aarx][symbol_mod*6*12];

      for (rb=0;rb<nb_rb;rb++) {
    
	avg128 = _mm_add_epi32(avg128,_mm_madd_epi16(dl_ch128[0],dl_ch128[0]));
	avg128 = _mm_add_epi32(avg128,_mm_madd_epi16(dl_ch128[1],dl_ch128[1]));
	avg128 = _mm_add_epi32(avg128,_mm_madd_epi16(dl_ch128[2],dl_ch128[2]));

	dl_ch128+=3;	
	/*
	  if (rb==0) {
	  print_shorts("dl_ch128",&dl_ch128[0]);
	  print_shorts("dl_ch128",&dl_ch128[1]);
	  print_shorts("dl_ch128",&dl_ch128[2]);
	  }
	*/
      }

      avg1 = (((int*)&avg128)[0] + 
	      ((int*)&avg128)[1] + 
	      ((int*)&avg128)[2] + 
	      ((int*)&avg128)[3])/(nb_rb*12);

      if (avg1>avg2) 
	avg2 = avg1;

      //msg("Channel level : %d, %d\n",avg1, avg2);
    }

  _mm_empty();
  _m_empty();

  return(avg2);

}

__m128i mmtmpP0,mmtmpP1,mmtmpP2,mmtmpP3;

void pbch_channel_compensation(int **rxdataF_ext,
			       int **dl_ch_estimates_ext,
			       int **rxdataF_comp,
			       LTE_DL_FRAME_PARMS *frame_parms,
			       u8 symbol,
			       u8 output_shift) {

  u16 rb,nb_rb=6;
  u8 aatx,aarx,symbol_mod;
  __m128i *dl_ch128,*rxdataF128,*rxdataF_comp128;

  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;
  
  for (aatx=0;aatx<4;aatx++) //frame_parms->nb_antennas_tx_eNB;aatx++)
    for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {

      dl_ch128          = (__m128i *)&dl_ch_estimates_ext[(aatx<<1)+aarx][symbol_mod*6*12];
      rxdataF128        = (__m128i *)&rxdataF_ext[aarx][symbol_mod*6*12];
      rxdataF_comp128   = (__m128i *)&rxdataF_comp[(aatx<<1)+aarx][symbol_mod*6*12];


      for (rb=0;rb<nb_rb;rb++) {
	//printf("rb %d\n",rb);
	
	// multiply by conjugated channel
	mmtmpP0 = _mm_madd_epi16(dl_ch128[0],rxdataF128[0]);
	//	print_ints("re",&mmtmpP0);
	// mmtmpP0 contains real part of 4 consecutive outputs (32-bit)
	mmtmpP1 = _mm_shufflelo_epi16(dl_ch128[0],_MM_SHUFFLE(2,3,0,1));
	mmtmpP1 = _mm_shufflehi_epi16(mmtmpP1,_MM_SHUFFLE(2,3,0,1));
	mmtmpP1 = _mm_sign_epi16(mmtmpP1,*(__m128i*)&conjugate[0]);
	//	print_ints("im",&mmtmpP1);
	mmtmpP1 = _mm_madd_epi16(mmtmpP1,rxdataF128[0]);
	// mmtmpP1 contains imag part of 4 consecutive outputs (32-bit)
	mmtmpP0 = _mm_srai_epi32(mmtmpP0,output_shift);
	//	print_ints("re(shift)",&mmtmpP0);
	mmtmpP1 = _mm_srai_epi32(mmtmpP1,output_shift);
	//	print_ints("im(shift)",&mmtmpP1);
	mmtmpP2 = _mm_unpacklo_epi32(mmtmpP0,mmtmpP1);
	mmtmpP3 = _mm_unpackhi_epi32(mmtmpP0,mmtmpP1);
	//      print_ints("c0",&mmtmpP2);
	//	print_ints("c1",&mmtmpP3);
	rxdataF_comp128[0] = _mm_packs_epi32(mmtmpP2,mmtmpP3);
	//	print_shorts("rx:",rxdataF128);
	//	print_shorts("ch:",dl_ch128);
	//	print_shorts("pack:",rxdataF_comp128);

