dlsch_demodulation.c 121 KB
Newer Older
1
/*******************************************************************************
ghaddab's avatar
ghaddab committed
2
3
    OpenAirInterface 
    Copyright(c) 1999 - 2014 Eurecom
4

ghaddab's avatar
ghaddab committed
5
6
7
8
    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
9
10


ghaddab's avatar
ghaddab committed
11
12
13
14
    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
15

ghaddab's avatar
ghaddab committed
16
17
18
19
    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is 
   included in this distribution in the file called "COPYING". If not, 
   see <http://www.gnu.org/licenses/>.
20
21

  Contact Information
ghaddab's avatar
ghaddab committed
22
23
24
25
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
  OpenAirInterface Dev  : openair4g-devel@eurecom.fr
  
ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
27

28
*******************************************************************************/
29
30
31
32
33

/*! \file PHY/LTE_TRANSPORT/dlsch_demodulation.c
 * \brief Top-level routines for demodulating the PDSCH physical channel from 36-211, V8.6 2009-03
 * \author R. Knopp, F. Kaltenberger,A. Bhamri, S. Aubert
 * \date 2011
34
 DEBUG * \version 0.1
35
36
37
38
39
40
41
42
43
44
 * \company Eurecom
 * \email: knopp@eurecom.fr,florian.kaltenberger@eurecom.fr,ankit.bhamri@eurecom.fr,sebastien.aubert@eurecom.fr
 * \note
 * \warning
 */

#include "PHY/defs.h"
#include "PHY/extern.h"
#include "defs.h"
#include "extern.h"
45
#include "PHY/sse_intrin.h"
46
47
48
49
50
51
52
53
54
55



#ifndef USER_MODE
#define NOCYGWIN_STATIC static
#else
#define NOCYGWIN_STATIC 
#endif

//#define DEBUG_PHY 1
56

57
58
59
int avg[4];

// [MCS][i_mod (0,1,2) = (2,4,6)]
60
61
62
63
unsigned char offset_mumimo_llr_drange_fix=0;
/*
//original values from sebastion + same hand tuning
unsigned char offset_mumimo_llr_drange[29][3]={{8,8,8},{7,7,7},{7,7,7},{7,7,7},{6,6,6},{6,6,6},{6,6,6},{5,5,5},{4,4,4},{1,2,4}, // QPSK
64
65
{5,5,4},{5,5,5},{5,5,5},{3,3,3},{2,2,2},{2,2,2},{2,2,2}, // 16-QAM
{2,2,1},{3,3,3},{3,3,3},{3,3,1},{2,2,2},{2,2,2},{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0}}; //64-QAM
66
*/
67
68
69
70
71
72
73
74
 /*
 //first optimization try
 unsigned char offset_mumimo_llr_drange[29][3]={{7, 8, 7},{6, 6, 7},{6, 6, 7},{6, 6, 6},{5, 6, 6},{5, 5, 6},{5, 5, 6},{4, 5, 4},{4, 3, 4},{3, 2, 2},{6, 5, 5},{5, 4, 4},{5, 5, 4},{3, 3, 2},{2, 2, 1},{2, 1, 1},{2, 2, 2},{3, 3, 3},{3, 3, 2},{3, 3, 2},{3, 2, 1},{2, 2, 2},{2, 2, 2},{0, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, 0}};
 */
 //second optimization try
 /*
   unsigned char offset_mumimo_llr_drange[29][3]={{5, 8, 7},{4, 6, 8},{3, 6, 7},{7, 7, 6},{4, 7, 8},{4, 7, 4},{6, 6, 6},{3, 6, 6},{3, 6, 6},{1, 3, 4},{1, 1, 0},{3, 3, 2},{3, 4, 1},{4, 0, 1},{4, 2, 2},{3, 1, 2},{2, 1, 0},{2, 1, 1},{1, 0, 1},{1, 0, 1},{0, 0, 0},{1, 0, 0},{0, 0, 0},{0, 1, 0},{1, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, 0}};  w
 */
75
76
unsigned char offset_mumimo_llr_drange[29][3]={{0, 6, 5},{0, 4, 5},{0, 4, 5},{0, 5, 4},{0, 5, 6},{0, 5, 3},{0, 4, 4},{0, 4, 4},{0, 3, 3},{0, 1, 2},{1, 1, 0},{1, 3, 2},{3, 4, 1},{2, 0, 0},{2, 2, 2},{1, 1, 1},{2, 1, 0},{2, 1, 1},{1, 0, 1},{1, 0, 1},{0, 0, 0},{1, 0, 0},{0, 0, 0},{0, 1, 0},{1, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, 0},{0, 0, 0}};

77

78
79
extern void print_shorts(char *s,__m128i *x);

80
81
82
83
int rx_pdsch(PHY_VARS_UE *phy_vars_ue,
             PDSCH_t type,
             unsigned char eNB_id,
             unsigned char eNB_id_i, //if this == phy_vars_ue->n_connected_eNB, we assume MU interference
gauthier's avatar
gauthier committed
84
             uint8_t subframe,
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
             unsigned char symbol,
             unsigned char first_symbol_flag,
             unsigned char dual_stream_flag,
             unsigned char i_mod,
             unsigned char harq_pid) {
  
  LTE_UE_COMMON *lte_ue_common_vars  = &phy_vars_ue->lte_ue_common_vars;
  LTE_UE_PDSCH **lte_ue_pdsch_vars;
  LTE_DL_FRAME_PARMS *frame_parms    = &phy_vars_ue->lte_frame_parms;
  PHY_MEASUREMENTS *phy_measurements = &phy_vars_ue->PHY_measurements;
  LTE_UE_DLSCH_t   **dlsch_ue;

  unsigned char aatx,aarx;    
  unsigned short nb_rb;
  int avgs, rb;  
100
  LTE_DL_UE_HARQ_t *dlsch0_harq,*dlsch1_harq = 0;
101

102
103
104
105
  switch (type) {
  case SI_PDSCH:
    lte_ue_pdsch_vars = &phy_vars_ue->lte_ue_pdsch_vars_SI[eNB_id];
    dlsch_ue          = &phy_vars_ue->dlsch_ue_SI[eNB_id];
106
    dlsch0_harq       = dlsch_ue[0]->harq_processes[harq_pid];
107
108
109
110
    break;
  case RA_PDSCH:
    lte_ue_pdsch_vars = &phy_vars_ue->lte_ue_pdsch_vars_ra[eNB_id];
    dlsch_ue          = &phy_vars_ue->dlsch_ue_ra[eNB_id];
111
    dlsch0_harq       = dlsch_ue[0]->harq_processes[harq_pid];
112
113
114
115
    break;
  case PDSCH:
    lte_ue_pdsch_vars = &phy_vars_ue->lte_ue_pdsch_vars[eNB_id];
    dlsch_ue          = phy_vars_ue->dlsch_ue[eNB_id];
116
117
    dlsch0_harq       = dlsch_ue[0]->harq_processes[harq_pid];
    dlsch1_harq       = dlsch_ue[1]->harq_processes[harq_pid];
118
119
120
121
122
123
124
125
    break;

  default:
    //msg("[PHY][UE %d][FATAL] Frame %d subframe %d: Unknown PDSCH format %d\n",phy_vars_ue->frame,subframe,type);
    mac_xface->macphy_exit("");
    return(-1);
    break;
  }
126
127


128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
  if (eNB_id > 2) {
    msg("dlsch_demodulation.c: Illegal eNB_id %d\n",eNB_id);
    return(-1);
  }
    
  if (!lte_ue_common_vars) {
    msg("dlsch_demodulation.c: Null lte_ue_common_vars\n");
    return(-1);
  }

  if (!dlsch_ue[0]) {
    msg("dlsch_demodulation.c: Null dlsch_ue pointer\n");
    return(-1);
  }

  if (!lte_ue_pdsch_vars) {
    msg("dlsch_demodulation.c: Null lte_ue_pdsch_vars pointer\n");
    return(-1);
  }
    
  if (!frame_parms) {
    msg("dlsch_demodulation.c: Null lte_frame_parms\n");
    return(-1);
  }
knopp's avatar
   
knopp committed
152
  //  printf("rx_dlsch subframe %d symbol %d: eNB_id %d, eNB_id_i %d, dual_stream_flag %d\n",subframe,symbol,eNB_id,eNB_id_i,dual_stream_flag); 
153
154
155
156
157
158
159
160
161
162
163
  //  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;

  /*
    if ((symbol_mod == 0) || (symbol_mod == (4-frame_parms->Ncp)))
    pilots=1;
    else 
    pilots=0;
  */

  if (frame_parms->nb_antennas_tx_eNB>1) {
#ifdef DEBUG_DLSCH_MOD     
164
    LOG_I(PHY,"dlsch: using pmi %x (%p), rb_alloc %x\n",pmi2hex_2Ar1(dlsch0_harq->pmi_alloc),dlsch_ue[0],dlsch0_harq->rb_alloc[0]);
165
166
167
168
169
#endif
    nb_rb = dlsch_extract_rbs_dual(lte_ue_common_vars->rxdataF,
				   lte_ue_common_vars->dl_ch_estimates[eNB_id],
				   lte_ue_pdsch_vars[eNB_id]->rxdataF_ext,
				   lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext,
170
				   dlsch0_harq->pmi_alloc,
171
				   lte_ue_pdsch_vars[eNB_id]->pmi_ext,
172
				   dlsch0_harq->rb_alloc,
173
174
				   symbol,
				   subframe,
175
				   phy_vars_ue->high_speed_flag,
176
177
178
179
180
181
182
183
				   frame_parms);

