vcd_signal_dumper.c 19.3 KB
Newer Older
1
2
/*******************************************************************************
 * 
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
 * Eurecom OpenAirInterface 1
 * Copyright(c) 1999 - 2012 Eurecom
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information
 * Openair Admin: openair_admin@eurecom.fr
 * Openair Tech : openair_tech@eurecom.fr
 * Forums       : http://forums.eurecom.fsr/openairinterface
 * Address      : Eurecom, 2229, route des crêtes, 06560 Valbonne Sophia Antipolis, France
 *
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 *******************************************************************************/

/*! \file vcd_signal_dumper.c
 * \brief Dump functions calls and variables to VCD file. Use GTKWave to display this file.
 * \author S. Roux
 * \date 2012
 * \version 0.1
 * \company Eurecom
 * \email: roux@eurecom.fr
 * \note
 * \warning
 */

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#include <error.h>
#include <time.h>
#include <unistd.h>

53
#include "assertions.h"
54
#include "signals.h"
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

#include "vcd_signal_dumper.h"

#if defined(ENABLE_RTAI_CLOCK)
#include "rtai_lxrt.h"
#endif

#define VCDSIGNALDUMPER_VERSION_MAJOR 0
#define VCDSIGNALDUMPER_VERSION_MINOR 1

// Global variable. If the VCD option is set at execution time, output VCD trace. Otherwise this module has no effect.
int ouput_vcd = 0;

struct vcd_module_s {
    const char     *name;
    int             number_of_signals;
    const char    **signals_names;
    vcd_signal_type signal_type;
    int             signal_size;
} vcd_module_s;
 
const char* eurecomVariablesNames[] = {
77
78
79
80
    "frame_number_eNB",
    "slot_number_eNB",
    "frame_number_UE",
    "slot_number_UE",
81
    "daq_mbox",
82
83
84
85
    "diff2",
    "itti_send_msg",
    "itti_poll_msg",
    "itti_recv_msg",
86
87
88
    "itti_alloc_msg",
    "mp_alloc",
    "mp_free",
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
};
 
const char* eurecomFunctionsNames[] = {
    "macxface_macphy_init",
    "macxface_macphy_exit",
    "macxface_eNB_dlsch_ulsch_scheduler",
    "macxface_fill_rar",
    "macxface_terminate_ra_proc",
    "macxface_initiate_ra_proc",
    "macxface_cancel_ra_proc",
    "macxface_get_dci_sdu",
    "macxface_get_dlsch_sdu",
    "macxface_rx_sdu",
    "macxface_mrbch_phy_sync_failure",
    "macxface_SR_indication",
    "macxface_phy_config_sib1_eNB",
    "macxface_phy_config_sib2_eNB",
    "macxface_phy_config_dedicated_eNB",
    "macxface_out_of_sync_ind",
    "macxface_ue_decode_si",
    "macxface_ue_decode_ccch",
    "macxface_ue_decode_bcch",
    "macxface_ue_send_sdu",
    "macxface_ue_get_sdu",
    "macxface_ue_get_rach",
    "macxface_ue_process_rar",
    "macxface_ue_scheduler",
    "macxface_ue_get_sr",
knopp's avatar
   
knopp committed
117
    "ue_send_mch_sdu",
118
119
120
121
122
123
124
125
126
    "lte_ue_measurement_procedures",
    "lte_ue_pdcch_procedures",
    "lte_ue_pbch_procedures",
    "phy_procedures_eNb_tx",
    "phy_procedures_eNb_rx",
    "phy_procedures_ue_tx",
    "phy_procedures_ue_rx",
    "phy_procedures_eNB_lte",
    "phy_procedures_UE_lte",
knopp's avatar
   
