lte_ue_measurements.c 27.3 KB
Newer Older
ghaddab's avatar
ghaddab committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*******************************************************************************
    OpenAirInterface 
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is 
   included in this distribution in the file called "COPYING". If not, 
   see <http://www.gnu.org/licenses/>.

  Contact Information
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
  OpenAirInterface Dev  : openair4g-devel@eurecom.fr
  
ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
ghaddab's avatar
ghaddab committed
27 28

 *******************************************************************************/
29 30 31 32 33 34
// this function fills the PHY_vars->PHY_measurement structure

#include "PHY/defs.h"
#include "PHY/extern.h"
#include "SCHED/defs.h"
#include "SCHED/extern.h"
35
#include "log.h"
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

#include "emmintrin.h"

#ifdef __SSE3__
#include "pmmintrin.h"
#include "tmmintrin.h"
#else
__m128i zeroPMI;
#define _mm_abs_epi16(xmmx) _mm_xor_si128((xmmx),_mm_cmpgt_epi16(zeroPMI,(xmmx)))
#define _mm_sign_epi16(xmmx,xmmy) _mm_xor_si128((xmmx),_mm_cmpgt_epi16(zeroPMI,(xmmy)))
#endif

//#define k1 1000
#define k1 ((long long int) 1000)
#define k2 ((long long int) (1024-k1))

knopp's avatar
 
knopp committed
52
//#define DEBUG_MEAS
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

#ifdef USER_MODE
void print_shorts(char *s,__m128i *x) {

  short *tempb = (short *)x;

  printf("%s  : %d,%d,%d,%d,%d,%d,%d,%d\n",s,
         tempb[0],tempb[1],tempb[2],tempb[3],tempb[4],tempb[5],tempb[6],tempb[7]
         );

}
void print_ints(char *s,__m128i *x) {

  int *tempb = (int *)x;

  printf("%s  : %d,%d,%d,%d\n",s,
         tempb[0],tempb[1],tempb[2],tempb[3]
         );

}
#endif

__m128i pmi128_re __attribute__ ((aligned(16)));
__m128i pmi128_im __attribute__ ((aligned(16)));
__m128i mmtmpPMI0 __attribute__ ((aligned(16)));
__m128i mmtmpPMI1 __attribute__ ((aligned(16)));
__m128i mmtmpPMI2 __attribute__ ((aligned(16)));
__m128i mmtmpPMI3 __attribute__ ((aligned(16)));

knopp's avatar
 
knopp committed
82
int16_t get_PL(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index) {
83

knopp's avatar
 
knopp committed
84
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
85 86 87 88 89 90 91
  int RSoffset;
    
  
  if (phy_vars_ue->lte_frame_parms.mode1_flag == 1)
    RSoffset = 6;
  else
    RSoffset = 3;
knopp's avatar
 
knopp committed
92
  
93

knopp's avatar
 
knopp committed
94
  LOG_D(PHY,"get_PL : Frame %d : rssi %f dBm, eNB power %d dBm/RE\n", phy_vars_ue->frame_rx,
knopp's avatar
 
knopp committed
95 96 97 98 99 100 101
	(1.0*dB_fixed_times10(phy_vars_ue->PHY_measurements.rssi/RSoffset)-(10.0*phy_vars_ue->rx_total_gain_dB))/10.0,
	phy_vars_ue->lte_frame_parms.pdsch_config_common.referenceSignalPower);
  	
  return((int16_t)(((10*phy_vars_ue->rx_total_gain_dB) - 
		    dB_fixed_times10(phy_vars_ue->PHY_measurements.rssi)+
		    dB_fixed_times10(RSoffset*12*PHY_vars_UE_g[Mod_id][CC_id]->lte_frame_parms.N_RB_DL) + 
		    (phy_vars_ue->lte_frame_parms.pdsch_config_common.referenceSignalPower*10))/10));
102 103
}

104

knopp's avatar
 
knopp committed
105
uint8_t get_n_adj_cells (uint8_t Mod_id,uint8_t CC_id){
106

knopp's avatar
 
knopp committed
107
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
108 109 110 111 112 113
  if (phy_vars_ue)  
    return phy_vars_ue->PHY_measurements.n_adj_cells;
  else 
    return 0;
}

