proto.h 71.1 KB
Newer Older
1
/*******************************************************************************
ghaddab's avatar
ghaddab committed
2 3
    OpenAirInterface 
    Copyright(c) 1999 - 2014 Eurecom
4

ghaddab's avatar
ghaddab committed
5 6 7 8
    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
9 10


ghaddab's avatar
ghaddab committed
11 12 13 14
    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
15

ghaddab's avatar
ghaddab committed
16 17 18 19
    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is 
   included in this distribution in the file called "COPYING". If not, 
   see <http://www.gnu.org/licenses/>.
20 21

  Contact Information
ghaddab's avatar
ghaddab committed
22 23 24 25
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
  OpenAirInterface Dev  : openair4g-devel@eurecom.fr
  
ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
27

ghaddab's avatar
ghaddab committed
28
 *******************************************************************************/
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

/*! \file PHY/LTE_TRANSPORT/proto.h
 * \brief Function prototypes for PHY physical/transport channel processing and generation V8.6 2009-03
 * \author R. Knopp, F. Kaltenberger
 * \date 2011
 * \version 0.1
 * \company Eurecom
 * \email: knopp@eurecom.fr
 * \note
 * \warning
 */
#ifndef __LTE_TRANSPORT_PROTO__H__
#define __LTE_TRANSPORT_PROTO__H__
#include "PHY/defs.h"
#include <math.h>

// Functions below implement 36-211 and 36-212

/** @addtogroup _PHY_TRANSPORT_
 * @{
 */

/** \fn free_eNB_dlsch(LTE_eNB_DLSCH_t *dlsch)
    \brief This function frees memory allocated for a particular DLSCH at eNB
    @param dlsch Pointer to DLSCH to be removed
*/
void free_eNB_dlsch(LTE_eNB_DLSCH_t *dlsch);

void clean_eNb_dlsch(LTE_eNB_DLSCH_t *dlsch, uint8_t abstraction_flag);

/** \fn new_eNB_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint8_t abstraction_flag)
    \brief This function allocates structures for a particular DLSCH at eNB
    @returns Pointer to DLSCH to be removed
    @param Kmimo Kmimo factor from 36-212/36-213
    @param Mdlharq Maximum number of HARQ rounds (36-212/36-213)
    @params N_RB_DL total number of resource blocks (determine the operating BW)
    @param abstraction_flag Flag to indicate abstracted interface
*/
LTE_eNB_DLSCH_t *new_eNB_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint8_t N_RB_DL, uint8_t abstraction_flag);

/** \fn free_ue_dlsch(LTE_UE_DLSCH_t *dlsch)
    \brief This function frees memory allocated for a particular DLSCH at UE
    @param dlsch Pointer to DLSCH to be removed
*/
void free_ue_dlsch(LTE_UE_DLSCH_t *dlsch);

LTE_UE_DLSCH_t *new_ue_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint8_t max_turbo_iterations,uint8_t N_RB_DL, uint8_t abstraction_flag);

void free_eNB_dlsch(LTE_eNB_DLSCH_t *dlsch);

LTE_eNB_ULSCH_t *new_eNB_ulsch(uint8_t Mdlharq,uint8_t max_turbo_iterations,uint8_t N_RB_UL, uint8_t abstraction_flag);

void clean_eNb_ulsch(LTE_eNB_ULSCH_t *ulsch, uint8_t abstraction_flag);

void free_ue_ulsch(LTE_UE_ULSCH_t *ulsch);

LTE_UE_ULSCH_t *new_ue_ulsch(uint8_t Mdlharq, unsigned char N_RB_UL, uint8_t abstraction_flag);