knopp committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    "eNB_thread_tx0",
    "eNB_thread_rx0",
    "eNB_thread_tx1",
    "eNB_thread_rx1",
    "eNB_thread_tx2",
    "eNB_thread_rx2",
    "eNB_thread_tx3",
    "eNB_thread_rx3",
    "eNB_thread_tx4",
    "eNB_thread_rx4",
    "eNB_thread_tx5",
    "eNB_thread_rx5",
    "eNB_thread_tx6",
    "eNB_thread_rx6",
    "eNB_thread_tx7",
    "eNB_thread_rx7",
    "eNB_thread_tx8",
    "eNB_thread_rx8",
    "eNB_thread_tx9",
    "eNB_thread_rx9",
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    "emu_transport",
    "log_record",
    "pdcp_run",
    "rt_sleep",
    "pdsch_thread",
    "dlsch_thread0",
    "dlsch_thread1",
    "dlsch_thread2",
    "dlsch_thread3",
    "dlsch_thread4",
    "dlsch_thread5",
    "dlsch_thread6",
    "dlsch_thread7",
    "dlsch_decoding0",
    "dlsch_decoding1",
    "dlsch_decoding2",
    "dlsch_decoding3",
    "dlsch_decoding4",
    "dlsch_decoding5",
    "dlsch_decoding6",
    "dlsch_decoding7",
    "rx_pdcch",
    "dci_decoding",
    "rrc_mac_config_req",
    "rrc_ue_decode_sib1",
    "rrc_ue_decode_si",
    "phy_ue_config_sib2",
    "phy_ue_compute_prach",
    "phy_enb_ulsch_decoding",
knopp's avatar
knopp committed
176
177
178
179
    "phy_enb_sfgen",
    "phy_enb_prach_rx",
    "phy_enb_pdcch_tx",
    "phy_enb_rs_tx",
180
181
    "phy_ue_ulsch_modulation",
    "phy_ue_ulsch_encoding",
knopp's avatar
knopp committed
182
    "phy_ue_ulsch_scrambling",
183
184
    "phy_eNB_dlsch_modulation",
    "phy_eNB_dlsch_encoding",
knopp's avatar
   
knopp committed
185
    "phy_eNB_dlsch_scrambling",
Cedric Roux's avatar
Cedric Roux committed
186
187
    "pdcp_apply_security",
    "pdcp_validate_security",
winckel's avatar
winckel committed
188
    "itti_enqueue_message",
189
    "itti_dump_enqueue_message",
190
    "itti_dump_enqueue_message_malloc",
191
    "itti_relay_thread",
192
193
194
195
    "test"
};

struct vcd_module_s vcd_modules[VCD_SIGNAL_DUMPER_MODULE_END] = {
winckel's avatar
winckel committed
196
    { "variables", VCD_SIGNAL_DUMPER_VARIABLES_END, eurecomVariablesNames, VCD_WIRE, 64 },
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    { "functions", VCD_SIGNAL_DUMPER_FUNCTIONS_END, eurecomFunctionsNames, VCD_WIRE, 1 },
//    { "ue_procedures_functions", VCD_SIGNAL_DUMPER_UE_PROCEDURES_FUNCTIONS_END, eurecomUEFunctionsNames, VCD_WIRE, 1 },
};

FILE *vcd_fd = NULL;
static inline unsigned long long int vcd_get_time(void);

#if defined(ENABLE_USE_CPU_EXECUTION_TIME)
struct timespec     g_time_start;
#elif defined(ENABLE_RTAI_CLOCK)
RTIME start;
#endif


#if defined(ENABLE_VCD_FIFO)

213
214
215
216
# define VCD_POLL_DELAY         (500)           // Poll delay in micro-seconds
# define VCD_MAX_WAIT_DELAY     (200 * 1000)    // Maximum data ready wait delay in micro-seconds
# define VCD_FIFO_NB_ELEMENTS   (1 << 20)       // Must be a power of 2
# define VCD_FIFO_MASK          (VCD_FIFO_NB_ELEMENTS - 1)
217