114
uint32_t get_rx_total_gain_dB (uint8_t Mod_id,uint8_t CC_id){
115

knopp's avatar
 
knopp committed
116
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
117 118
  if (phy_vars_ue)  
    return phy_vars_ue->rx_total_gain_dB;
119
  return 0xFFFFFFFF;
120
}
121
uint32_t get_RSSI (uint8_t Mod_id,uint8_t CC_id){
122

knopp's avatar
 
knopp committed
123
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
124 125
  if (phy_vars_ue)  
    return phy_vars_ue->PHY_measurements.rssi;
126
  return 0xFFFFFFFF;
127
}
128
uint32_t get_RSRP(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index) {
129
  
knopp's avatar
 
knopp committed
130
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
131 132
  if (phy_vars_ue)
    return phy_vars_ue->PHY_measurements.rsrp[eNB_index];
133
  return 0xFFFFFFFF;
134 135
}

136
uint32_t get_RSRQ(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index) {
137

knopp's avatar
 
knopp committed
138
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
139 140
  if (phy_vars_ue)
    return phy_vars_ue->PHY_measurements.rsrq[eNB_index];
141
  return 0xFFFFFFFF;
142 143
}

knopp's avatar
 
knopp committed
144
int8_t set_RSRP_filtered(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index,float rsrp) {
145
  
knopp's avatar
 
knopp committed
146
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
147 148 149 150 151 152 153 154
  if (phy_vars_ue){
    phy_vars_ue->PHY_measurements.rsrp_filtered[eNB_index]=rsrp;
    return 0;
  }
  LOG_W(PHY,"[UE%d] could not set the rsrp\n",Mod_id);
  return -1;
}

knopp's avatar
 
knopp committed
155
int8_t set_RSRQ_filtered(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index,float rsrq) {
156

knopp's avatar
 
knopp committed
157
  PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
158 159 160 161 162 163 164 165
  if (phy_vars_ue){
    phy_vars_ue->PHY_measurements.rsrq_filtered[eNB_index]=rsrq;
    return 0;
  }
  LOG_W(PHY,"[UE%d] could not set the rsrq\n",Mod_id);
  return -1;
  
}
166 167
 
void ue_rrc_measurements(PHY_VARS_UE *phy_vars_ue,
gauthier's avatar
gauthier committed
168 169
			 uint8_t slot,
			 uint8_t abstraction_flag) {
170

171
  int aarx,rb;
gauthier's avatar
gauthier committed
172
  int16_t *rxF;
173

gauthier's avatar
gauthier committed
174 175 176
  uint16_t Nid_cell = phy_vars_ue->lte_frame_parms.Nid_cell;
  uint8_t eNB_offset,nu,l,nushift,k;
  uint16_t off;
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206


  for (eNB_offset = 0;eNB_offset<1+phy_vars_ue->PHY_measurements.n_adj_cells;eNB_offset++) {

    if (eNB_offset==0)
      phy_vars_ue->PHY_measurements.rssi = 0;

#ifdef DEBUG_MEAS
    LOG_D(PHY,"ue_rrc_measurements: eNB_offset %d => rssi %d\n",eNB_offset,phy_vars_ue->PHY_measurements.rssi);
#endif
    // recompute nushift with eNB_offset corresponding to adjacent eNB on which to perform channel estimation
    //    printf("[PHY][UE %d] Frame %d slot %d Doing ue_rrc_measurements rsrp/rssi (Nid_cell %d, Nid2 %d, nushift %d, eNB_offset %d)\n",phy_vars_ue->Mod_id,phy_vars_ue->frame,slot,Nid_cell,Nid2,nushift,eNB_offset);
    if (eNB_offset > 0)
      Nid_cell = phy_vars_ue->PHY_measurements.adj_cell_id[eNB_offset-1];


    nushift =  Nid_cell%6;



    phy_vars_ue->PHY_measurements.rsrp[eNB_offset] = 0;


    if (abstraction_flag == 0) {
      
      // compute RSRP using symbols 0 and 4-frame_parms->Ncp

      for (l=0,nu=0;l<=(4-phy_vars_ue->lte_frame_parms.Ncp);l+=(4-phy_vars_ue->lte_frame_parms.Ncp),nu=3) {
	k = (nu + nushift)%6;
#ifdef DEBUG_MEAS
knopp's avatar
 