/** \fn dlsch_encoding(uint8_t *input_buffer,
    LTE_DL_FRAME_PARMS *frame_parms,
    uint8_t num_pdcch_symbols,
    LTE_eNB_DLSCH_t *dlsch,
    int frame,
    uint8_t subframe)
    \brief This function performs a subset of the bit-coding functions for LTE as described in 36-212, Release 8.Support is limited to turbo-coded channels (DLSCH/ULSCH). The implemented functions are:
    - CRC computation and addition
    - Code block segmentation and sub-block CRC addition
    - Channel coding (Turbo coding)
    - Rate matching (sub-block interleaving, bit collection, selection and transmission
    - Code block concatenation
    @param input_buffer Pointer to input buffer for sub-frame
    @param frame_parms Pointer to frame descriptor structure
    @param num_pdcch_symbols Number of PDCCH symbols in this subframe
    @param dlsch Pointer to dlsch to be encoded
    @param frame Frame number
    @param subframe Subframe number
    @param rm_stats Time statistics for rate-matching
    @param te_stats Time statistics for turbo-encoding
    @param i_stats Time statistics for interleaving
    @returns status
*/
112
int32_t dlsch_encoding(uint8_t *a,
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
		   LTE_DL_FRAME_PARMS *frame_parms,
		   uint8_t num_pdcch_symbols,
		   LTE_eNB_DLSCH_t *dlsch,
		   int frame,
		   uint8_t subframe,
		   time_stats_t *rm_stats,
		   time_stats_t *te_stats,
		   time_stats_t *i_stats);

void dlsch_encoding_emul(PHY_VARS_eNB *phy_vars_eNB,
			 uint8_t *DLSCH_pdu,
			 LTE_eNB_DLSCH_t *dlsch);


// Functions below implement 36-211

/** \fn allocate_REs_in_RB(mod_sym_t **txdataF,
    uint32_t *jj,
    uint16_t re_offset,
    uint32_t symbol_offset,
    uint8_t *output,
    MIMO_mode_t mimo_mode,
    uint8_t nu,
    uint8_t pilots,
    uint8_t mod_order,
    uint8_t precoder_index,
139
    int16_t amp,
140 141 142 143 144
    int16_t *qam_table_s,
    uint32_t *re_allocated,
    uint8_t skip_dc,
    uint8_t skip_half,
    uint8_t use2ndpilots,
145 146
    uint8_t Nlayers,
    uint8_t firstlayer,
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    LTE_DL_FRAME_PARMS *frame_parms);

    \brief Fills RB with data
    \param txdataF pointer to output data (frequency domain signal)
    \param jj index to output
    \param re_offset index of the first RE of the RB
    \param symbol_offset index to the OFDM symbol
    \param output output of the channel coder, one bit per byte
    \param mimo_mode MIMO mode
    \param nu Layer index
    \param pilots =1 if symbol_offset is an OFDM symbol that contains pilots, 0 otherwise
    \param mod_order 2=QPSK, 4=16QAM, 6=64QAM
    \param precoder_index 36-211 W precoder column (1 layer) or matrix (2 layer) selection index
    \param amp Amplitude for symbols
    \param qam_table_s pointer to scaled QAM table (by rho_a or rho_b)
    \param re_allocated pointer to allocation counter
    \param skip_dc offset for positive RBs
    \param skip_half indicate that first or second half of RB must be skipped for PBCH/PSS/SSS
    \param use2ndpilots Set to use the pilots from antenna port 1 for PDSCH
166 167
    \param Nlayers Number of layers for this codeword
    \param firstlayer Index of first layer (minus 7, i.e. 0..7 <-> p=7,...,14
168 169 170
    \param frame_parms Frame parameter descriptor
*/

171
int32_t allocate_REs_in_RB(mod_sym_t **txdataF,
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
			   uint32_t *jj,
			   uint16_t re_offset,
			   uint32_t symbol_offset,
			   uint8_t *output,
			   MIMO_mode_t mimo_mode,
			   uint8_t nu,
			   uint8_t pilots,
			   uint8_t mod_order,
			   uint8_t precoder_index,
			   int16_t amp,
			   int16_t *qam_table_s,
			   uint32_t *re_allocated,
			   uint8_t skip_dc,
			   uint8_t skip_half,
			   uint8_t use2ndpilots,
			   uint8_t Nlayers,
			   uint8_t firstlayer,
			   LTE_DL_FRAME_PARMS *frame_parms);
190