	// multiply by conjugated channel
	mmtmpP0 = _mm_madd_epi16(dl_ch128[1],rxdataF128[1]);
	// mmtmpP0 contains real part of 4 consecutive outputs (32-bit)
	mmtmpP1 = _mm_shufflelo_epi16(dl_ch128[1],_MM_SHUFFLE(2,3,0,1));
	mmtmpP1 = _mm_shufflehi_epi16(mmtmpP1,_MM_SHUFFLE(2,3,0,1));
	mmtmpP1 = _mm_sign_epi16(mmtmpP1,*(__m128i*)&conjugate[0]);
	mmtmpP1 = _mm_madd_epi16(mmtmpP1,rxdataF128[1]);
	// mmtmpP1 contains imag part of 4 consecutive outputs (32-bit)
	mmtmpP0 = _mm_srai_epi32(mmtmpP0,output_shift);
	mmtmpP1 = _mm_srai_epi32(mmtmpP1,output_shift);
	mmtmpP2 = _mm_unpacklo_epi32(mmtmpP0,mmtmpP1);
	mmtmpP3 = _mm_unpackhi_epi32(mmtmpP0,mmtmpP1);
	rxdataF_comp128[1] = _mm_packs_epi32(mmtmpP2,mmtmpP3);
	//	print_shorts("rx:",rxdataF128+1);
	//	print_shorts("ch:",dl_ch128+1);
	//	print_shorts("pack:",rxdataF_comp128+1);	

	if (symbol_mod>1) {
	  // multiply by conjugated channel
	  mmtmpP0 = _mm_madd_epi16(dl_ch128[2],rxdataF128[2]);
	  // mmtmpP0 contains real part of 4 consecutive outputs (32-bit)
	  mmtmpP1 = _mm_shufflelo_epi16(dl_ch128[2],_MM_SHUFFLE(2,3,0,1));
	  mmtmpP1 = _mm_shufflehi_epi16(mmtmpP1,_MM_SHUFFLE(2,3,0,1));
	  mmtmpP1 = _mm_sign_epi16(mmtmpP1,*(__m128i*)&conjugate[0]);
	  mmtmpP1 = _mm_madd_epi16(mmtmpP1,rxdataF128[2]);
	  // mmtmpP1 contains imag part of 4 consecutive outputs (32-bit)
	  mmtmpP0 = _mm_srai_epi32(mmtmpP0,output_shift);
	  mmtmpP1 = _mm_srai_epi32(mmtmpP1,output_shift);
	  mmtmpP2 = _mm_unpacklo_epi32(mmtmpP0,mmtmpP1);
	  mmtmpP3 = _mm_unpackhi_epi32(mmtmpP0,mmtmpP1);
	  rxdataF_comp128[2] = _mm_packs_epi32(mmtmpP2,mmtmpP3);
	  //	print_shorts("rx:",rxdataF128+2);
	  //	print_shorts("ch:",dl_ch128+2);
	  //      print_shorts("pack:",rxdataF_comp128+2);
	  
	  dl_ch128+=3;
	  rxdataF128+=3;
	  rxdataF_comp128+=3;
	}
	else {
	  dl_ch128+=2;
	  rxdataF128+=2;
	  rxdataF_comp128+=2;
	}
      }
    }
  _mm_empty();
  _m_empty();
}     

void pbch_detection_mrc(LTE_DL_FRAME_PARMS *frame_parms,
			int **rxdataF_comp,
			u8 symbol) {

  u8 aatx, symbol_mod;
  int i, nb_rb=6;
  __m128i *rxdataF_comp128_0,*rxdataF_comp128_1;