knopp committed
207
	LOG_D(PHY,"[UE %d] Frame %d slot %d Doing ue_rrc_measurements rsrp/rssi (Nid_cell %d, nushift %d, eNB_offset %d, k %d)\n",phy_vars_ue->Mod_id,phy_vars_ue->frame_rx,slot,Nid_cell,nushift,eNB_offset,k);
208 209
#endif
	for (aarx=0;aarx<phy_vars_ue->lte_frame_parms.nb_antennas_rx;aarx++) {
gauthier's avatar
gauthier committed
210
	  rxF = (int16_t *)&phy_vars_ue->lte_ue_common_vars.rxdataF[aarx][(l*phy_vars_ue->lte_frame_parms.ofdm_symbol_size)];
211 212
	  off  = (phy_vars_ue->lte_frame_parms.first_carrier_offset+k)<<1;

knopp's avatar
 
knopp committed
213
	  if (l==(4-phy_vars_ue->lte_frame_parms.Ncp)) {
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	    for (rb=0;rb<phy_vars_ue->lte_frame_parms.N_RB_DL;rb++) {
		
		//	  printf("rb %d, off %d, off2 %d\n",rb,off,off2);
		
		phy_vars_ue->PHY_measurements.rsrp[eNB_offset] += ((rxF[off]*rxF[off])+(rxF[off+1]*rxF[off+1]));
		off+=12;
		if (off>=(phy_vars_ue->lte_frame_parms.ofdm_symbol_size<<1))
		  off = (1+k)<<1;
		phy_vars_ue->PHY_measurements.rsrp[eNB_offset] += ((rxF[off]*rxF[off])+(rxF[off+1]*rxF[off+1]));
		off+=12;
		if (off>=(phy_vars_ue->lte_frame_parms.ofdm_symbol_size<<1))
		  off = (1+k)<<1;
	      }
	  
	      /*
	      if ((eNB_offset==0)&&(l==0)) {
		for (i=0;i<6;i++,off2+=4)
		  phy_vars_ue->PHY_measurements.rssi += ((rxF[off2]*rxF[off2])+(rxF[off2+1]*rxF[off2+1]));
		if (off2==(phy_vars_ue->lte_frame_parms.ofdm_symbol_size<<2))
		  off2=4;
		for (i=0;i<6;i++,off2+=4)
		  phy_vars_ue->PHY_measurements.rssi += ((rxF[off2]*rxF[off2])+(rxF[off2+1]*rxF[off2+1]));
	      }
	      */
	      //	  printf("slot %d, rb %d => rsrp %d, rssi %d\n",slot,rb,phy_vars_ue->PHY_measurements.rsrp[eNB_offset],phy_vars_ue->PHY_measurements.rssi);
	    }
	}
      }


244
      // 2 RE per PRB
245
      phy_vars_ue->PHY_measurements.rsrp[eNB_offset]/=(24*phy_vars_ue->lte_frame_parms.N_RB_DL);
knopp's avatar
 
knopp committed
246
     
247

knopp's avatar
 
knopp committed
248
 
249 250 251 252 253 254 255 256 257 258 259 260 261 262
      if (eNB_offset == 0) {
	//	phy_vars_ue->PHY_measurements.rssi/=(24*phy_vars_ue->lte_frame_parms.N_RB_DL);
	//	phy_vars_ue->PHY_measurements.rssi*=rx_power_correction;
	phy_vars_ue->PHY_measurements.rssi=phy_vars_ue->PHY_measurements.rsrp[0]*24/2;
      }
      if (phy_vars_ue->PHY_measurements.rssi>0)
	phy_vars_ue->PHY_measurements.rsrq[eNB_offset] = 100*phy_vars_ue->PHY_measurements.rsrp[eNB_offset]*phy_vars_ue->lte_frame_parms.N_RB_DL/phy_vars_ue->PHY_measurements.rssi;
      else
	phy_vars_ue->PHY_measurements.rsrq[eNB_offset] = -12000;
      
      //((200*phy_vars_ue->PHY_measurements.rsrq[eNB_offset]) + ((1024-200)*100*phy_vars_ue->PHY_measurements.rsrp[eNB_offset]*phy_vars_ue->lte_frame_parms.N_RB_DL/phy_vars_ue->PHY_measurements.rssi))>>10;
    }
    else {   // Do abstraction of RSRP and RSRQ
      phy_vars_ue->PHY_measurements.rssi = phy_vars_ue->PHY_measurements.rx_power_avg[0];
263 264 265
      // dummay value for the moment
      phy_vars_ue->PHY_measurements.rsrp[eNB_offset] = -93 ;     
      phy_vars_ue->PHY_measurements.rsrq[eNB_offset] = 3;
266 267