191 192
/** \fn int32_t dlsch_modulation(mod_sym_t **txdataF,
    int16_t amp,
193 194 195 196 197 198 199 200 201 202 203 204 205 206
    uint32_t sub_frame_offset,
    LTE_DL_FRAME_PARMS *frame_parms,
    uint8_t num_pdcch_symbols,
    LTE_eNB_DLSCH_t *dlsch);

    \brief This function is the top-level routine for generation of the sub-frame signal (frequency-domain) for DLSCH.  
    @param txdataF Table of pointers for frequency-domain TX signals
    @param amp Amplitude of signal
    @param sub_frame_offset Offset of this subframe in units of subframes (usually 0)
    @param frame_parms Pointer to frame descriptor
    @param num_pdcch_symbols Number of PDCCH symbols in this subframe
    @param dlsch Pointer to DLSCH descriptor for this allocation

*/ 
207 208
int32_t dlsch_modulation(mod_sym_t **txdataF,
		     int16_t amp,
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
		     uint32_t sub_frame_offset,
		     LTE_DL_FRAME_PARMS *frame_parms,
		     uint8_t num_pdcch_symbols,
		     LTE_eNB_DLSCH_t *dlsch);
/*
  \brief This function is the top-level routine for generation of the sub-frame signal (frequency-domain) for MCH.  
  @param txdataF Table of pointers for frequency-domain TX signals
  @param amp Amplitude of signal
  @param subframe_offset Offset of this subframe in units of subframes (usually 0)
  @param frame_parms Pointer to frame descriptor
  @param dlsch Pointer to DLSCH descriptor for this allocation
*/
int mch_modulation(mod_sym_t **txdataF,
		   int16_t amp,
		   uint32_t subframe_offset,
		   LTE_DL_FRAME_PARMS *frame_parms,
		   LTE_eNB_DLSCH_t *dlsch);

/** \brief Top-level generation function for eNB TX of MBSFN
    @param phy_vars_eNB Pointer to eNB variables
    @param subframe Subframe for PMCH
    @param a Pointer to transport block
231 232
    @param abstraction_flag 

233
*/
234
void generate_mch(PHY_VARS_eNB *phy_vars_eNB,int subframe,uint8_t *a,int abstraction_flag);
235 236 237 238

/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
    @param phy_vars_eNB Pointer to eNB variables
    @param mcs MCS for MBSFN
239 240 241 242
    @param ndi new data indicator
    @param rdvix
    @param abstraction_flag 

243
*/
244
void fill_eNB_dlsch_MCH(PHY_VARS_eNB *phy_vars_eNB,int mcs,int ndi,int rvidx,int abstraction_flag);
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
    @param phy_vars_ue Pointer to UE variables
    @param mcs MCS for MBSFN
    @param eNB_id index of eNB in ue variables
*/
void fill_UE_dlsch_MCH(PHY_VARS_UE *phy_vars_ue,int mcs,int ndi,int rvidx,int eNB_id);

/** \brief Receiver processing for MBSFN, symbols can be done separately for time/CPU-scheduling purposes
    @param phy_vars_ue Pointer to UE variables
    @param eNB_id index of eNB in ue variables
    @param subframe Subframe index of PMCH
    @param symbol Symbol index on which to act
*/
int rx_pmch(PHY_VARS_UE *phy_vars_ue,
	    unsigned char eNB_id,
	    uint8_t subframe,
	    unsigned char symbol);

/** \brief Dump OCTAVE/MATLAB files for PMCH debugging
    @param phy_vars_ue Pointer to UE variables
    @param eNB_id index of eNB in ue variables
    @param coded_bits_per_codeword G from 36.211
    @param subframe Index of subframe
    @returns 0 on success
*/
void dump_mch(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint16_t coded_bits_per_codeword,int subframe);