    if (dual_stream_flag==1) {
      if (eNB_id_i<phy_vars_ue->n_connected_eNB)
	nb_rb = dlsch_extract_rbs_dual(lte_ue_common_vars->rxdataF,
				       lte_ue_common_vars->dl_ch_estimates[eNB_id_i],
				       lte_ue_pdsch_vars[eNB_id_i]->rxdataF_ext,
				       lte_ue_pdsch_vars[eNB_id_i]->dl_ch_estimates_ext,
184
				       dlsch0_harq->pmi_alloc,
185
				       lte_ue_pdsch_vars[eNB_id_i]->pmi_ext,
186
				       dlsch0_harq->rb_alloc,
187
188
				       symbol,
				       subframe,
189
				       phy_vars_ue->high_speed_flag,
190
191
192
193
194
195
				       frame_parms);
      else 
	nb_rb = dlsch_extract_rbs_dual(lte_ue_common_vars->rxdataF,
				       lte_ue_common_vars->dl_ch_estimates[eNB_id],
				       lte_ue_pdsch_vars[eNB_id_i]->rxdataF_ext,
				       lte_ue_pdsch_vars[eNB_id_i]->dl_ch_estimates_ext,
196
				       dlsch0_harq->pmi_alloc,
197
				       lte_ue_pdsch_vars[eNB_id_i]->pmi_ext,
198
				       dlsch0_harq->rb_alloc,
199
200
				       symbol,
				       subframe,
201
				       phy_vars_ue->high_speed_flag,
202
203
204
205
206
207
208
209
				       frame_parms);
    }
  } // if n_tx>1
  else {     
    nb_rb = dlsch_extract_rbs_single(lte_ue_common_vars->rxdataF,
				     lte_ue_common_vars->dl_ch_estimates[eNB_id],
				     lte_ue_pdsch_vars[eNB_id]->rxdataF_ext,
				     lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext,
210
				     dlsch0_harq->pmi_alloc,
211
				     lte_ue_pdsch_vars[eNB_id]->pmi_ext,
212
				     dlsch0_harq->rb_alloc,
213
214
				     symbol,
				     subframe,
215
				     phy_vars_ue->high_speed_flag,
216
217
218
219
220
221
222
223
				     frame_parms);
        
    if (dual_stream_flag==1) {
      if (eNB_id_i<phy_vars_ue->n_connected_eNB)
	nb_rb = dlsch_extract_rbs_single(lte_ue_common_vars->rxdataF,
					 lte_ue_common_vars->dl_ch_estimates[eNB_id_i],
					 lte_ue_pdsch_vars[eNB_id_i]->rxdataF_ext,
					 lte_ue_pdsch_vars[eNB_id_i]->dl_ch_estimates_ext,    
224
					 dlsch0_harq->pmi_alloc,
225
					 lte_ue_pdsch_vars[eNB_id_i]->pmi_ext,
226
					 dlsch0_harq->rb_alloc,
227
228
					 symbol,
					 subframe,
229
					 phy_vars_ue->high_speed_flag,
230
231
232
233
234
235
					 frame_parms);
      else 
	nb_rb = dlsch_extract_rbs_single(lte_ue_common_vars->rxdataF,
					 lte_ue_common_vars->dl_ch_estimates[eNB_id],
					 lte_ue_pdsch_vars[eNB_id_i]->rxdataF_ext,
					 lte_ue_pdsch_vars[eNB_id_i]->dl_ch_estimates_ext,    
236
					 dlsch0_harq->pmi_alloc,
237
					 lte_ue_pdsch_vars[eNB_id_i]->pmi_ext,
238
					 dlsch0_harq->rb_alloc,
239
240
					 symbol,
					 subframe,
241
					 phy_vars_ue->high_speed_flag,
242
243
244
245
246
247
248
249
250
					 frame_parms);
    }
  } //else n_tx>1
  
    //  printf("nb_rb = %d, eNB_id %d\n",nb_rb,eNB_id);
  if (nb_rb==0) {
    msg("dlsch_demodulation.c: nb_rb=0\n");
    return(-1);
  }
knopp's avatar
   
knopp committed
251
  /*
252
253
  // DL power control: Scaling of Channel estimates for PDSCH
  dlsch_scale_channel(lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext,
254
255
256
257
  frame_parms,
  dlsch_ue,
  symbol,
  nb_rb);
knopp's avatar
   
knopp committed
258
  */
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
  if (first_symbol_flag==1) {
    dlsch_channel_level(lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext,
			frame_parms,
			avg,
			symbol,
			nb_rb);
#ifdef DEBUG_PHY
    msg("[DLSCH] avg[0] %d\n",avg[0]);
#endif
      
    // the channel gain should be the effective gain of precoding + channel
    // however lets be more conservative and set maxh = nb_tx*nb_rx*max(h_i)
    // in case of precoding we add an additional factor of two for the precoding gain
    avgs = 0;
    for (aatx=0;aatx<frame_parms->nb_antennas_tx_eNB;aatx++)
      for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++)
	avgs = cmax(avgs,avg[(aatx<<1)+aarx]);
    //	avgs = cmax(avgs,avg[(aarx<<1)+aatx]);
        
    
279
    lte_ue_pdsch_vars[eNB_id]->log2_maxh = (log2_approx(avgs)/2);
280
281
    // + log2_approx(frame_parms->nb_antennas_tx_eNB-1) //-1 because log2_approx counts the number of bits
    //      + log2_approx(frame_parms->nb_antennas_rx-1);
282

283
284
285
    if ((dlsch0_harq->mimo_mode>=UNIFORM_PRECODING11) &&
	(dlsch0_harq->mimo_mode< DUALSTREAM_UNIFORM_PRECODING1) &&
	(dlsch0_harq->dl_power_off==1)) // we are in TM 6
286
287
288
289
290
291
292
293
      lte_ue_pdsch_vars[eNB_id]->log2_maxh++;

    // this version here applies the factor .5 also to the extra terms. however, it does not work so well as the one above
    /* K = Nb_rx         in TM1 
       Nb_tx*Nb_rx   in TM2,4,5
       Nb_tx^2*Nb_rx in TM6 */
    /*
      K = frame_parms->nb_antennas_rx*frame_parms->nb_antennas_tx_eNB; //that also covers TM1 since Nb_tx=1
294
295
296
      if ((dlsch0_harq->mimo_mode>=UNIFORM_PRECODING11) &&
      (dlsch0_harq->mimo_mode< DUALSTREAM_UNIFORM_PRECODING1) &&
      (dlsch0_harq->dl_power_off==1)) // we are in TM 6
297
298
299
300
301
302
303
      K *= frame_parms->nb_antennas_tx_eNB;

      lte_ue_pdsch_vars[eNB_id]->log2_maxh = (log2_approx(K*avgs)/2);
    */

#ifdef DEBUG_PHY
    msg("[DLSCH] log2_maxh = %d (%d,%d)\n",lte_ue_pdsch_vars[eNB_id]->log2_maxh,avg[0],avgs);
304
    msg("[DLSCH] mimo_mode = %d\n", dlsch0_harq->mimo_mode);
305
306
307
308
309
#endif
  }
  aatx = frame_parms->nb_antennas_tx_eNB;
  aarx = frame_parms->nb_antennas_rx;

310
  if (dlsch0_harq->mimo_mode<LARGE_CDD) {// SISO or ALAMOUTI
311
312
313

    dlsch_channel_compensation(lte_ue_pdsch_vars[eNB_id]->rxdataF_ext,
			       lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext,
314
315
316
			       lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
			       lte_ue_pdsch_vars[eNB_id]->dl_ch_magb0,
			       lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
317
318
319
320
			       (aatx>1) ? lte_ue_pdsch_vars[eNB_id]->rho : NULL,
			       frame_parms,
			       symbol,
			       first_symbol_flag,
321
			       get_Qm(dlsch0_harq->mcs),
322
323
324
325
326
			       nb_rb,
			       lte_ue_pdsch_vars[eNB_id]->log2_maxh,
			       phy_measurements); // log2_maxh+I0_shift
#ifdef DEBUG_PHY
    if (symbol==5)
327
      write_output("rxF_comp_d.m","rxF_c_d",&lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0[0][symbol*frame_parms->N_RB_DL*12],frame_parms->N_RB_DL*12,1,1);
328
329
330
331
332
333
334
#endif
      
    if ((dual_stream_flag==1) && 
	(eNB_id_i<phy_vars_ue->n_connected_eNB)) {
      // get MF output for interfering stream
      dlsch_channel_compensation(lte_ue_pdsch_vars[eNB_id_i]->rxdataF_ext,
				 lte_ue_pdsch_vars[eNB_id_i]->dl_ch_estimates_ext,
335
336
337
				 lte_ue_pdsch_vars[eNB_id_i]->dl_ch_mag0,
				 lte_ue_pdsch_vars[eNB_id_i]->dl_ch_magb0,
				 lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
338
339
340
341
342
343
344
345
346
347
				 (aatx>1) ? lte_ue_pdsch_vars[eNB_id_i]->rho : NULL,
				 frame_parms,
				 symbol,
				 first_symbol_flag,
				 i_mod,
				 nb_rb,
				 lte_ue_pdsch_vars[eNB_id]->log2_maxh,
				 phy_measurements); // log2_maxh+I0_shift
#ifdef DEBUG_PHY
      if (symbol == 5) {
348
349
	write_output("rxF_comp_d.m","rxF_c_d",&lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0[0][symbol*frame_parms->N_RB_DL*12],frame_parms->N_RB_DL*12,1,1);
	write_output("rxF_comp_i.m","rxF_c_i",&lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0[0][symbol*frame_parms->N_RB_DL*12],frame_parms->N_RB_DL*12,1,1);     
350
351
352
353
354
355
356
357
358
359
360
361
362
      }
#endif 
	
      // compute correlation between signal and interference channels
      dlsch_dual_stream_correlation(frame_parms,
				    symbol,
				    nb_rb,
				    lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext,
				    lte_ue_pdsch_vars[eNB_id_i]->dl_ch_estimates_ext,
				    lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
				    lte_ue_pdsch_vars[eNB_id]->log2_maxh);
    }
  }
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
  else if (dlsch0_harq->mimo_mode == LARGE_CDD) {  // TM3
    //   LOG_I(PHY,"Running PDSCH RX for TM3\n");
    if (frame_parms->nb_antennas_tx_eNB == 2) {
      if (first_symbol_flag==1) {
	// effective channel of desired user is always stronger than interfering eff. channel
	dlsch_channel_level_TM3(lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext, 
				frame_parms, 
				avg, symbol, nb_rb);
	
	//	msg("llr_offset = %d\n",offset_mumimo_llr_drange[dlsch0_harq->mcs][(dlsch1_harq->mcs>>1)-1]);
	avg[0] = log2_approx(avg[0]) - 13 + offset_mumimo_llr_drange[dlsch0_harq->mcs][(get_Qm(dlsch1_harq->mcs)>>1)-1];

	lte_ue_pdsch_vars[eNB_id]->log2_maxh = cmax(avg[0],0);
	//	printf("log2_maxh =%d\n",lte_ue_pdsch_vars[eNB_id]->log2_maxh);
      }    
      dlsch_channel_compensation_TM3(frame_parms, 
				     lte_ue_pdsch_vars[eNB_id],
				     phy_measurements, 
				     eNB_id, 
				     symbol, 
				     get_Qm(dlsch0_harq->mcs), 
knopp's avatar
knopp committed
384
385
				     get_Qm(dlsch1_harq->mcs),
				     dlsch0_harq->round,
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
				     nb_rb, 
				     lte_ue_pdsch_vars[eNB_id]->log2_maxh); 
      // compute correlation between signal and interference channels
      dlsch_dual_stream_correlation(frame_parms,
				    symbol,
				    nb_rb,
				    lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext,
				    NULL,
				    lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
				    lte_ue_pdsch_vars[eNB_id]->log2_maxh);
      //printf("TM3 log2_maxh : %d\n",lte_ue_pdsch_vars[eNB_id]->log2_maxh);