    }
knopp's avatar
 
knopp committed
268
    if (((phy_vars_ue->frame_rx %10) == 0) && (slot == 0)) {
269
#ifdef DEBUG_MEAS
270
    if (eNB_offset == 0)
knopp's avatar
 
knopp committed
271
	LOG_D(PHY,"[UE %d] Frame %d, slot %d RRC Measurements => rssi %3.1f dBm (digital: %3.1f dB, gain %d)\n",phy_vars_ue->Mod_id,
knopp's avatar
 
knopp committed
272
	      phy_vars_ue->frame_rx,slot,10*log10(phy_vars_ue->PHY_measurements.rssi)-phy_vars_ue->rx_total_gain_dB,
knopp's avatar
 
knopp committed
273 274
	      10*log10(phy_vars_ue->PHY_measurements.rssi),
	      phy_vars_ue->rx_total_gain_dB);
275 276
	LOG_D(PHY,"[UE %d] Frame %d, slot %d RRC Measurements (idx %d, Cell id %d) => rsrp: %3.1f (%3.1f) dBm, rsrq: %3.1f dB\n",
	      phy_vars_ue->Mod_id,
knopp's avatar
 
knopp committed
277
	      phy_vars_ue->frame_rx,slot,eNB_offset,
278 279 280 281
	      (eNB_offset>0) ? phy_vars_ue->PHY_measurements.adj_cell_id[eNB_offset-1] : phy_vars_ue->lte_frame_parms.Nid_cell,
	      (dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_offset])/10.0)-phy_vars_ue->rx_total_gain_dB-dB_fixed(phy_vars_ue->lte_frame_parms.N_RB_DL*12),
	      (10*log10(phy_vars_ue->PHY_measurements.rx_power_avg[0])/10.0)-phy_vars_ue->rx_total_gain_dB-dB_fixed(phy_vars_ue->lte_frame_parms.N_RB_DL*12),
	      (10*log10(phy_vars_ue->PHY_measurements.rsrq[eNB_offset]))-20);
282
	//LOG_D(PHY,"RSRP_total_dB: %3.2f \n",(dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_offset])/10.0)-phy_vars_ue->rx_total_gain_dB-dB_fixed(phy_vars_ue->lte_frame_parms.N_RB_DL*12));
283

284 285 286 287
    //LOG_D(PHY,"RSRP_dB: %3.2f \n",(dB_fixed_times10(phy_vars_ue->PHY_measurements.rsrp[eNB_offset])/10.0));
    //LOG_D(PHY,"gain_loss_dB: %d \n",phy_vars_ue->rx_total_gain_dB);
    //LOG_D(PHY,"gain_fixed_dB: %d \n",dB_fixed(phy_vars_ue->lte_frame_parms.N_RB_DL*12));
#endif
288
    }
289 290 291 292 293 294 295 296 297
  }
}

void lte_ue_measurements(PHY_VARS_UE *phy_vars_ue,
			   unsigned int subframe_offset,
			   unsigned char N0_symbol,
			   unsigned char abstraction_flag){


knopp's avatar
 
knopp committed
298
    int aarx,aatx,eNB_id=0,gain_offset=0;
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    //int rx_power[NUMBER_OF_CONNECTED_eNB_MAX];
    int i;
    unsigned int limit,subband;
    __m128i *dl_ch0_128,*dl_ch1_128;
    int *dl_ch0,*dl_ch1;
    LTE_DL_FRAME_PARMS *frame_parms = &phy_vars_ue->lte_frame_parms;

    phy_vars_ue->PHY_measurements.nb_antennas_rx = frame_parms->nb_antennas_rx;

    gain_offset = 0;