218
typedef struct vcd_queue_user_data_s {
219
220
    uint32_t log_id;
    vcd_signal_dumper_modules module;
221
222
    union data_u {
        struct function_s {
223
224
225
            vcd_signal_dump_functions function_name;
            vcd_signal_dump_in_out    in_out;
        } function;
226
        struct variable_s {
227
228
229
230
231
232
233
234
            vcd_signal_dump_variables variable_name;
            unsigned long value;
        } variable;
    } data;

    long long unsigned int time;
} vcd_queue_user_data_t;

235
236
237
238
239
240
241
242
243
typedef struct vcd_fifo_s {
    vcd_queue_user_data_t user_data[VCD_FIFO_NB_ELEMENTS];

    volatile uint32_t write_index;
    volatile uint32_t read_index;
} vcd_fifo_t;

vcd_fifo_t vcd_fifo;

244
pthread_t vcd_dumper_thread;
245
#endif
246

winckel's avatar
winckel committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#define BYTE_SIZE   8
#define NIBBLE_SIZE 4
static void uint64_to_binary(uint64_t value, char *binary)
{
    static const char * const nibbles_start[] =
            {
                 "",    "1",   "10",   "11",
              "100",  "101",  "110",  "111",
             "1000", "1001", "1010", "1011",
             "1100", "1101", "1110", "1111",
            };
    static const char * const nibbles[] =
            {
             "0000", "0001", "0010", "0011",
             "0100", "0101", "0110", "0111",
             "1000", "1001", "1010", "1011",
             "1100", "1101", "1110", "1111",
            };
    int nibble;
    int nibble_value;
    int nibble_size;
    int zero = 1;

    for (nibble = 0; nibble < (sizeof (uint64_t) * (BYTE_SIZE / NIBBLE_SIZE)); nibble++)
    {
        nibble_value = value >> ((sizeof (uint64_t) * BYTE_SIZE) - NIBBLE_SIZE);

        if (zero)
        {
            if (nibble_value > 0)
            {
                zero = 0;
                nibble_size = strlen(nibbles_start[nibble_value]);
                memcpy (binary, nibbles_start[nibble_value], nibble_size);
                binary += nibble_size;
            }
        }
        else
        {
            memcpy (binary, nibbles[nibble_value], NIBBLE_SIZE);
            binary += NIBBLE_SIZE;
        }
        value <<= NIBBLE_SIZE;
    }
    /* Add a '0' if the value was null */
    if (zero)
    {
        binary[0] = '0';
        binary ++;
    }
    /* Add a null value at the end of the string */
    binary[0] = '\0';
}

301
#if defined(ENABLE_VCD_FIFO)
302
303
304
305
306
307
308
309
310
311
inline static uint32_t vcd_get_write_index(void)
{
    uint32_t write_index;
    uint32_t read_index;

    /* Get current write index and increment it (atomic operation) */
    write_index = __sync_fetch_and_add(&vcd_fifo.write_index, 1);
    /* Wrap index */
    write_index &= VCD_FIFO_MASK;

312
313
    /* Check FIFO overflow (increase VCD_FIFO_NB_ELEMENTS if this assert is triggered) */
    DevCheck((read_index = vcd_fifo.read_index, ((write_index + 1) & VCD_FIFO_MASK) != read_index), write_index, read_index, VCD_FIFO_NB_ELEMENTS);
314
315
316
317

    return write_index;
}

318
319
320
void *vcd_dumper_thread_rt(void *args)
{
    vcd_queue_user_data_t *data;
winckel's avatar
winckel committed
321
    char binary_string[(sizeof (uint64_t) * BYTE_SIZE) + 1];
322
    struct sched_param sched_param;
323
    uint32_t data_ready_wait;
winckel's avatar
winckel committed
324

325
326
327
328
# if defined(ENABLE_ITTI)
    signal_mask();
# endif

329
330
331
    sched_param.sched_priority = sched_get_priority_min(SCHED_FIFO) + 1;
    sched_setscheduler(0, SCHED_FIFO, &sched_param);