    }
    else {

    }
  }
  else if (dlsch0_harq->mimo_mode<DUALSTREAM_UNIFORM_PRECODING1) {// single-layer precoding, TM4 (Single-codeword)/5 (single or 2 user)/6
404
405
    //    printf("Channel compensation for precoding\n");
    //    if ((dual_stream_flag==1) && (eNB_id_i==NUMBER_OF_CONNECTED_eNB_MAX)) {
406
    if ((dual_stream_flag==1) && (eNB_id_i==phy_vars_ue->n_connected_eNB)) {  // TM5 two-user
407
408
409

      // Scale the channel estimates for interfering stream

410
      dlsch_scale_channel(lte_ue_pdsch_vars[eNB_id_i]->dl_ch_estimates_ext,
411
412
413
			  frame_parms,
			  dlsch_ue,
			  symbol,
414
			  nb_rb);     
415
416
417
418

      /* compute new log2_maxh for effective channel */
      if (first_symbol_flag==1) {
	// effective channel of desired user is always stronger than interfering eff. channel
419
	dlsch_channel_level_TM56(lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext, frame_parms, lte_ue_pdsch_vars[eNB_id]->pmi_ext,	avg, symbol, nb_rb);
420
	
421
422
	//    msg("llr_offset = %d\n",offset_mumimo_llr_drange[dlsch0_harq->mcs][(i_mod>>1)-1]);
	avg[0] = log2_approx(avg[0]) - 13 + offset_mumimo_llr_drange[dlsch0_harq->mcs][(i_mod>>1)-1];
423
424
425
426
427

	lte_ue_pdsch_vars[eNB_id]->log2_maxh = cmax(avg[0],0);
	//printf("log1_maxh =%d\n",lte_ue_pdsch_vars[eNB_id]->log2_maxh);
      }      

428
429
430
431
432
433
434
435
436
437
438
439
440
441
      dlsch_channel_compensation_TM56(lte_ue_pdsch_vars[eNB_id]->rxdataF_ext, 
				      lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext, 
				      lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0, 
				      lte_ue_pdsch_vars[eNB_id]->dl_ch_magb0, 
				      lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0, 
				      lte_ue_pdsch_vars[eNB_id]->pmi_ext, 
				      frame_parms, 
				      phy_measurements, 
				      eNB_id, 
				      symbol, 
				      get_Qm(dlsch0_harq->mcs), 
				      nb_rb, 
				      lte_ue_pdsch_vars[eNB_id]->log2_maxh, 
				      dlsch0_harq->dl_power_off);
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

      // if interference source is MU interference, assume opposite precoder was used at eNB

      // calculate opposite PMI
      for (rb=0;rb<nb_rb;rb++) {
	switch(lte_ue_pdsch_vars[eNB_id]->pmi_ext[rb]) {
	case 0:
	  lte_ue_pdsch_vars[eNB_id_i]->pmi_ext[rb]=1;
	  break;
	case 1:
	  lte_ue_pdsch_vars[eNB_id_i]->pmi_ext[rb]=0;
	  break;
	case 2:
	  lte_ue_pdsch_vars[eNB_id_i]->pmi_ext[rb]=3;
	  break;
	case 3:
	  lte_ue_pdsch_vars[eNB_id_i]->pmi_ext[rb]=2;
	  break;
	}
	//	if (rb==0)
	//	  printf("pmi %d, pmi_i %d\n",lte_ue_pdsch_vars[eNB_id]->pmi_ext[rb],lte_ue_pdsch_vars[eNB_id_i]->pmi_ext[rb]);
	
      }

466
467
468
469
470
471
472
473
474
475
476
477
478
479
      dlsch_channel_compensation_TM56(lte_ue_pdsch_vars[eNB_id_i]->rxdataF_ext, 
				      lte_ue_pdsch_vars[eNB_id_i]->dl_ch_estimates_ext, 
				      lte_ue_pdsch_vars[eNB_id_i]->dl_ch_mag0, 
				      lte_ue_pdsch_vars[eNB_id_i]->dl_ch_magb0, 
				      lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0, 
				      lte_ue_pdsch_vars[eNB_id_i]->pmi_ext, 
				      frame_parms, 
				      phy_measurements, 
				      eNB_id_i, 
				      symbol, 
				      i_mod, 
				      nb_rb, 
				      lte_ue_pdsch_vars[eNB_id]->log2_maxh, 
				      dlsch0_harq->dl_power_off);
480
481
482
        
#ifdef DEBUG_PHY
      if (symbol==5) {
483
484
	write_output("rxF_comp_d.m","rxF_c_d",&lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0[0][symbol*frame_parms->N_RB_DL*12],frame_parms->N_RB_DL*12,1,1);
	write_output("rxF_comp_i.m","rxF_c_i",&lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0[0][symbol*frame_parms->N_RB_DL*12],frame_parms->N_RB_DL*12,1,1);    
485
486
487
488
489
490
491
      }
#endif  

      dlsch_dual_stream_correlation(frame_parms, symbol, nb_rb, lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext, lte_ue_pdsch_vars[eNB_id_i]->dl_ch_estimates_ext, lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext, lte_ue_pdsch_vars[eNB_id]->log2_maxh);

    }
    else {
492
      dlsch_channel_compensation_TM56(lte_ue_pdsch_vars[eNB_id]->rxdataF_ext,
493
				      lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext,
494
495
496
				      lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
				      lte_ue_pdsch_vars[eNB_id]->dl_ch_magb0,
				      lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
497
498
499
500
501
				      lte_ue_pdsch_vars[eNB_id]->pmi_ext,
				      frame_parms,
				      phy_measurements,
				      eNB_id,
				      symbol,
502
				      get_Qm(dlsch0_harq->mcs),
503
504
505
506
507
508
509
				      nb_rb,
				      lte_ue_pdsch_vars[eNB_id]->log2_maxh,
				      1);
    }
  }

  //  printf("MRC\n");
510
511
512
513
514
  if (frame_parms->nb_antennas_rx > 1) {
    if (dlsch0_harq->mimo_mode == LARGE_CDD) {
      if (frame_parms->nb_antennas_tx_eNB == 2) {
	dlsch_detection_mrc(frame_parms,
			    lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
knopp's avatar
knopp committed
515
			    lte_ue_pdsch_vars[eNB_id]->rxdataF_comp1[dlsch0_harq->round],
516
517
518
519
520
521
522
523
524
525
526
527
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			    lte_ue_pdsch_vars[eNB_id]->rho,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_magb0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_mag1,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_magb1,
			    symbol,
			    nb_rb,
			    dual_stream_flag); 			    
      }
    }
    else {
528
      
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
      dlsch_detection_mrc(frame_parms,
			  lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
			  lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
			  lte_ue_pdsch_vars[eNB_id]->rho,
			  lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			  lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
			  lte_ue_pdsch_vars[eNB_id]->dl_ch_magb0,
			  lte_ue_pdsch_vars[eNB_id_i]->dl_ch_mag0,
			  lte_ue_pdsch_vars[eNB_id_i]->dl_ch_magb0,
			  symbol,
			  nb_rb,
			  dual_stream_flag); 
    }
  }
  //  printf("Combining");
  if ((dlsch0_harq->mimo_mode == SISO) ||
      ((dlsch0_harq->mimo_mode >= UNIFORM_PRECODING11) &&
       (dlsch0_harq->mimo_mode <= PUSCH_PRECODING0))) {

    /*
      dlsch_siso(frame_parms,
      lte_ue_pdsch_vars[eNB_id]->rxdataF_comp,
      lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp,
      symbol,
      nb_rb);
    */
  } else if (dlsch0_harq->mimo_mode == ALAMOUTI) {

    dlsch_alamouti(frame_parms,
		   lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
		   lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
		   lte_ue_pdsch_vars[eNB_id]->dl_ch_magb0,
		   symbol,
		   nb_rb);
563
          
564
  } 
565
          
566
567
568
569
570
571
572
  else if (dlsch0_harq->mimo_mode == LARGE_CDD) {
	
  }
  else {
    msg("dlsch_rx: Unknown MIMO mode\n");
    return (-1);
  }
573

574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
  //    printf("LLR");

  switch (get_Qm(dlsch0_harq->mcs)) {
  case 2 : 
    if (dlsch0_harq->mimo_mode != LARGE_CDD) { 
      if (dual_stream_flag == 0)
	dlsch_qpsk_llr(frame_parms,
		       lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
		       lte_ue_pdsch_vars[eNB_id]->llr[0],
		       symbol,first_symbol_flag,nb_rb,
		       adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
		       lte_ue_pdsch_vars[eNB_id]->llr128);
      else if (i_mod == 2) {
	dlsch_qpsk_qpsk_llr(frame_parms,
			    lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
			    lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			    lte_ue_pdsch_vars[eNB_id]->llr[0],
			    symbol,first_symbol_flag,nb_rb,
			    adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			    lte_ue_pdsch_vars[eNB_id]->llr128);
595
      }
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
      else if (i_mod == 4) { 
	dlsch_qpsk_16qam_llr(frame_parms,
			     lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
			     lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
			     lte_ue_pdsch_vars[eNB_id_i]->dl_ch_mag0,
			     lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			     lte_ue_pdsch_vars[eNB_id]->llr[0],
			     symbol,first_symbol_flag,nb_rb,
			     adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			     lte_ue_pdsch_vars[eNB_id]->llr128);
      }
      else {
	dlsch_qpsk_64qam_llr(frame_parms,
			     lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
			     lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
			     lte_ue_pdsch_vars[eNB_id_i]->dl_ch_mag0,
			     lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			     lte_ue_pdsch_vars[eNB_id]->llr[0],
			     symbol,first_symbol_flag,nb_rb,
			     adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			     lte_ue_pdsch_vars[eNB_id]->llr128);
	    