  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;

  if (frame_parms->nb_antennas_rx>1) {
    for (aatx=0;aatx<4;aatx++) {//frame_parms->nb_antennas_tx_eNB;aatx++) {
      rxdataF_comp128_0   = (__m128i *)&rxdataF_comp[(aatx<<1)][symbol_mod*6*12];  
      rxdataF_comp128_1   = (__m128i *)&rxdataF_comp[(aatx<<1)+1][symbol_mod*6*12];  
      // MRC on each re of rb, both on MF output and magnitude (for 16QAM/64QAM llr computation)
      for (i=0;i<nb_rb*3;i++) {
	rxdataF_comp128_0[i] = _mm_adds_epi16(_mm_srai_epi16(rxdataF_comp128_0[i],1),_mm_srai_epi16(rxdataF_comp128_1[i],1));
      }
    }
  }
  _mm_empty();
  _m_empty();
}

void pbch_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
		     u8 *pbch_e,
		     u32 length) {
  int i;
  u8 reset;
  u32 x1, x2, s=0;

  reset = 1;
  // x1 is set in lte_gold_generic
  x2 = frame_parms->Nid_cell; //this is c_init in 36.211 Sec 6.6.1
  //  msg("pbch_scrambling: Nid_cell = %d\n",x2);

  for (i=0; i<length; i++) {
    if ((i&0x1f)==0) {
      s = lte_gold_generic(&x1, &x2, reset);
      //      printf("lte_gold[%d]=%x\n",i,s);
      reset = 0;
    }

    pbch_e[i] = (pbch_e[i]&1) ^ ((s>>(i&0x1f))&1);

  }
}

void pbch_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
		       s8* llr,
		       u32 length,
		       u8 frame_mod4) {
  int i;
  u8 reset;
  u32 x1, x2, s=0;

  reset = 1;
  // x1 is set in first call to lte_gold_generic
  x2 = frame_parms->Nid_cell; //this is c_init in 36.211 Sec 6.6.1
  //  msg("pbch_unscrambling: Nid_cell = %d\n",x2);

  for (i=0; i<length; i++) {
    if (i%32==0) {
      s = lte_gold_generic(&x1, &x2, reset);
      //      printf("lte_gold[%d]=%x\n",i,s);
      reset = 0;
    } 
    // take the quarter of the PBCH that corresponds to this frame
    if ((i>=(frame_mod4*(length>>2))) && (i<((1+frame_mod4)*(length>>2)))) {
      //      if (((s>>(i%32))&1)==1)

      if (((s>>(i%32))&1)==0)
	llr[i] = -llr[i];
    }
  }
}

void pbch_alamouti(LTE_DL_FRAME_PARMS *frame_parms,
		   int **rxdataF_comp,
		   u8 symbol) {


  s16 *rxF0,*rxF1;
  //  __m128i *ch_mag0,*ch_mag1,*ch_mag0b,*ch_mag1b;
  u8 rb,re,symbol_mod;
  int jj;

  //  printf("Doing alamouti\n");
  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;
  jj         = (symbol_mod*6*12);

  rxF0     = (s16*)&rxdataF_comp[0][jj];  //tx antenna 0  h0*y
  rxF1     = (s16*)&rxdataF_comp[2][jj];  //tx antenna 1  h1*y

  for (rb=0;rb<6;rb++) {

    for (re=0;re<12;re+=2) {

      // Alamouti RX combining
      
      rxF0[0] = rxF0[0] + rxF1[2];
      rxF0[1] = rxF0[1] - rxF1[3];

      rxF0[2] = rxF0[2] - rxF1[0];
      rxF0[3] = rxF0[3] + rxF1[1];
 
      rxF0+=4;
      rxF1+=4;
    }

  }

  _mm_empty();
  _m_empty();
  
}

void pbch_quantize(s8 *pbch_llr8,
		   s16 *pbch_llr,
		   u16 len) {

  u16 i;

  for (i=0;i<len;i++) { 
    if (pbch_llr[i]>7)
      pbch_llr8[i]=7;
    else if (pbch_llr[i]<-8)
      pbch_llr8[i]=-8;
    else
      pbch_llr8[i] = (char)(pbch_llr[i]);