#ifndef __SSE3__
    zeroPMI = _mm_xor_si128(zeroPMI,zeroPMI);
#endif
  
    if (phy_vars_ue->init_averaging == 1) {
      for (eNB_id=0;eNB_id<phy_vars_ue->n_connected_eNB;eNB_id++) {
	phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id] = 0;
      }

      for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
	phy_vars_ue->PHY_measurements.n0_power[aarx] = 0;
	phy_vars_ue->PHY_measurements.n0_power_dB[aarx] = 0;
      }
    
      phy_vars_ue->PHY_measurements.n0_power_tot = 0;
      phy_vars_ue->PHY_measurements.n0_power_tot_dB = 0;
      phy_vars_ue->PHY_measurements.n0_power_avg = 0;
      phy_vars_ue->PHY_measurements.n0_power_avg_dB = 0;
    }

    // noise measurements
    // for abstraction we do noise measurements based on the precalculated phy_vars_ue->N0
    // otherwise if there is a symbol where we can take noise measurements on, we measure there
    // otherwise do not update the noise measurements 
  
    if (abstraction_flag!=0) {
      phy_vars_ue->PHY_measurements.n0_power_tot = 0;
      for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
	phy_vars_ue->PHY_measurements.n0_power[aarx] = pow(10.0,phy_vars_ue->N0/10.0)*pow(10.0,((double)phy_vars_ue->rx_total_gain_dB)/10.0);
	phy_vars_ue->PHY_measurements.n0_power_dB[aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power[aarx]);
	phy_vars_ue->PHY_measurements.n0_power_tot +=  phy_vars_ue->PHY_measurements.n0_power[aarx];
      } 
      phy_vars_ue->PHY_measurements.n0_power_tot_dB = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power_tot);
      phy_vars_ue->PHY_measurements.n0_power_tot_dBm = phy_vars_ue->PHY_measurements.n0_power_tot_dB - phy_vars_ue->rx_total_gain_dB;
    }
    else if (N0_symbol != 0) {
      phy_vars_ue->PHY_measurements.n0_power_tot = 0;
      for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
#ifndef HW_PREFIX_REMOVAL
	phy_vars_ue->PHY_measurements.n0_power[aarx] = signal_energy(&phy_vars_ue->lte_ue_common_vars.rxdata[aarx][subframe_offset+frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples0],frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples);
#else
	phy_vars_ue->PHY_measurements.n0_power[aarx] = signal_energy(&phy_vars_ue->lte_ue_common_vars.rxdata[aarx][subframe_offset+frame_parms->ofdm_symbol_size],frame_parms->ofdm_symbol_size);
#endif
	phy_vars_ue->PHY_measurements.n0_power_dB[aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power[aarx]);
	phy_vars_ue->PHY_measurements.n0_power_tot +=  phy_vars_ue->PHY_measurements.n0_power[aarx];
      }

      phy_vars_ue->PHY_measurements.n0_power_tot_dB = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.n0_power_tot);
      phy_vars_ue->PHY_measurements.n0_power_tot_dBm = phy_vars_ue->PHY_measurements.n0_power_tot_dB - phy_vars_ue->rx_total_gain_dB + gain_offset;
      //    printf("PHY measurements UE %d: n0_power %d (%d)\n",phy_vars_ue->Mod_id,phy_vars_ue->PHY_measurements.n0_power_tot_dBm,phy_vars_ue->PHY_measurements.n0_power_tot_dB);
    }
    else {
      phy_vars_ue->PHY_measurements.n0_power_tot_dBm = phy_vars_ue->PHY_measurements.n0_power_tot_dB - phy_vars_ue->rx_total_gain_dB + gain_offset;
    }

    // signal measurements  
    for (eNB_id=0;eNB_id<phy_vars_ue->n_connected_eNB;eNB_id++) {
      for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
	for (aatx=0; aatx<frame_parms->nb_antennas_tx_eNB; aatx++) {
	  phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx] = 
	    (signal_energy_nodc(&phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][(aatx<<1) + aarx][0],
knopp's avatar
 
knopp committed
371
				(frame_parms->N_RB_DL*12)));
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
	    //- phy_vars_ue->PHY_measurements.n0_power[aarx];
	
	  if (phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx]<0)
	    phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx] = 0; //phy_vars_ue->PHY_measurements.n0_power[aarx];
	
	  phy_vars_ue->PHY_measurements.rx_spatial_power_dB[eNB_id][aatx][aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx]);
	
	  if (aatx==0)
	    phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx] = phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx];
	  else
	    phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx] += phy_vars_ue->PHY_measurements.rx_spatial_power[eNB_id][aatx][aarx];
	} //aatx

	phy_vars_ue->PHY_measurements.rx_power_dB[eNB_id][aarx] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx]);

	if (aarx==0)
	  phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id] = phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx];
	else
	  phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id] += phy_vars_ue->PHY_measurements.rx_power[eNB_id][aarx];
      } //aarx

      phy_vars_ue->PHY_measurements.rx_power_tot_dB[eNB_id] = (unsigned short) dB_fixed(phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id]);