332
    while(1) {
333
        if (vcd_fifo.read_index == (vcd_fifo.write_index & VCD_FIFO_MASK)) {
334
            /* No element -> sleep a while */
335
            usleep(VCD_POLL_DELAY);
336
        } else {
337
338
339
340
            data = &vcd_fifo.user_data[vcd_fifo.read_index];
            data_ready_wait = 0;
            while (data->module == VCD_SIGNAL_DUMPER_MODULE_FREE)
            {
341
                /* Check wait delay (increase VCD_MAX_WAIT_DELAY if this assert is triggered and that no thread is locked) */
342
343
344
345
346
347
                DevCheck(data_ready_wait < VCD_MAX_WAIT_DELAY, data_ready_wait, VCD_MAX_WAIT_DELAY, 0);

                /* data is not yet ready, wait for it to be completed */
                data_ready_wait += VCD_POLL_DELAY;
                usleep(VCD_POLL_DELAY);
            }
348
349
350
351
352
353
354
355
            switch (data->module) {
                case VCD_SIGNAL_DUMPER_MODULE_VARIABLES:
                    if (vcd_fd != NULL)
                    {
                        int variable_name;
                        variable_name = (int)data->data.variable.variable_name;
                        fprintf(vcd_fd, "#%llu\n", data->time);
                        /* Set variable to value */
winckel's avatar
winckel committed
356
357
                        uint64_to_binary(data->data.variable.value, binary_string);
                        fprintf(vcd_fd, "b%s %s_w\n", binary_string,
358
359
360
                                eurecomVariablesNames[variable_name]);
                    }
                    break;
361

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
                case VCD_SIGNAL_DUMPER_MODULE_FUNCTIONS:
                    if (vcd_fd != NULL)
                    {
                        int function_name;

                        function_name = (int)data->data.function.function_name;
                        fprintf(vcd_fd, "#%llu\n", data->time);

                        /* Check if we are entering or leaving the function ( 0 = leaving, 1 = entering) */
                        if (data->data.function.in_out == VCD_FUNCTION_IN)
                            /* Set event to 1 */
                            fprintf(vcd_fd, "1%s_w\n", eurecomFunctionsNames[function_name]);
                        else
                            fprintf(vcd_fd, "0%s_w\n", eurecomFunctionsNames[function_name]);
                        fflush(vcd_fd);
                    }
                    break;
379

380
                default:
381
                    DevParam(data->module, 0, 0);
382
383
                    break;
            }
384
385
            data->module = VCD_SIGNAL_DUMPER_MODULE_FREE;
            vcd_fifo.read_index = (vcd_fifo.read_index + 1) & VCD_FIFO_MASK;
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
        }
    }
    return NULL;
}
#endif

void vcd_signal_dumper_init(char *filename)
{
    if (ouput_vcd) {
      //        char filename[] = "/tmp/openair_vcd_dump.vcd";

        if ((vcd_fd = fopen(filename, "w+")) == NULL)
        {
            perror("vcd_signal_dumper_init: cannot open file");
            return;
        }

#if defined(ENABLE_USE_CPU_EXECUTION_TIME)
        clock_gettime(CLOCK_MONOTONIC, &g_time_start);
#elif defined(ENABLE_RTAI_CLOCK)
        start=rt_get_time_ns();
#endif

        vcd_signal_dumper_create_header();

#if defined(ENABLE_VCD_FIFO)
412
413
        vcd_fifo.write_index = 0;
        vcd_fifo.read_index = 0;
414

415
        fprintf(stderr, "[VCD] Creating dumper thread\n");
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

        if (pthread_create(&vcd_dumper_thread, NULL, vcd_dumper_thread_rt, NULL) < 0)
        {
            fprintf(stderr, "vcd_signal_dumper_init: Failed to create thread: %s\n",
                    strerror(errno));
            ouput_vcd = 0;
            return;
        }
#endif
    }
}

void vcd_signal_dumper_close(void)
{
    if (ouput_vcd) {
#if defined(ENABLE_VCD_FIFO)
        