  }
}

static unsigned char dummy_w_rx[3*3*(16+PBCH_A)];
static int8_t pbch_w_rx[3*3*(16+PBCH_A)],pbch_d_rx[96+(3*(16+PBCH_A))];


u16 rx_pbch(LTE_UE_COMMON *lte_ue_common_vars,
	    LTE_UE_PBCH *lte_ue_pbch_vars,
	    LTE_DL_FRAME_PARMS *frame_parms,
	    u8 eNB_id,
	    MIMO_mode_t mimo_mode,
	    u8 frame_mod4) {

  u8 log2_maxh;//,aatx,aarx;
  int max_h=0;

  int symbol,i;
  u32 nsymb = (frame_parms->Ncp==0) ? 14:12;
  u16  pbch_E;
  u8 pbch_a[8];
  u8 RCC;

  s8 *pbch_e_rx;
  u8 *decoded_output = lte_ue_pbch_vars->decoded_output;
  u16 crc;


  //  pbch_D    = 16+PBCH_A;

  pbch_E  = (frame_parms->Ncp==0) ? 1920 : 1728; //RE/RB * #RB * bits/RB (QPSK)
  pbch_e_rx = &lte_ue_pbch_vars->llr[frame_mod4*(pbch_E>>2)];
#ifdef DEBUG_PBCH
  msg("[PBCH] starting symbol loop\n");
#endif

  // clear LLR buffer
  memset(lte_ue_pbch_vars->llr,0,pbch_E);

  for (symbol=(nsymb>>1);symbol<(nsymb>>1)+4;symbol++) {

#ifdef DEBUG_PBCH
    msg("[PBCH] starting extract\n");
#endif
    pbch_extract(lte_ue_common_vars->rxdataF,
		 lte_ue_common_vars->dl_ch_estimates[eNB_id],
		 lte_ue_pbch_vars->rxdataF_ext,
		 lte_ue_pbch_vars->dl_ch_estimates_ext,
		 symbol,
		 frame_parms);
#ifdef DEBUG_PBCH    
    msg("[PHY] PBCH Symbol %d\n",symbol);
    msg("[PHY] PBCH starting channel_level\n");
#endif
    
    max_h = pbch_channel_level(lte_ue_pbch_vars->dl_ch_estimates_ext,
			       frame_parms,
			       symbol);
    log2_maxh = 3+(log2_approx(max_h)/2);
    
#ifdef DEBUG_PBCH
    msg("[PHY] PBCH log2_maxh = %d (%d)\n",log2_maxh,max_h);
#endif
    
    pbch_channel_compensation(lte_ue_pbch_vars->rxdataF_ext,
			      lte_ue_pbch_vars->dl_ch_estimates_ext,
			      lte_ue_pbch_vars->rxdataF_comp,
			      frame_parms,
			      symbol,
			      log2_maxh); // log2_maxh+I0_shift
    
    if (frame_parms->nb_antennas_rx > 1)
      pbch_detection_mrc(frame_parms,
			 lte_ue_pbch_vars->rxdataF_comp,
			 symbol);
    
    
    if (mimo_mode == ALAMOUTI) {
      pbch_alamouti(frame_parms,lte_ue_pbch_vars->rxdataF_comp,symbol);
      //	msg("[PBCH][RX] Alamouti receiver not yet implemented!\n");
      //	return(-1);
    }
    else if ((mimo_mode != ANTCYCLING) && (mimo_mode != SISO)) {
      msg("[PBCH][RX] Unsupported MIMO mode\n");
      return(-1);
    }
  
    if (symbol>(nsymb>>1)+1) {
      pbch_quantize(pbch_e_rx,
		    (short*)&(lte_ue_pbch_vars->rxdataF_comp[0][(symbol%(nsymb>>1))*72]),
		    144);
      
      pbch_e_rx+=144;
    }
    else {
      pbch_quantize(pbch_e_rx,
		    (short*)&(lte_ue_pbch_vars->rxdataF_comp[0][(symbol%(nsymb>>1))*72]),
		    96);

      pbch_e_rx+=96;
    }


  }

  pbch_e_rx = lte_ue_pbch_vars->llr;