    } //eNB_id

    // filter to remove jitter
    if (phy_vars_ue->init_averaging == 0) {
      for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++)
	phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id] = (int) 
	  (((k1*((long long int)(phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id]))) + 
	    (k2*((long long int)(phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id]))))>>10);
      phy_vars_ue->PHY_measurements.n0_power_avg = (int)
	(((k1*((long long int) (phy_vars_ue->PHY_measurements.n0_power_avg))) + 
	  (k2*((long long int) (phy_vars_ue->PHY_measurements.n0_power_tot))))>>10);
    }
    else {
      for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++)
	phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id] = phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id];
      phy_vars_ue->PHY_measurements.n0_power_avg = phy_vars_ue->PHY_measurements.n0_power_tot;
      phy_vars_ue->init_averaging = 0;
    }

    for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++) {
      phy_vars_ue->PHY_measurements.rx_power_avg_dB[eNB_id] = dB_fixed( phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id]);
      phy_vars_ue->PHY_measurements.wideband_cqi_tot[eNB_id] = dB_fixed2(phy_vars_ue->PHY_measurements.rx_power_tot[eNB_id],phy_vars_ue->PHY_measurements.n0_power_tot);
      phy_vars_ue->PHY_measurements.wideband_cqi_avg[eNB_id] = dB_fixed2(phy_vars_ue->PHY_measurements.rx_power_avg[eNB_id],phy_vars_ue->PHY_measurements.n0_power_avg);
      phy_vars_ue->PHY_measurements.rx_rssi_dBm[eNB_id] = phy_vars_ue->PHY_measurements.rx_power_avg_dB[eNB_id] - phy_vars_ue->rx_total_gain_dB + gain_offset;
knopp's avatar
 
knopp committed
419
#ifdef DEBUG_MEAS
420
      LOG_D(PHY,"[eNB %d] lte_ue_measurements: RSSI %d dBm, RSSI (digital) %d dB\n",
knopp's avatar
 
knopp committed
421 422 423
	     eNB_id,phy_vars_ue->PHY_measurements.rx_rssi_dBm[eNB_id],
	     phy_vars_ue->PHY_measurements.rx_power_avg_dB[eNB_id]);
#endif
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    }
    phy_vars_ue->PHY_measurements.n0_power_avg_dB = dB_fixed( phy_vars_ue->PHY_measurements.n0_power_avg);

    for (eNB_id = 0; eNB_id < phy_vars_ue->n_connected_eNB; eNB_id++) {
      if (frame_parms->mode1_flag==0) {
	// cqi/pmi information
      
	for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
	  dl_ch0    = &phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][aarx][4];
	  dl_ch1    = &phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][2+aarx][4];
	
	  for (subband=0;subband<7;subband++) {
	  
	    // cqi
	    if (aarx==0)
	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband]=0;
	  
	    if (subband<6) {
	      /*
		for (i=0;i<48;i++)
		msg("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]);
	      */
	      phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] = 
knopp's avatar
 
knopp committed
447
		(signal_energy_nodc(dl_ch0,48) + signal_energy_nodc(dl_ch1,48));
448 449 450 451 452 453 454 455 456 457 458 459 460 461
	      if ( phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] < 0)
		phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband]=0;
	      /*
	      else
		phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband]-=phy_vars_ue->PHY_measurements.n0_power[aarx];
	      */

	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
	      phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
											      phy_vars_ue->PHY_measurements.n0_power[aarx]);
	    }
	    else {
	      //	    for (i=0;i<12;i++)
	      //	      printf("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]); 
knopp's avatar
 
knopp committed
462
	      phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] = (signal_energy_nodc(dl_ch0,12) + signal_energy_nodc(dl_ch1,12)); // - phy_vars_ue->PHY_measurements.n0_power[aarx];
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
	      phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
											      phy_vars_ue->PHY_measurements.n0_power[aarx]);			
	    }
	    dl_ch1+=48;
	    dl_ch0+=48;
	    //	  msg("subband_cqi[%d][%d][%d] => %d (%d dB)\n",eNB_id,aarx,subband,phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband]);
	  }
	