#else
        if (vcd_fd != NULL)
        {
            fclose(vcd_fd);
            vcd_fd = NULL;
        }
#endif
    }
}

static inline void vcd_signal_dumper_print_time_since_start(void)
{
    if (vcd_fd != NULL)
    {
#if defined(ENABLE_USE_CPU_EXECUTION_TIME)
        struct timespec time;
        long long unsigned int nanosecondsSinceStart;
        long long unsigned int secondsSinceStart;

        clock_gettime(CLOCK_MONOTONIC, &time);

        /* Get current execution time in nanoseconds */
        nanosecondsSinceStart = (long long unsigned int)((time.tv_nsec - g_time_start.tv_nsec));
        secondsSinceStart     = (long long unsigned int)time.tv_sec - (long long unsigned int)g_time_start.tv_sec;
        /* Write time in nanoseconds */
        fprintf(vcd_fd, "#%llu\n", nanosecondsSinceStart + (secondsSinceStart * 1000000000UL));
#elif defined(ENABLE_RTAI_CLOCK)
        /* Write time in nanoseconds */
        fprintf(vcd_fd, "#%llu\n",rt_get_time_ns()-start);
#endif
    }
}

static inline unsigned long long int vcd_get_time(void)
{
#if defined(ENABLE_USE_CPU_EXECUTION_TIME)
    struct timespec time;

    clock_gettime(CLOCK_MONOTONIC, &time);

    return (long long unsigned int)((time.tv_nsec - g_time_start.tv_nsec)) +
    ((long long unsigned int)time.tv_sec - (long long unsigned int)g_time_start.tv_sec) * 1000000000UL;
#elif defined(ENABLE_RTAI_CLOCK)
    return rt_get_time_ns() - start;
#endif
}

void vcd_signal_dumper_create_header(void)
{
    if (ouput_vcd) {
        struct tm *pDate;
        time_t intps;

        intps = time(NULL);
        pDate = localtime(&intps);

        if (vcd_fd != NULL)
        {
            int i, j;
            fprintf(vcd_fd, "$date\n\t%s$end\n", asctime(pDate));
            // Display version
            fprintf(vcd_fd, "$version\n\tVCD plugin ver%d.%d\n$end\n", VCDSIGNALDUMPER_VERSION_MAJOR, VCDSIGNALDUMPER_VERSION_MINOR);
            // Init timescale, here = 1ns
            fprintf(vcd_fd, "$timescale 1 ns $end\n");

            /* Initialize each module definition */
            for(i = 0; i < VCD_SIGNAL_DUMPER_MODULE_END; i++) {
                struct vcd_module_s *module;
                module = &vcd_modules[i];
                fprintf(vcd_fd, "$scope module %s $end\n", module->name);
                /* Declare each signal as defined in array */
                for (j = 0; j < module->number_of_signals; j++) {
                    const char *signal_name;
                    signal_name = module->signals_names[j];
                    if (VCD_WIRE == module->signal_type) {
                        fprintf(vcd_fd, "$var wire %d %s_w %s $end\n", module->signal_size, signal_name, signal_name);
                    } else  if (VCD_REAL == module->signal_type) {
                        fprintf(vcd_fd, "$var real %d %s_r %s $end\n", module->signal_size, signal_name, signal_name);
                    } else {
                        // Handle error here
                    }
                }
                fprintf(vcd_fd, "$upscope $end\n");
            }