  //un-scrambling
#ifdef DEBUG_PBCH
  msg("[PBCH] doing unscrambling\n");
#endif

  
  pbch_unscrambling(frame_parms,
		    pbch_e_rx,
		    pbch_E,
		    frame_mod4);
  


  //un-rate matching
#ifdef DEBUG_PBCH
  msg("[PBCH] doing un-rate-matching\n");
#endif


  memset(dummy_w_rx,0,3*3*(16+PBCH_A));
  RCC = generate_dummy_w_cc(16+PBCH_A,
			    dummy_w_rx);


  lte_rate_matching_cc_rx(RCC,pbch_E,pbch_w_rx,dummy_w_rx,pbch_e_rx);

  sub_block_deinterleaving_cc((unsigned int)(PBCH_A+16), 
			      &pbch_d_rx[96], 
			      &pbch_w_rx[0]); 

  memset(pbch_a,0,((16+PBCH_A)>>3));




  phy_viterbi_lte_sse2(pbch_d_rx+96,pbch_a,16+PBCH_A);
  
  // Fix byte endian of PBCH (bit 23 goes in first)
  for (i=0;i<(PBCH_A>>3);i++) 
    decoded_output[(PBCH_A>>3)-i-1] = pbch_a[i];

#ifdef DEBUG_PBCH
  for (i=0;i<(PBCH_A>>3);i++) 
    msg("[PBCH] pbch_a[%d] = %x\n",i,decoded_output[i]);

#endif //DEBUG_PBCH

#ifdef DEBUG_PBCH
  msg("PBCH CRC %x : %x\n",
      crc16(pbch_a,PBCH_A),
      ((u16)pbch_a[PBCH_A>>3]<<8)+pbch_a[(PBCH_A>>3)+1]);
#endif

  crc = (crc16(pbch_a,PBCH_A)>>16) ^ 
    (((u16)pbch_a[PBCH_A>>3]<<8)+pbch_a[(PBCH_A>>3)+1]);

  if (crc == 0x0000)
    return(1);
  else if (crc == 0xffff)
    return(2);
  else if (crc == 0x5555)
    return(4);
  else 
    return(-1);
  
  
}

907
#ifdef PHY_ABSTRACTION
908 909 910 911
u16 rx_pbch_emul(PHY_VARS_UE *phy_vars_ue,
		 u8 eNB_id,
		 u8 pbch_phase) {

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
  double bler=0.0, x=0.0;
  double sinr=0.0;
  u16 nb_rb = phy_vars_ue->lte_frame_parms.N_RB_DL;
  s16 f;
  
  // compute effective sinr
  // TODO: adapt this to varible bandwidth
  for (f=(nb_rb*6-3*12);f<(nb_rb*6+3*12);f++) {
    if (f!=0) //skip DC
      sinr += pow(10, 0.1*(phy_vars_ue->sinr_dB[f]));
  }
  sinr = 10*log10(sinr/(6*12));
 
  bler = pbch_bler(sinr);
 
  LOG_D(PHY,"EMUL UE rx_pbch_emul: eNB_id %d, pbch_phase %d, sinr %f dB, bler %f \n",
	eNB_id,
	pbch_phase,
	sinr,
	bler);
932 933

  if (pbch_phase == (phy_vars_ue->frame % 4)) {
934
    if (uniformrandom() >= bler) {
935 936 937 938 939 940 941 942 943
      memcpy(phy_vars_ue->lte_ue_pbch_vars[eNB_id]->decoded_output,PHY_vars_eNB_g[eNB_id]->pbch_pdu,PBCH_PDU_SIZE);    
      return(PHY_vars_eNB_g[eNB_id]->lte_frame_parms.nb_antennas_tx_eNB);
    }
    else
      return(-1);
  }
  else
    return(-1);
}
944
#endif