      }          
    }
    else { // TM3
621
      DevAssert(dlsch1_harq);
622
623
624
625
626
627
628
629
630
631
      if (get_Qm(dlsch1_harq->mcs) == 2) {
	/*	dlsch_qpsk_llr(frame_parms,
		       lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
		       lte_ue_pdsch_vars[eNB_id]->llr[0],
		       symbol,first_symbol_flag,nb_rb,
		       adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
		       lte_ue_pdsch_vars[eNB_id]->llr128);
	*/
	dlsch_qpsk_qpsk_llr(frame_parms,
			    lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
knopp's avatar
knopp committed
632
			    lte_ue_pdsch_vars[eNB_id]->rxdataF_comp1[dlsch0_harq->round],
633
634
635
636
637
638
639
640
641
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			    lte_ue_pdsch_vars[eNB_id]->llr[0],
			    symbol,first_symbol_flag,nb_rb,
			    adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			    lte_ue_pdsch_vars[eNB_id]->llr128);
      }
      else if (get_Qm(dlsch1_harq->mcs) == 4) { 
	dlsch_qpsk_16qam_llr(frame_parms,
			     lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
knopp's avatar
knopp committed
642
			     lte_ue_pdsch_vars[eNB_id]->rxdataF_comp1[dlsch0_harq->round],
643
644
645
646
647
648
649
650
651
652
			     lte_ue_pdsch_vars[eNB_id]->dl_ch_mag1,
			     lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			     lte_ue_pdsch_vars[eNB_id]->llr[0],
			     symbol,first_symbol_flag,nb_rb,
			     adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			     lte_ue_pdsch_vars[eNB_id]->llr128);
      }
      else {
	dlsch_qpsk_64qam_llr(frame_parms,
			     lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
knopp's avatar
knopp committed
653
			     lte_ue_pdsch_vars[eNB_id]->rxdataF_comp1[dlsch0_harq->round],
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
			     lte_ue_pdsch_vars[eNB_id]->dl_ch_mag1,
			     lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			     lte_ue_pdsch_vars[eNB_id]->llr[0],
			     symbol,first_symbol_flag,nb_rb,
			     adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			     lte_ue_pdsch_vars[eNB_id]->llr128);
	
      }          
    }
    break;
  case 4 :
    if (dual_stream_flag == 0) {
      dlsch_16qam_llr(frame_parms,
		      lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
		      lte_ue_pdsch_vars[eNB_id]->llr[0],
		      lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
		      symbol,first_symbol_flag,nb_rb,
		      adjust_G2(frame_parms,dlsch0_harq->rb_alloc,4,subframe,symbol),
		      lte_ue_pdsch_vars[eNB_id]->llr128);
    }
    else if (i_mod == 2) {
      dlsch_16qam_qpsk_llr(frame_parms,
			   lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
			   lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
			   lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
			   lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			   lte_ue_pdsch_vars[eNB_id]->llr[0],
			   symbol,first_symbol_flag,nb_rb,
			   adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			   lte_ue_pdsch_vars[eNB_id]->llr128);
    } 
    else if (i_mod == 4) {
      dlsch_16qam_16qam_llr(frame_parms,
			    lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
			    lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
			    lte_ue_pdsch_vars[eNB_id_i]->dl_ch_mag0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			    lte_ue_pdsch_vars[eNB_id]->llr[0],
			    symbol,first_symbol_flag,nb_rb,
			    adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			    lte_ue_pdsch_vars[eNB_id]->llr128);
    } else {
      dlsch_16qam_64qam_llr(frame_parms,
			    lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
			    lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
			    lte_ue_pdsch_vars[eNB_id_i]->dl_ch_mag0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			    lte_ue_pdsch_vars[eNB_id]->llr[0],
			    symbol,first_symbol_flag,nb_rb,
			    adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			    lte_ue_pdsch_vars[eNB_id]->llr128);
    }
    break;
  case 6 :
    if (dual_stream_flag == 0) {
      dlsch_64qam_llr(frame_parms,
		      lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
		      lte_ue_pdsch_vars[eNB_id]->llr[0],
		      lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
		      lte_ue_pdsch_vars[eNB_id]->dl_ch_magb0,
		      symbol,first_symbol_flag,nb_rb,
		      adjust_G2(frame_parms,dlsch0_harq->rb_alloc,6,subframe,symbol),
		      lte_ue_pdsch_vars[eNB_id]->llr128);
    }
    else if (i_mod == 2) {              
      dlsch_64qam_qpsk_llr(frame_parms,
			   lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
			   lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
			   lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
			   lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			   lte_ue_pdsch_vars[eNB_id]->llr[0],
			   symbol,first_symbol_flag,nb_rb,
			   adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			   lte_ue_pdsch_vars[eNB_id]->llr128);
    }
    else if (i_mod == 4) {
      dlsch_64qam_16qam_llr(frame_parms,
			    lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
			    lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
			    lte_ue_pdsch_vars[eNB_id_i]->dl_ch_mag0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			    lte_ue_pdsch_vars[eNB_id]->llr[0],
			    symbol,first_symbol_flag,nb_rb,
			    adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			    lte_ue_pdsch_vars[eNB_id]->llr128);
	
    }
    else {	  
      dlsch_64qam_64qam_llr(frame_parms,
			    lte_ue_pdsch_vars[eNB_id]->rxdataF_comp0,
			    lte_ue_pdsch_vars[eNB_id_i]->rxdataF_comp0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_mag0,
			    lte_ue_pdsch_vars[eNB_id_i]->dl_ch_mag0,
			    lte_ue_pdsch_vars[eNB_id]->dl_ch_rho_ext,
			    lte_ue_pdsch_vars[eNB_id]->llr[0],
			    symbol,first_symbol_flag,nb_rb,
			    adjust_G2(frame_parms,dlsch0_harq->rb_alloc,2,subframe,symbol),
			    lte_ue_pdsch_vars[eNB_id]->llr128);
    }
    break;
  default:
    msg("rx_dlsch.c : Unknown mod_order!!!!\n");
759
    return(-1);
760
    break;
761
  }
762

763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
  return(0);    
}

//==============================================================================================
// Pre-processing for LLR computation
//==============================================================================================

void dlsch_channel_compensation(int **rxdataF_ext,
                                int **dl_ch_estimates_ext,
                                int **dl_ch_mag,
                                int **dl_ch_magb,
                                int **rxdataF_comp,
                                int **rho,
                                LTE_DL_FRAME_PARMS *frame_parms,
                                unsigned char symbol,
gauthier's avatar
gauthier committed
778
                                uint8_t first_symbol_flag,
779
780
781
782
783
784
785
786
                                unsigned char mod_order,
                                unsigned short nb_rb,
                                unsigned char output_shift,
                                PHY_MEASUREMENTS *phy_measurements) {

  unsigned short rb;
  unsigned char aatx,aarx,symbol_mod,pilots=0;
  __m128i *dl_ch128,*dl_ch128_2,*dl_ch_mag128,*dl_ch_mag128b,*rxdataF128,*rxdataF_comp128,*rho128;
787
  __m128i mmtmpD0,mmtmpD1,mmtmpD2,mmtmpD3,QAM_amp128,QAM_amp128b;
788
789
790
791
792
793
794
795
796
797
798
799
800
801

  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;

  if ((symbol_mod == 0) || (symbol_mod == (4-frame_parms->Ncp))) {
      
    if (frame_parms->mode1_flag==1) // 10 out of 12 so don't reduce size    
      nb_rb=1+(5*nb_rb/6);
    else  
      pilots=1;    
  }

  for (aatx=0;aatx<frame_parms->nb_antennas_tx_eNB;aatx++) {
    if (mod_order == 4) {
      QAM_amp128 = _mm_set1_epi16(QAM16_n1);  // 2/sqrt(10)
802
      QAM_amp128b = _mm_setzero_si128();
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
    }    
    else if (mod_order == 6) {
      QAM_amp128  = _mm_set1_epi16(QAM64_n1); // 
      QAM_amp128b = _mm_set1_epi16(QAM64_n2);
    }
    
    //    printf("comp: rxdataF_comp %p, symbol %d\n",rxdataF_comp[0],symbol);

    for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {

      dl_ch128          = (__m128i *)&dl_ch_estimates_ext[(aatx<<1)+aarx][symbol*frame_parms->N_RB_DL*12];
      dl_ch_mag128      = (__m128i *)&dl_ch_mag[(aatx<<1)+aarx][symbol*frame_parms->N_RB_DL*12];
      dl_ch_mag128b     = (__m128i *)&dl_ch_magb[(aatx<<1)+aarx][symbol*frame_parms->N_RB_DL*12];
      rxdataF128        = (__m128i *)&rxdataF_ext[aarx][symbol*frame_parms->N_RB_DL*12];
      rxdataF_comp128   = (__m128i *)&rxdataF_comp[(aatx<<1)+aarx][symbol*frame_parms->N_RB_DL*12];


      for (rb=0;rb<nb_rb;rb++) {
	if (mod_order>2) {  
	  // get channel amplitude if not QPSK
                
	  mmtmpD0 = _mm_madd_epi16(dl_ch128[0],dl_ch128[0]);
	  mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
                
	  mmtmpD1 = _mm_madd_epi16(dl_ch128[1],dl_ch128[1]);
	  mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
                
	  mmtmpD0 = _mm_packs_epi32(mmtmpD0,mmtmpD1);
                
	  // store channel magnitude here in a new field of dlsch
                
	  dl_ch_mag128[0] = _mm_unpacklo_epi16(mmtmpD0,mmtmpD0);
	  dl_ch_mag128b[0] = dl_ch_mag128[0];
	  dl_ch_mag128[0] = _mm_mulhi_epi16(dl_ch_mag128[0],QAM_amp128);
	  dl_ch_mag128[0] = _mm_slli_epi16(dl_ch_mag128[0],1);
                
	  dl_ch_mag128[1] = _mm_unpackhi_epi16(mmtmpD0,mmtmpD0);
	  dl_ch_mag128b[1] = dl_ch_mag128[1];
	  dl_ch_mag128[1] = _mm_mulhi_epi16(dl_ch_mag128[1],QAM_amp128);
	  dl_ch_mag128[1] = _mm_slli_epi16(dl_ch_mag128[1],1);
                
	  if (pilots==0) {
	    mmtmpD0 = _mm_madd_epi16(dl_ch128[2],dl_ch128[2]);
	    mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
	    mmtmpD1 = _mm_packs_epi32(mmtmpD0,mmtmpD0);
                    
	    dl_ch_mag128[2] = _mm_unpacklo_epi16(mmtmpD1,mmtmpD1);
	    dl_ch_mag128b[2] = dl_ch_mag128[2];
                    
	    dl_ch_mag128[2] = _mm_mulhi_epi16(dl_ch_mag128[2],QAM_amp128);
	    dl_ch_mag128[2] = _mm_slli_epi16(dl_ch_mag128[2],1);	  
	  }
                
	  dl_ch_mag128b[0] = _mm_mulhi_epi16(dl_ch_mag128b[0],QAM_amp128b);
	  dl_ch_mag128b[0] = _mm_slli_epi16(dl_ch_mag128b[0],1);
                
                
	  dl_ch_mag128b[1] = _mm_mulhi_epi16(dl_ch_mag128b[1],QAM_amp128b);
	  dl_ch_mag128b[1] = _mm_slli_epi16(dl_ch_mag128b[1],1);
                
	  if (pilots==0) {
	    dl_ch_mag128b[2] = _mm_mulhi_epi16(dl_ch_mag128b[2],QAM_amp128b);
	    dl_ch_mag128b[2] = _mm_slli_epi16(dl_ch_mag128b[2],1);	  
	  }
	}
	