            /* Init variables and functions to 0 */
            fprintf(vcd_fd, "$dumpvars\n");
            for(i = 0; i < VCD_SIGNAL_DUMPER_MODULE_END; i++) {
                struct vcd_module_s *module;
                module = &vcd_modules[i];
                /* Declare each signal as defined in array */
                for (j = 0; j < module->number_of_signals; j++) {
                    const char *signal_name;
                    signal_name = module->signals_names[j];
                    if (VCD_WIRE == module->signal_type) {
winckel's avatar
winckel committed
528
529
530
531
532
533
                        if (module->signal_size > 1) {
                            fprintf(vcd_fd, "b0 %s_w $end\n", signal_name);
                        }
                        else {
                            fprintf(vcd_fd, "0%s_w $end\n", signal_name);
                        }
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
                    } else  if (VCD_REAL == module->signal_type) {
                        fprintf(vcd_fd, "r0 %s_r $end\n", signal_name);
                    } else {
                        // Handle error here
                    }
                }
            }
            fprintf(vcd_fd, "$end\n");
            fprintf(vcd_fd, "$enddefinitions $end\n\n");
            //fflush(vcd_fd);
        }
    }
}

void vcd_signal_dumper_dump_variable_by_name(vcd_signal_dump_variables variable_name,
                                             unsigned long             value)
{
winckel's avatar
winckel committed
551
552
553
    DevCheck((0 <= variable_name) && (variable_name < VCD_SIGNAL_DUMPER_VARIABLES_END),
             variable_name, VCD_SIGNAL_DUMPER_VARIABLES_END, 0);

554
555
    if (ouput_vcd) {
#if defined(ENABLE_VCD_FIFO)
556
        uint32_t write_index = vcd_get_write_index();
557

558
559
560
561
        vcd_fifo.user_data[write_index].time = vcd_get_time();
        vcd_fifo.user_data[write_index].data.variable.variable_name = variable_name;
        vcd_fifo.user_data[write_index].data.variable.value = value;
        vcd_fifo.user_data[write_index].module = VCD_SIGNAL_DUMPER_MODULE_VARIABLES; // Set when all other fields are set to validate the user_data
562
#else
winckel's avatar
winckel committed
563
564
        char binary_string[(sizeof (uint64_t) * BYTE_SIZE) + 1];

565
566
567
568
569
        if (vcd_fd != NULL)
        {
            vcd_signal_dumper_print_time_since_start();

            /* Set variable to value */
winckel's avatar
winckel committed
570
571
            uint64_to_binary(value, binary_string);
            fprintf(vcd_fd, "b%s %s_w\n", binary_string, eurecomVariablesNames[variable_name]);
572
573
574
575
576
577
578
579
580
            //fflush(vcd_fd);
        }
#endif
    }
}

void vcd_signal_dumper_dump_function_by_name(vcd_signal_dump_functions  function_name,
                                             vcd_signal_dump_in_out     in_out)
{
winckel's avatar
winckel committed
581
582
583
    DevCheck((0 <= function_name) && (function_name < VCD_SIGNAL_DUMPER_FUNCTIONS_END),
             function_name, VCD_SIGNAL_DUMPER_FUNCTIONS_END, 0);

584
585
    if (ouput_vcd) {
#if defined(ENABLE_VCD_FIFO)
586
        uint32_t write_index = vcd_get_write_index();
587

588
589
590
591
        vcd_fifo.user_data[write_index].time = vcd_get_time();
        vcd_fifo.user_data[write_index].data.function.function_name = function_name;
        vcd_fifo.user_data[write_index].data.function.in_out = in_out;
        vcd_fifo.user_data[write_index].module = VCD_SIGNAL_DUMPER_MODULE_FUNCTIONS; // Set when all other fields are set to validate the user_data
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
#else
        if (vcd_fd != NULL)
        {
            vcd_signal_dumper_print_time_since_start();

            /* Check if we are entering or leaving the function ( 0 = leaving, 1 = entering) */
            if (in_out == VCD_FUNCTION_IN)
                /* Set event to 1 */
                fprintf(vcd_fd, "1%s_w\n", eurecomFunctionsNames[function_name]);
            else
                fprintf(vcd_fd, "0%s_w\n", eurecomFunctionsNames[function_name]);
            //fflush(vcd_fd);
        }
#endif
    }
}