	}
	for (subband=0;subband<7;subband++) {
	  phy_vars_ue->PHY_measurements.subband_cqi_tot_dB[eNB_id][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband],phy_vars_ue->PHY_measurements.n0_power_tot);
	  //	  msg("subband_cqi_tot[%d][%d] => %d dB (n0 %d)\n",eNB_id,subband,phy_vars_ue->PHY_measurements.subband_cqi_tot_dB[eNB_id][subband],phy_vars_ue->PHY_measurements.n0_power_tot);
	}	
      
	for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
        // skip the first 4 RE due to interpolation filter length of 5 (not possible to skip 5 due to 128i alignment, must be multiple of 128bit)
	  dl_ch0_128    = (__m128i *)&phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][aarx][4];
	  dl_ch1_128    = (__m128i *)&phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][2+aarx][4];
	  /*
	    #ifdef DEBUG_PHY	
	    if(eNB_id==0){
	    print_shorts("Ch0",dl_ch0_128);
	    print_shorts("Ch1",dl_ch1_128);
	    printf("eNB_ID = %d\n",eNB_id);
	    }
	    #endif
	  */
	  for (subband=0;subband<7;subband++) {
	  
	  
	    // pmi
	  
	    pmi128_re = _mm_xor_si128(pmi128_re,pmi128_re);
	    pmi128_im = _mm_xor_si128(pmi128_im,pmi128_im);
	    // limit is the number of groups of 4 REs in a subband (12 = 4 RBs, 3 = 1 RB)
	    // for 5 MHz channelization, there are 7 subbands, 6 of size 4 RBs and 1 of size 1 RB
	    limit = (subband < 6) ? 12 : 3;
	    for (i=0;i<limit;i++) {
	    
	      // For each RE in subband perform ch0 * conj(ch1)
	      // multiply by conjugated channel
	      // if(eNB_id==0){
	      //print_shorts("ch0",dl_ch0_128);
	      //print_shorts("ch1",dl_ch1_128);
	      // }
	      // if(i==0){
	      mmtmpPMI0 = _mm_xor_si128(mmtmpPMI0,mmtmpPMI0);
	      mmtmpPMI1 = _mm_xor_si128(mmtmpPMI1,mmtmpPMI1);
	      //	    }
	      // if(eNB_id==0)
	      // print_ints("Pre_re",&mmtmpPMI0);

	      mmtmpPMI0 = _mm_madd_epi16(dl_ch0_128[0],dl_ch1_128[0]);
	      //  if(eNB_id==0)
	      //  print_ints("re",&mmtmpPMI0);
	    
	      // mmtmpPMI0 contains real part of 4 consecutive outputs (32-bit)
	      // print_shorts("Ch1",dl_ch1_128);
	    
	      mmtmpPMI1 = _mm_shufflelo_epi16(dl_ch1_128[0],_MM_SHUFFLE(2,3,0,1));//_MM_SHUFFLE(2,3,0,1)
	      // print_shorts("mmtmpPMI1:",&mmtmpPMI1);
	      mmtmpPMI1 = _mm_shufflehi_epi16(mmtmpPMI1,_MM_SHUFFLE(2,3,0,1));
	      // print_shorts("mmtmpPMI1:",&mmtmpPMI1);

	      mmtmpPMI1 = _mm_sign_epi16(mmtmpPMI1,*(__m128i*)&conjugate[0]);
	      // print_shorts("mmtmpPMI1:",&mmtmpPMI1);
	      mmtmpPMI1 = _mm_madd_epi16(mmtmpPMI1,dl_ch0_128[0]);
	      //  if(eNB_id==0)
	      //  print_ints("im",&mmtmpPMI1);
	      // mmtmpPMI1 contains imag part of 4 consecutive outputs (32-bit)
	    