	// multiply by conjugated channel
	mmtmpD0 = _mm_madd_epi16(dl_ch128[0],rxdataF128[0]);
	//	print_ints("re",&mmtmpD0);
            
	// mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
	mmtmpD1 = _mm_shufflelo_epi16(dl_ch128[0],_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)&conjugate[0]);
	//	print_ints("im",&mmtmpD1);
	mmtmpD1 = _mm_madd_epi16(mmtmpD1,rxdataF128[0]);
	// mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
	mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
	//	print_ints("re(shift)",&mmtmpD0);
	mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
	//	print_ints("im(shift)",&mmtmpD1);
	mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
	mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
	//       	print_ints("c0",&mmtmpD2);
	//	print_ints("c1",&mmtmpD3);
	rxdataF_comp128[0] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
	//	print_shorts("rx:",rxdataF128);
	//	print_shorts("ch:",dl_ch128);
	//	print_shorts("pack:",rxdataF_comp128);
            
	// multiply by conjugated channel
	mmtmpD0 = _mm_madd_epi16(dl_ch128[1],rxdataF128[1]);
	// mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
	mmtmpD1 = _mm_shufflelo_epi16(dl_ch128[1],_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)conjugate);
	mmtmpD1 = _mm_madd_epi16(mmtmpD1,rxdataF128[1]);
	// mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
	mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
	mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
	mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
	mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
            
	rxdataF_comp128[1] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
	//	print_shorts("rx:",rxdataF128+1);
	//	print_shorts("ch:",dl_ch128+1);
	//	print_shorts("pack:",rxdataF_comp128+1);	
            
	if (pilots==0) {
	  // multiply by conjugated channel
	  mmtmpD0 = _mm_madd_epi16(dl_ch128[2],rxdataF128[2]);
	  // mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
	  mmtmpD1 = _mm_shufflelo_epi16(dl_ch128[2],_MM_SHUFFLE(2,3,0,1));
	  mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
	  mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)conjugate);
	  mmtmpD1 = _mm_madd_epi16(mmtmpD1,rxdataF128[2]);
	  // mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
	  mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
	  mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
	  mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
	  mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
                
	  rxdataF_comp128[2] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
	  //	print_shorts("rx:",rxdataF128+2);
	  //	print_shorts("ch:",dl_ch128+2);
	  //      	print_shorts("pack:",rxdataF_comp128+2);
                
	  dl_ch128+=3;
	  dl_ch_mag128+=3;
	  dl_ch_mag128b+=3;
	  rxdataF128+=3;
	  rxdataF_comp128+=3;
	}
	else { // we have a smaller PDSCH in symbols with pilots so skip last group of 4 REs and increment less
	  dl_ch128+=2;
	  dl_ch_mag128+=2;
	  dl_ch_mag128b+=2;
	  rxdataF128+=2;
	  rxdataF_comp128+=2;
	}
            
      }
    }
  }
  
  if (rho) {
      
      
    for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
      rho128        = (__m128i *)&rho[aarx][symbol*frame_parms->N_RB_DL*12];
      dl_ch128      = (__m128i *)&dl_ch_estimates_ext[aarx][symbol*frame_parms->N_RB_DL*12];
      dl_ch128_2    = (__m128i *)&dl_ch_estimates_ext[2+aarx][symbol*frame_parms->N_RB_DL*12];
          
      for (rb=0;rb<nb_rb;rb++) {
	// multiply by conjugated channel
	mmtmpD0 = _mm_madd_epi16(dl_ch128[0],dl_ch128_2[0]);
	//	print_ints("re",&mmtmpD0);
              
	// mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
	mmtmpD1 = _mm_shufflelo_epi16(dl_ch128[0],_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)&conjugate[0]);
	//	print_ints("im",&mmtmpD1);
	mmtmpD1 = _mm_madd_epi16(mmtmpD1,dl_ch128_2[0]);
	// mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
	mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
	//	print_ints("re(shift)",&mmtmpD0);
	mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
	//	print_ints("im(shift)",&mmtmpD1);
	mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
	mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
	//       	print_ints("c0",&mmtmpD2);
	//	print_ints("c1",&mmtmpD3);
	rho128[0] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
              
	//print_shorts("rx:",dl_ch128_2);
	//print_shorts("ch:",dl_ch128);
	//print_shorts("pack:",rho128);
              
	// multiply by conjugated channel
	mmtmpD0 = _mm_madd_epi16(dl_ch128[1],dl_ch128_2[1]);
	// mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
	mmtmpD1 = _mm_shufflelo_epi16(dl_ch128[1],_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)conjugate);
	mmtmpD1 = _mm_madd_epi16(mmtmpD1,dl_ch128_2[1]);
	// mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
	mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
	mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
	mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
	mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);

	
	rho128[1] =_mm_packs_epi32(mmtmpD2,mmtmpD3);
	//print_shorts("rx:",dl_ch128_2+1);
	//print_shorts("ch:",dl_ch128+1);
	//print_shorts("pack:",rho128+1);	
	// multiply by conjugated channel
	mmtmpD0 = _mm_madd_epi16(dl_ch128[2],dl_ch128_2[2]);
	// mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
	mmtmpD1 = _mm_shufflelo_epi16(dl_ch128[2],_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)conjugate);
	mmtmpD1 = _mm_madd_epi16(mmtmpD1,dl_ch128_2[2]);
	// mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
	mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
	mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
	mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
	mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
              
	rho128[2] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
	//print_shorts("rx:",dl_ch128_2+2);
	//print_shorts("ch:",dl_ch128+2);
	//print_shorts("pack:",rho128+2);
              
	dl_ch128+=3;
	dl_ch128_2+=3;
	rho128+=3;
              
      }	
          
      if (first_symbol_flag==1) {
	phy_measurements->rx_correlation[0][aarx] = signal_energy(&rho[aarx][symbol*frame_parms->N_RB_DL*12],rb*12);
      }           
    }      
  }

  _mm_empty();
  _m_empty();
}     

1034
void prec2A_TM56_128(unsigned char pmi,__m128i *ch0,__m128i *ch1) {
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
  
  __m128i amp;
  amp = _mm_set1_epi16(ONE_OVER_SQRT2_Q15);

  switch (pmi) {
        
  case 0 :   // +1 +1
    //    print_shorts("phase 0 :ch0",ch0);
    //    print_shorts("phase 0 :ch1",ch1);
    ch0[0] = _mm_adds_epi16(ch0[0],ch1[0]);   
    break;
  case 1 :   // +1 -1
    //    print_shorts("phase 1 :ch0",ch0);
    //    print_shorts("phase 1 :ch1",ch1);
    ch0[0] = _mm_subs_epi16(ch0[0],ch1[0]);
    //    print_shorts("phase 1 :ch0-ch1",ch0);
    break;
  case 2 :   // +1 +j
    ch1[0] = _mm_sign_epi16(ch1[0],*(__m128i*)&conjugate[0]);
    ch1[0] = _mm_shufflelo_epi16(ch1[0],_MM_SHUFFLE(2,3,0,1));
    ch1[0] = _mm_shufflehi_epi16(ch1[0],_MM_SHUFFLE(2,3,0,1));
    ch0[0] = _mm_subs_epi16(ch0[0],ch1[0]);
        
    break;   // +1 -j
  case 3 :
    ch1[0] = _mm_sign_epi16(ch1[0],*(__m128i*)&conjugate[0]);
    ch1[0] = _mm_shufflelo_epi16(ch1[0],_MM_SHUFFLE(2,3,0,1));
    ch1[0] = _mm_shufflehi_epi16(ch1[0],_MM_SHUFFLE(2,3,0,1));
    ch0[0] = _mm_adds_epi16(ch0[0],ch1[0]);
    break;
  }

  ch0[0] = _mm_mulhi_epi16(ch0[0],amp);
  ch0[0] = _mm_slli_epi16(ch0[0],1);
    
  _mm_empty();
  _m_empty();
}

1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
// precoding is stream 0 .5(1,1)  .5(1,-1) .5(1,1)  .5(1,-1)
//              stream 1 .5(1,-1) .5(1,1)  .5(1,-1) .5(1,1)
// store "precoded" channel for stream 0 in ch0, stream 1 in ch1

short TM3_prec[8]__attribute__((aligned(16))) = {1,1,-1,-1,1,1,-1,-1} ;

void prec2A_TM3_128(__m128i *ch0,__m128i *ch1) {
  
  //  __m128i amp = _mm_set1_epi16(ONE_OVER_SQRT2_Q15);
  
  __m128i tmp0,tmp1;
  

  //  print_shorts("prec2A_TM3 ch0 (before):",ch0);
  //  print_shorts("prec2A_TM3 ch1 (before):",ch1);

  tmp0 = ch0[0];
  tmp1  = _mm_sign_epi16(ch1[0],((__m128i*)&TM3_prec)[0]);
  //  print_shorts("prec2A_TM3 ch1*s (mid):",(__m128i*)TM3_prec);

  ch0[0] = _mm_adds_epi16(ch0[0],tmp1);
  ch1[0] = _mm_subs_epi16(tmp0,tmp1);


  //  print_shorts("prec2A_TM3 ch0 (mid):",&tmp0);
  //  print_shorts("prec2A_TM3 ch1 (mid):",ch1);


  ch0[0] = _mm_srai_epi16(ch0[0],1);
  ch1[0] = _mm_srai_epi16(ch1[0],1);

  //  print_shorts("prec2A_TM3 ch0 (after):",ch0);
  //  print_shorts("prec2A_TM3 ch1 (after):",ch1);
    