	      pmi128_re = _mm_add_epi32(pmi128_re,mmtmpPMI0);
	      pmi128_im = _mm_add_epi32(pmi128_im,mmtmpPMI1);
	      dl_ch0_128++;
	      dl_ch1_128++;
	    }
	    phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx] = (((int *)&pmi128_re)[0] + ((int *)&pmi128_re)[1] + ((int *)&pmi128_re)[2] + ((int *)&pmi128_re)[3])>>2;
	    //	  if(eNB_id==0)
	    // printf("in lte_ue_measurements.c: pmi_re %d\n",phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx]);
	    phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx] = (((int *)&pmi128_im)[0] + ((int *)&pmi128_im)[1] + ((int *)&pmi128_im)[2] + ((int *)&pmi128_im)[3])>>2;
	    //	  if(eNB_id==0)
	    // printf("in lte_ue_measurements.c: pmi_im %d\n",phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx]);
	    phy_vars_ue->PHY_measurements.wideband_pmi_re[eNB_id][aarx] += phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx];	  phy_vars_ue->PHY_measurements.wideband_pmi_im[eNB_id][aarx] += phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx];
	    //	    msg("subband_pmi[%d][%d][%d] => (%d,%d)\n",eNB_id,subband,aarx,phy_vars_ue->PHY_measurements.subband_pmi_re[eNB_id][subband][aarx],phy_vars_ue->PHY_measurements.subband_pmi_im[eNB_id][subband][aarx]);
	  
	  } // subband loop
	} // rx antenna loop  
      }  // if frame_parms->mode1_flag == 0
      else {
	// cqi information only for mode 1
	for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++) {
	  dl_ch0    = &phy_vars_ue->lte_ue_common_vars.dl_ch_estimates[eNB_id][aarx][4];
	
	  for (subband=0;subband<7;subband++) {
	  
	    // cqi
	    if (aarx==0)
	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband]=0;
	  
	    if (subband<6) {
	      //	    for (i=0;i<48;i++)
	      //	      printf("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]);
	      phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] = 
knopp's avatar
 
knopp committed
567
		(signal_energy_nodc(dl_ch0,48) ) - phy_vars_ue->PHY_measurements.n0_power[aarx];
568 569 570 571 572 573 574 575
	    
	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
	      phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
											      phy_vars_ue->PHY_measurements.n0_power[aarx]);
	    }
	    else {
	      //	    for (i=0;i<12;i++)
	      //	      printf("subband %d (%d) : %d,%d\n",subband,i,((short *)dl_ch0)[2*i],((short *)dl_ch0)[1+(2*i)]); 
knopp's avatar
 
knopp committed
576
	      phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband] = (signal_energy_nodc(dl_ch0,12) ) - phy_vars_ue->PHY_measurements.n0_power[aarx];
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	      phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband] += phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband];
	      phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],
											      phy_vars_ue->PHY_measurements.n0_power[aarx]);							
	    }
	    dl_ch1+=48;
	    //	  msg("subband_cqi[%d][%d][%d] => %d (%d dB)\n",eNB_id,aarx,subband,phy_vars_ue->PHY_measurements.subband_cqi[eNB_id][aarx][subband],phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][aarx][subband]);
	  }
	}
	for (subband=0;subband<7;subband++) {
	  phy_vars_ue->PHY_measurements.subband_cqi_tot_dB[eNB_id][subband] = dB_fixed2(phy_vars_ue->PHY_measurements.subband_cqi_tot[eNB_id][subband],phy_vars_ue->PHY_measurements.n0_power_tot);
	}
      }

      phy_vars_ue->PHY_measurements.rank[eNB_id] = 0;
      for (i=0;i<NUMBER_OF_SUBBANDS;i++) {
	phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 0;
	if (frame_parms->nb_antennas_rx>1) {
	  if (phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][0][i] >= phy_vars_ue->PHY_measurements.subband_cqi_dB[eNB_id][1][i])
	    phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 0;
	  else
	    phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 1;
	}
	else
	  phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i] = 0;
      }
      // if(eNB_id==0)
      // printf("in lte_ue_measurements: selected rx_antenna[eNB_id==0]:%u\n", phy_vars_ue->PHY_measurements.selected_rx_antennas[eNB_id][i]);
    }  // eNB_id loop

    _mm_empty();
    _m_empty();

  }


gauthier's avatar
gauthier committed
612
  void lte_ue_measurements_emul(PHY_VARS_UE *phy_vars_ue,uint8_t last_slot,uint8_t eNB_id) {
613 614 615 616

    msg("[PHY] EMUL UE lte_ue_measurements_emul last slot %d, eNB_id %d\n",last_slot,eNB_id);
  }