  _mm_empty();
  _m_empty();
}

// pmi = 0 => stream 0 (1,1), stream 1 (1,-1)
// pmi = 1 => stream 0 (1,j), stream 2 (1,-j)

void prec2A_TM4_128(int pmi,__m128i *ch0,__m128i *ch1) {
  
  __m128i amp;
  amp = _mm_set1_epi16(ONE_OVER_SQRT2_Q15);
  __m128i tmp1;
  
  if (pmi == 0) {
    ch0[0] = _mm_adds_epi16(ch0[0],ch1[0]);
    ch1[0] = _mm_subs_epi16(ch0[0],ch1[0]);
  }
  else {
    tmp1   = _mm_sign_epi16(ch1[0],*(__m128i*)&conjugate[0]);
    tmp1   = _mm_shufflelo_epi16(tmp1,_MM_SHUFFLE(2,3,0,1));
    tmp1   = _mm_shufflehi_epi16(tmp1,_MM_SHUFFLE(2,3,0,1));
    ch0[0] = _mm_subs_epi16(ch0[0],tmp1);
    ch1[0] = _mm_subs_epi16(ch0[0],tmp1);
  }
  ch0[0] = _mm_mulhi_epi16(ch0[0],amp);
  ch0[0] = _mm_slli_epi16(ch0[0],1);
  ch1[0] = _mm_mulhi_epi16(ch1[0],amp);
  ch1[0] = _mm_slli_epi16(ch1[0],1);

}

void dlsch_channel_compensation_TM56(int **rxdataF_ext,
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
                                     int **dl_ch_estimates_ext,
                                     int **dl_ch_mag,
                                     int **dl_ch_magb,
                                     int **rxdataF_comp,
                                     unsigned char *pmi_ext,
                                     LTE_DL_FRAME_PARMS *frame_parms,
                                     PHY_MEASUREMENTS *phy_measurements,
                                     int eNB_id,
                                     unsigned char symbol,
                                     unsigned char mod_order,
                                     unsigned short nb_rb,
                                     unsigned char output_shift,
                                     unsigned char dl_power_off) {
  
  unsigned short rb,Nre;
1155
  __m128i *dl_ch0_128,*dl_ch1_128,*dl_ch_mag128,*dl_ch_mag128b,*rxdataF128,*rxdataF_comp128;
1156
1157
  unsigned char aarx=0,symbol_mod,pilots=0;
  int precoded_signal_strength=0,rx_power_correction;
1158
  __m128i mmtmpD0,mmtmpD1,mmtmpD2,mmtmpD3,QAM_amp128,QAM_amp128b;
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
    
  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;
    
  if ((symbol_mod == 0) || (symbol_mod == (4-frame_parms->Ncp)))
    pilots=1;

  rx_power_correction = 1;
    
  //printf("comp prec: symbol %d, pilots %d\n",symbol, pilots);

  if (mod_order == 4) {
    QAM_amp128 = _mm_set1_epi16(QAM16_n1);
1171
    QAM_amp128b = _mm_setzero_si128();
1172
1173
1174
1175
1176
1177
1178
1179
  }
  else if (mod_order == 6) {
    QAM_amp128  = _mm_set1_epi16(QAM64_n1);
    QAM_amp128b = _mm_set1_epi16(QAM64_n2);
  }
    
  for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
        
1180
1181
    dl_ch0_128          = (__m128i *)&dl_ch_estimates_ext[aarx][symbol*frame_parms->N_RB_DL*12];
    dl_ch1_128          = (__m128i *)&dl_ch_estimates_ext[2+aarx][symbol*frame_parms->N_RB_DL*12];
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
        
        
    dl_ch_mag128      = (__m128i *)&dl_ch_mag[aarx][symbol*frame_parms->N_RB_DL*12];
    dl_ch_mag128b     = (__m128i *)&dl_ch_magb[aarx][symbol*frame_parms->N_RB_DL*12];
    rxdataF128        = (__m128i *)&rxdataF_ext[aarx][symbol*frame_parms->N_RB_DL*12];
    rxdataF_comp128   = (__m128i *)&rxdataF_comp[aarx][symbol*frame_parms->N_RB_DL*12];
        

    for (rb=0;rb<nb_rb;rb++) {
      // combine TX channels using precoder from pmi
#ifdef DEBUG_DLSCH_DEMOD
      printf("mode 6 prec: rb %d, pmi->%d\n",rb,pmi_ext[rb]);
#endif            
1195
1196
      prec2A_TM56_128(pmi_ext[rb],&dl_ch0_128[0],&dl_ch1_128[0]);
      prec2A_TM56_128(pmi_ext[rb],&dl_ch0_128[1],&dl_ch1_128[1]);
1197
1198

      if (pilots==0) {
1199
	prec2A_TM56_128(pmi_ext[rb],&dl_ch0_128[2],&dl_ch1_128[2]); 
1200
1201
1202
1203
1204
      }

      if (mod_order>2) {  
	// get channel amplitude if not QPSK
	
1205
	mmtmpD0 = _mm_madd_epi16(dl_ch0_128[0],dl_ch0_128[0]);	
1206
1207
	mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
                
1208
	mmtmpD1 = _mm_madd_epi16(dl_ch0_128[1],dl_ch0_128[1]);
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
	mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
                
	mmtmpD0 = _mm_packs_epi32(mmtmpD0,mmtmpD1);
                
	dl_ch_mag128[0] = _mm_unpacklo_epi16(mmtmpD0,mmtmpD0);
	dl_ch_mag128b[0] = dl_ch_mag128[0];
	dl_ch_mag128[0] = _mm_mulhi_epi16(dl_ch_mag128[0],QAM_amp128);
	dl_ch_mag128[0] = _mm_slli_epi16(dl_ch_mag128[0],1);
                
	//print_shorts("dl_ch_mag128[0]=",&dl_ch_mag128[0]);
                
	dl_ch_mag128[1] = _mm_unpackhi_epi16(mmtmpD0,mmtmpD0);
	dl_ch_mag128b[1] = dl_ch_mag128[1];
	dl_ch_mag128[1] = _mm_mulhi_epi16(dl_ch_mag128[1],QAM_amp128);
	dl_ch_mag128[1] = _mm_slli_epi16(dl_ch_mag128[1],1);
                
	if (pilots==0) {
1226
	  mmtmpD0 = _mm_madd_epi16(dl_ch0_128[2],dl_ch0_128[2]);
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
	  mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
                    
	  mmtmpD1 = _mm_packs_epi32(mmtmpD0,mmtmpD0);
                    
	  dl_ch_mag128[2] = _mm_unpacklo_epi16(mmtmpD1,mmtmpD1);
	  dl_ch_mag128b[2] = dl_ch_mag128[2];
                    
	  dl_ch_mag128[2] = _mm_mulhi_epi16(dl_ch_mag128[2],QAM_amp128);
	  dl_ch_mag128[2] = _mm_slli_epi16(dl_ch_mag128[2],1);	  
	}
                
	dl_ch_mag128b[0] = _mm_mulhi_epi16(dl_ch_mag128b[0],QAM_amp128b);
	dl_ch_mag128b[0] = _mm_slli_epi16(dl_ch_mag128b[0],1);
                
	//print_shorts("dl_ch_mag128b[0]=",&dl_ch_mag128b[0]);
                
	dl_ch_mag128b[1] = _mm_mulhi_epi16(dl_ch_mag128b[1],QAM_amp128b);
	dl_ch_mag128b[1] = _mm_slli_epi16(dl_ch_mag128b[1],1);
                
	if (pilots==0) {
	  dl_ch_mag128b[2] = _mm_mulhi_epi16(dl_ch_mag128b[2],QAM_amp128b);
	  dl_ch_mag128b[2] = _mm_slli_epi16(dl_ch_mag128b[2],1);	  
	}
      }

      // MF multiply by conjugated channel
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
      mmtmpD0 = _mm_madd_epi16(dl_ch0_128[0],rxdataF128[0]);
      //	print_ints("re",&mmtmpD0);
            
      // mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
      mmtmpD1 = _mm_shufflelo_epi16(dl_ch0_128[0],_MM_SHUFFLE(2,3,0,1));
      mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
      mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)&conjugate[0]);
      //	print_ints("im",&mmtmpD1);
      mmtmpD1 = _mm_madd_epi16(mmtmpD1,rxdataF128[0]);
      // mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
      //	print_ints("re(shift)",&mmtmpD0);
      mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
      //	print_ints("im(shift)",&mmtmpD1);
      mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
      mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
      //       	print_ints("c0",&mmtmpD2);
      //	print_ints("c1",&mmtmpD3);
      rxdataF_comp128[0] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
      //	print_shorts("rx:",rxdataF128);
      //	print_shorts("ch:",dl_ch128);
      //	print_shorts("pack:",rxdataF_comp128);
            
      // multiply by conjugated channel
      mmtmpD0 = _mm_madd_epi16(dl_ch0_128[1],rxdataF128[1]);
      // mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
      mmtmpD1 = _mm_shufflelo_epi16(dl_ch0_128[1],_MM_SHUFFLE(2,3,0,1));
      mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
      mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)conjugate);
      mmtmpD1 = _mm_madd_epi16(mmtmpD1,rxdataF128[1]);
      // mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
      mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
      mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
      mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
            
      rxdataF_comp128[1] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
      //	print_shorts("rx:",rxdataF128+1);
      //	print_shorts("ch:",dl_ch128+1);
      //	print_shorts("pack:",rxdataF_comp128+1);	
            
      if (pilots==0) {
	// multiply by conjugated channel
	mmtmpD0 = _mm_madd_epi16(dl_ch0_128[2],rxdataF128[2]);
	// mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
	mmtmpD1 = _mm_shufflelo_epi16(dl_ch0_128[2],_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)conjugate);
	mmtmpD1 = _mm_madd_epi16(mmtmpD1,rxdataF128[2]);
	// mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
	mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
	mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
	mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
	mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
                
	rxdataF_comp128[2] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
	//	print_shorts("rx:",rxdataF128+2);
	//	print_shorts("ch:",dl_ch128+2);
	//      	print_shorts("pack:",rxdataF_comp128+2);
                
	dl_ch0_128+=3;
	dl_ch1_128+=3;
	dl_ch_mag128+=3;
	dl_ch_mag128b+=3;
	rxdataF128+=3;
	rxdataF_comp128+=3;
      }
      else {
	dl_ch0_128+=2;
	dl_ch1_128+=2;
	dl_ch_mag128+=2;
	dl_ch_mag128b+=2;
	rxdataF128+=2;
	rxdataF_comp128+=2;
      }
    }
        
    Nre = (pilots==0) ? 12 : 8;
        
    precoded_signal_strength += ((signal_energy_nodc(&dl_ch_estimates_ext[aarx][symbol*frame_parms->N_RB_DL*Nre],
						     (nb_rb*Nre))*rx_power_correction) - (phy_measurements->n0_power[aarx]));
  } // rx_antennas
    
  phy_measurements->precoded_cqi_dB[eNB_id][0] = dB_fixed2(precoded_signal_strength,phy_measurements->n0_power_tot);
	
  //printf("eNB_id %d, symbol %d: precoded CQI %d dB\n",eNB_id,symbol,
  //	 phy_measurements->precoded_cqi_dB[eNB_id][0]);
    
  _mm_empty();
  _m_empty();  
}    

void dlsch_channel_compensation_TM3(LTE_DL_FRAME_PARMS *frame_parms,
				    LTE_UE_PDSCH *lte_ue_pdsch_vars,
				    PHY_MEASUREMENTS *phy_measurements,
				    int eNB_id,
				    unsigned char symbol,
				    unsigned char mod_order0,
				    unsigned char mod_order1,
knopp's avatar
knopp committed
1352
				    int round,
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
				    unsigned short nb_rb,
				    unsigned char output_shift) {
  
  unsigned short rb,Nre;
  __m128i *dl_ch0_128,*dl_ch1_128,*dl_ch_mag0_128,*dl_ch_mag1_128,*dl_ch_mag0_128b,*dl_ch_mag1_128b,*rxdataF128,*rxdataF_comp0_128,*rxdataF_comp1_128;
  unsigned char aarx=0,symbol_mod,pilots=0;
  int precoded_signal_strength0=0,precoded_signal_strength1=0,rx_power_correction;

  int **rxdataF_ext           = lte_ue_pdsch_vars->rxdataF_ext;
  int **dl_ch_estimates_ext   = lte_ue_pdsch_vars->dl_ch_estimates_ext;
  int **dl_ch_mag0            = lte_ue_pdsch_vars->dl_ch_mag0;
  int **dl_ch_mag1            = lte_ue_pdsch_vars->dl_ch_mag1;
  int **dl_ch_magb0           = lte_ue_pdsch_vars->dl_ch_magb0;
  int **dl_ch_magb1           = lte_ue_pdsch_vars->dl_ch_magb1;
  int **rxdataF_comp0         = lte_ue_pdsch_vars->rxdataF_comp0;
knopp's avatar
knopp committed
1368
  int **rxdataF_comp1         = lte_ue_pdsch_vars->rxdataF_comp1[0];
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
  __m128i mmtmpD0,mmtmpD1,mmtmpD2,mmtmpD3,QAM_amp0_128,QAM_amp0_128b,QAM_amp1_128,QAM_amp1_128b;   
    

  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;
    
  if ((symbol_mod == 0) || (symbol_mod == (4-frame_parms->Ncp)))
    pilots=1;

  rx_power_correction = 1;
    
  //printf("comp prec: symbol %d, pilots %d\n",symbol, pilots);

  if (mod_order0 == 4) {
    QAM_amp0_128  = _mm_set1_epi16(QAM16_n1);
1383
    QAM_amp0_128b = _mm_setzero_si128();
1384
1385
1386
1387
1388
1389
1390
  }
  else if (mod_order0 == 6) {
    QAM_amp0_128  = _mm_set1_epi16(QAM64_n1);
    QAM_amp0_128b = _mm_set1_epi16(QAM64_n2);
  }
  if (mod_order1 == 4) {
    QAM_amp1_128  = _mm_set1_epi16(QAM16_n1);
1391
    QAM_amp1_128b = _mm_setzero_si128();
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
  }
  else if (mod_order1 == 6) {
    QAM_amp1_128  = _mm_set1_epi16(QAM64_n1);
    QAM_amp1_128b = _mm_set1_epi16(QAM64_n2);
  }
    
  for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
        
    dl_ch0_128          = (__m128i *)&dl_ch_estimates_ext[aarx][symbol*frame_parms->N_RB_DL*12];
    dl_ch1_128          = (__m128i *)&dl_ch_estimates_ext[2+aarx][symbol*frame_parms->N_RB_DL*12];
        
        
    dl_ch_mag0_128      = (__m128i *)&dl_ch_mag0[aarx][symbol*frame_parms->N_RB_DL*12];
    dl_ch_mag0_128b     = (__m128i *)&dl_ch_magb0[aarx][symbol*frame_parms->N_RB_DL*12];
    dl_ch_mag1_128      = (__m128i *)&dl_ch_mag1[aarx][symbol*frame_parms->N_RB_DL*12];
    dl_ch_mag1_128b     = (__m128i *)&dl_ch_magb1[aarx][symbol*frame_parms->N_RB_DL*12];
    rxdataF128          = (__m128i *)&rxdataF_ext[aarx][symbol*frame_parms->N_RB_DL*12];
    rxdataF_comp0_128   = (__m128i *)&rxdataF_comp0[aarx][symbol*frame_parms->N_RB_DL*12];
    rxdataF_comp1_128   = (__m128i *)&rxdataF_comp1[aarx][symbol*frame_parms->N_RB_DL*12];
        

    for (rb=0;rb<nb_rb;rb++) {
      // combine TX channels using precoder from pmi

      prec2A_TM3_128(&dl_ch0_128[0],&dl_ch1_128[0]);
      prec2A_TM3_128(&dl_ch0_128[1],&dl_ch1_128[1]);

      if (pilots==0) {
	prec2A_TM3_128(&dl_ch0_128[2],&dl_ch1_128[2]); 
      }

      if (mod_order0>2) {  
	// get channel amplitude if not QPSK
	
	mmtmpD0 = _mm_madd_epi16(dl_ch0_128[0],dl_ch0_128[0]);	
	mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
                
	mmtmpD1 = _mm_madd_epi16(dl_ch0_128[1],dl_ch0_128[1]);
	mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
                
	mmtmpD0 = _mm_packs_epi32(mmtmpD0,mmtmpD1);
                
	dl_ch_mag0_128[0] = _mm_unpacklo_epi16(mmtmpD0,mmtmpD0);
	dl_ch_mag0_128b[0] = dl_ch_mag0_128[0];
	dl_ch_mag0_128[0] = _mm_mulhi_epi16(dl_ch_mag0_128[0],QAM_amp0_128);
	dl_ch_mag0_128[0] = _mm_slli_epi16(dl_ch_mag0_128[0],1);
                
	//	print_shorts("dl_ch_mag0_128[0]=",&dl_ch_mag0_128[0]);
                
	dl_ch_mag0_128[1] = _mm_unpackhi_epi16(mmtmpD0,mmtmpD0);
	dl_ch_mag0_128b[1] = dl_ch_mag0_128[1];
	dl_ch_mag0_128[1] = _mm_mulhi_epi16(dl_ch_mag0_128[1],QAM_amp0_128);
	dl_ch_mag0_128[1] = _mm_slli_epi16(dl_ch_mag0_128[1],1);
                
	if (pilots==0) {
	  mmtmpD0 = _mm_madd_epi16(dl_ch0_128[2],dl_ch0_128[2]);
	  mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
                    
	  mmtmpD1 = _mm_packs_epi32(mmtmpD0,mmtmpD0);
                    
	  dl_ch_mag0_128[2] = _mm_unpacklo_epi16(mmtmpD1,mmtmpD1);
	  dl_ch_mag0_128b[2] = dl_ch_mag0_128[2];
                    
	  dl_ch_mag0_128[2] = _mm_mulhi_epi16(dl_ch_mag0_128[2],QAM_amp0_128);
	  dl_ch_mag0_128[2] = _mm_slli_epi16(dl_ch_mag0_128[2],1);	  
	}
                
	dl_ch_mag0_128b[0] = _mm_mulhi_epi16(dl_ch_mag0_128b[0],QAM_amp0_128b);
	dl_ch_mag0_128b[0] = _mm_slli_epi16(dl_ch_mag0_128b[0],1);
                
	//print_shorts("dl_ch_mag128b[0]=",&dl_ch_mag128b[0]);
                
	dl_ch_mag0_128b[1] = _mm_mulhi_epi16(dl_ch_mag0_128b[1],QAM_amp0_128b);
	dl_ch_mag0_128b[1] = _mm_slli_epi16(dl_ch_mag0_128b[1],1);
                
	if (pilots==0) {
	  dl_ch_mag0_128b[2] = _mm_mulhi_epi16(dl_ch_mag0_128b[2],QAM_amp0_128b);
	  dl_ch_mag0_128b[2] = _mm_slli_epi16(dl_ch_mag0_128b[2],1);	  
	}
      }

      if (mod_order1>2) {  
	// get channel amplitude if not QPSK
	
	mmtmpD0 = _mm_madd_epi16(dl_ch1_128[0],dl_ch1_128[0]);	
	mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
                
	mmtmpD1 = _mm_madd_epi16(dl_ch1_128[1],dl_ch1_128[1]);
	mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
                
	mmtmpD0 = _mm_packs_epi32(mmtmpD0,mmtmpD1);
                
	dl_ch_mag1_128[0] = _mm_unpacklo_epi16(mmtmpD0,mmtmpD0);
	dl_ch_mag1_128b[0] = dl_ch_mag1_128[0];
	dl_ch_mag1_128[0] = _mm_mulhi_epi16(dl_ch_mag1_128[0],QAM_amp1_128);
	dl_ch_mag1_128[0] = _mm_slli_epi16(dl_ch_mag1_128[0],1);
                
	//print_shorts("dl_ch_mag128[0]=",&dl_ch_mag128[0]);
                
	dl_ch_mag1_128[1] = _mm_unpackhi_epi16(mmtmpD0,mmtmpD0);
	dl_ch_mag1_128b[1] = dl_ch_mag1_128[1];
	dl_ch_mag1_128[1] = _mm_mulhi_epi16(dl_ch_mag1_128[1],QAM_amp1_128);
	dl_ch_mag1_128[1] = _mm_slli_epi16(dl_ch_mag1_128[1],1);
                
	if (pilots==0) {
	  mmtmpD0 = _mm_madd_epi16(dl_ch1_128[2],dl_ch1_128[2]);
	  mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
                    
	  mmtmpD1 = _mm_packs_epi32(mmtmpD0,mmtmpD0);
                    
	  dl_ch_mag1_128[2] = _mm_unpacklo_epi16(mmtmpD1,mmtmpD1);
	  dl_ch_mag1_128b[2] = dl_ch_mag1_128[2];
                    
	  dl_ch_mag1_128[2] = _mm_mulhi_epi16(dl_ch_mag1_128[2],QAM_amp1_128);
	  dl_ch_mag1_128[2] = _mm_slli_epi16(dl_ch_mag1_128[2],1);	  
	}
                
	dl_ch_mag1_128b[0] = _mm_mulhi_epi16(dl_ch_mag1_128b[0],QAM_amp1_128b);
	dl_ch_mag1_128b[0] = _mm_slli_epi16(dl_ch_mag1_128b[0],1);
                
	//print_shorts("dl_ch_mag128b[0]=",&dl_ch_mag128b[0]);
                
	dl_ch_mag1_128b[1] = _mm_mulhi_epi16(dl_ch_mag1_128b[1],QAM_amp1_128b);
	dl_ch_mag1_128b[1] = _mm_slli_epi16(dl_ch_mag1_128b[1],1);
                
	if (pilots==0) {
	  dl_ch_mag1_128b[2] = _mm_mulhi_epi16(dl_ch_mag1_128b[2],QAM_amp1_128b);
	  dl_ch_mag1_128b[2] = _mm_slli_epi16(dl_ch_mag1_128b[2],1);	  
	}
      }

      // layer 0
      // MF multiply by conjugated channel
      mmtmpD0 = _mm_madd_epi16(dl_ch0_128[0],rxdataF128[0]);
      //print_ints("re",&mmtmpD0);
            
      // mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
      mmtmpD1 = _mm_shufflelo_epi16(dl_ch0_128[0],_MM_SHUFFLE(2,3,0,1));
      mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
      mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)&conjugate[0]);
      mmtmpD1 = _mm_madd_epi16(mmtmpD1,rxdataF128[0]);
      //      print_ints("im",&mmtmpD1);
      // mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
      //      printf("Shift: %d\n",output_shift);
      //      print_ints("re(shift)",&mmtmpD0);
      mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
      //      print_ints("im(shift)",&mmtmpD1);
      mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
      mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
      //      print_ints("c0",&mmtmpD2);
      //      print_ints("c1",&mmtmpD3);
      rxdataF_comp0_128[0] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
      //      print_shorts("rx:",rxdataF128);
      //      print_shorts("ch:",dl_ch0_128);
      //      print_shorts("pack:",rxdataF_comp0_128);
            
      // multiply by conjugated channel
      mmtmpD0 = _mm_madd_epi16(dl_ch0_128[1],rxdataF128[1]);
      // mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
      mmtmpD1 = _mm_shufflelo_epi16(dl_ch0_128[1],_MM_SHUFFLE(2,3,0,1));
      mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
      mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)conjugate);
      mmtmpD1 = _mm_madd_epi16(mmtmpD1,rxdataF128[1]);
      // mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
      mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
      mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
      mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
            
      rxdataF_comp0_128[1] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
      //	print_shorts("rx:",rxdataF128+1);
      //	print_shorts("ch:",dl_ch128+1);
      //	print_shorts("pack:",rxdataF_comp128+1);	
            
      if (pilots==0) {
	// multiply by conjugated channel
	mmtmpD0 = _mm_madd_epi16(dl_ch0_128[2],rxdataF128[2]);
	// mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
	mmtmpD1 = _mm_shufflelo_epi16(dl_ch0_128[2],_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)conjugate);
	mmtmpD1 = _mm_madd_epi16(mmtmpD1,rxdataF128[2]);
	// mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
	mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
	mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
	mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
	mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
                
	rxdataF_comp0_128[2] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
	//	print_shorts("rx:",rxdataF128+2);
	//	print_shorts("ch:",dl_ch128+2);
	//      	print_shorts("pack:",rxdataF_comp128+2);
                
      }
      else {

      }
      
      
      // layer 1
      // MF multiply by conjugated channel
      mmtmpD0 = _mm_madd_epi16(dl_ch1_128[0],rxdataF128[0]);
1595
      //	print_ints("re",&mmtmpD0);
1596
      
1597
      // mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
1598
      mmtmpD1 = _mm_shufflelo_epi16(dl_ch1_128[0],_MM_SHUFFLE(2,3,0,1));
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
      mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
      mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)&conjugate[0]);
      //	print_ints("im",&mmtmpD1);
      mmtmpD1 = _mm_madd_epi16(mmtmpD1,rxdataF128[0]);
      // mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
      //	print_ints("re(shift)",&mmtmpD0);
      mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
      //	print_ints("im(shift)",&mmtmpD1);
      mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
      mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
      //       	print_ints("c0",&mmtmpD2);
      //	print_ints("c1",&mmtmpD3);
1612
      rxdataF_comp1_128[0] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
1613
1614
1615
      //	print_shorts("rx:",rxdataF128);
      //	print_shorts("ch:",dl_ch128);
      //	print_shorts("pack:",rxdataF_comp128);
1616
      
1617
      // multiply by conjugated channel
1618
      mmtmpD0 = _mm_madd_epi16(dl_ch1_128[1],rxdataF128[1]);
1619
      // mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
1620
      mmtmpD1 = _mm_shufflelo_epi16(dl_ch1_128[1],_MM_SHUFFLE(2,3,0,1));
1621
1622
1623
1624
1625
1626
1627
1628
      mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
      mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)conjugate);
      mmtmpD1 = _mm_madd_epi16(mmtmpD1,rxdataF128[1]);
      // mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
      mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
      mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
      mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
1629
1630
      
      rxdataF_comp1_128[1] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
1631
1632
1633
      //	print_shorts("rx:",rxdataF128+1);
      //	print_shorts("ch:",dl_ch128+1);
      //	print_shorts("pack:",rxdataF_comp128+1);	
1634
      
1635
1636
      if (pilots==0) {
	// multiply by conjugated channel
1637
	mmtmpD0 = _mm_madd_epi16(dl_ch1_128[2],rxdataF128[2]);
1638
	// mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
1639
	mmtmpD1 = _mm_shufflelo_epi16(dl_ch1_128[2],_MM_SHUFFLE(2,3,0,1));
1640
1641
1642
1643
1644
1645
1646
1647
	mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
	mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)conjugate);
	mmtmpD1 = _mm_madd_epi16(mmtmpD1,rxdataF128[2]);
	// mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
	mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
	mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
	mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
	mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
1648
1649
	
	rxdataF_comp1_128[2] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
1650
1651
1652
	//	print_shorts("rx:",rxdataF128+2);
	//	print_shorts("ch:",dl_ch128+2);
	//      	print_shorts("pack:",rxdataF_comp128+2);
1653
1654
1655
1656
1657
1658
1659
	
	dl_ch0_128+=3;
	dl_ch1_128+=3;
	dl_ch_mag0_128+=3;
	dl_ch_mag1_128+=3;
	dl_ch_mag0_128b+=3;
	dl_ch_mag1_128b+=3;
1660
	rxdataF128+=3;
1661
1662
	rxdataF_comp0_128+=3;
	rxdataF_comp1_128+=3;
1663
1664
      }
      else {
1665
1666
1667
1668
1669
1670
	dl_ch0_128+=2;
	dl_ch1_128+=2;
	dl_ch_mag0_128+=2;
	dl_ch_mag1_128+=2;
	dl_ch_mag0_128b+=2;
	dl_ch_mag1_128b+=2;
1671
	rxdataF128+=2;
1672
1673
	rxdataF_comp0_128+=2;
	rxdataF_comp1_128+=2;
1674
      }
1675
1676
1677
1678
1679
1680
1681
1682
1683
      
      Nre = (pilots==0) ? 12 : 8;
      
      precoded_signal_strength0 += ((signal_energy_nodc(&dl_ch_estimates_ext[aarx][symbol*frame_parms->N_RB_DL*Nre],
							(nb_rb*Nre))*rx_power_correction) - (phy_measurements->n0_power[aarx]));
      
      precoded_signal_strength1 += ((signal_energy_nodc(&dl_ch_estimates_ext[aarx+2][symbol*frame_parms->N_RB_DL*Nre],
							(nb_rb*Nre))*rx_power_correction) - (phy_measurements->n0_power[aarx]));
    } // rb loop
1684
  } // rx_antennas
1685
1686
1687
      
  phy_measurements->precoded_cqi_dB[eNB_id][0] = dB_fixed2(precoded_signal_strength0,phy_measurements->n0_power_tot);
  phy_measurements->precoded_cqi_dB[eNB_id][1] = dB_fixed2(precoded_signal_strength1,phy_measurements->n0_power_tot);
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
	
  //printf("eNB_id %d, symbol %d: precoded CQI %d dB\n",eNB_id,symbol,
  //	 phy_measurements->precoded_cqi_dB[eNB_id][0]);
    
  _mm_empty();
  _m_empty();  
}     

void dlsch_dual_stream_correlation(LTE_DL_FRAME_PARMS *frame_parms,
                                   unsigned char symbol,
                                   unsigned short nb_rb,
                                   int **dl_ch_estimates_ext,
                                   int **dl_ch_estimates_ext_i,
                                   int **dl_ch_rho_ext,
                                   unsigned char output_shift) {
    
  unsigned short rb;
1705
  __m128i *dl_ch128,*dl_ch128i,*dl_ch_rho128,mmtmpD0,mmtmpD1,mmtmpD2,mmtmpD3;
1706
1707
1708
1709
1710
1711
1712
1713
1714
  unsigned char aarx,symbol_mod,pilots=0;
    
  //    printf("dlsch_dual_stream_correlation: symbol %d\n",symbol);

  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;
    
  if ((symbol_mod == 0) || (symbol_mod == (4-frame_parms->Ncp))) {
    pilots=1;
  }
1715
1716
  //  printf("Dual stream correlation (%p)\n",dl_ch_estimates_ext_i);

1717
1718
1719
  for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
        
    dl_ch128          = (__m128i *)&dl_ch_estimates_ext[aarx][symbol*frame_parms->N_RB_DL*12];
1720
1721
1722
1723
    if (dl_ch_estimates_ext_i == NULL) // TM3/4
      dl_ch128i         = (__m128i *)&dl_ch_estimates_ext[2+aarx][symbol*frame_parms->N_RB_DL*12];
    else
      dl_ch128i         = (__m128i *)&dl_ch_estimates_ext_i[aarx][symbol*frame_parms->N_RB_DL*12];
1724
1725
1726
1727
1728
1729
    dl_ch_rho128      = (__m128i *)&dl_ch_rho_ext[aarx][symbol*frame_parms->N_RB_DL*12];
        
        
    for (rb=0;rb<nb_rb;rb++) {
      // multiply by conjugated channel
      mmtmpD0 = _mm_madd_epi16(dl_ch128[0],dl_ch128i[