/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
    for N subframes.
    @param phy_vars_eNB Pointer to eNB variables
    @param txdataF Table of pointers for frequency-domain TX signals
    @param amp Amplitude of signal
    @param N Number of sub-frames to generate
*/
void generate_pilots(PHY_VARS_eNB *phy_vars_eNB,
		     mod_sym_t **txdataF,
283
		     int16_t amp,
284 285 286 287 288 289 290 291 292 293
		     uint16_t N);

/**
   \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals) for one slot only
   @param phy_vars_eNB Pointer to eNB variables
   @param txdataF Table of pointers for frequency-domain TX signals
   @param amp Amplitude of signal
   @param slot index (0..19)
   @param first_pilot_only (0 no)
*/
294
int32_t generate_pilots_slot(PHY_VARS_eNB *phy_vars_eNB,
295
			 mod_sym_t **txdataF,
296
			 int16_t amp,
297 298 299
			 uint16_t slot,
			 int first_pilot_only);
			 
300
int32_t generate_mbsfn_pilot(PHY_VARS_eNB *phy_vars_eNB,
301
			 mod_sym_t **txdataF,
302
			 int16_t amp,
303 304
			 uint16_t subframe);

305 306
int32_t generate_pss(mod_sym_t **txdataF,
		 int16_t amp,
307 308 309 310
		 LTE_DL_FRAME_PARMS *frame_parms,
		 uint16_t l,
		 uint16_t Ns);

311
int32_t generate_pss_emul(PHY_VARS_eNB *phy_vars_eNB,uint8_t sect_id);
312

313
int32_t generate_sss(mod_sym_t **txdataF,
314 315 316 317 318
		 short amp,
		 LTE_DL_FRAME_PARMS *frame_parms,
		 unsigned short symbol,
		 unsigned short slot_offset);

319
int32_t generate_pbch(LTE_eNB_PBCH *eNB_pbch,
320
		  mod_sym_t **txdataF,
321
		  int32_t amp,
322 323 324 325
		  LTE_DL_FRAME_PARMS *frame_parms,
		  uint8_t *pbch_pdu,
		  uint8_t frame_mod4);

326
int32_t generate_pbch_emul(PHY_VARS_eNB *phy_vars_eNB,uint8_t *pbch_pdu);
327 328 329 330 331 332 333

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/QPSK reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
334 335 336 337 338
void qpsk_qpsk(int16_t *stream0_in,
	       int16_t *stream1_in,
	       int16_t *stream0_out,
	       int16_t *rho01,
	       int32_t length);
339 340 341 342 343 344 345 346 347 348 349 350

/** \brief This function perform LLR computation for dual-stream (QPSK/QPSK) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr*/
351 352 353 354 355
int32_t dlsch_qpsk_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
			int32_t **rxdataF_comp,
			int32_t **rxdataF_comp_i,
			int32_t **rho_i,
			int16_t *dlsch_llr,
356 357 358 359
			uint8_t symbol,
			uint8_t first_symbol_flag,
			uint16_t nb_rb,
			uint16_t pbch_pss_sss_adj,
360
			int16_t **llr128p);
361 362 363 364 365 366 367 368

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/16QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
369 370
void qpsk_qam16(int16_t *stream0_in,
                int16_t *stream1_in,
371
                short *ch_mag_i,
372 373 374
                int16_t *stream0_out,
                int16_t *rho01,
                int32_t length);
375 376 377 378 379 380 381 382 383 384 385 386

/** \brief This function perform LLR computation for dual-stream (QPSK/16QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr*/
387 388 389
int32_t dlsch_qpsk_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
			 int32_t **rxdataF_comp,
			 int32_t **rxdataF_comp_i,
390
			 int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
391 392
			 int32_t **rho_i,
			 int16_t *dlsch_llr,
393 394 395 396
			 uint8_t symbol,
			 uint8_t first_symbol_flag,
			 uint16_t nb_rb,
			 uint16_t pbch_pss_sss_adj,
397
			 int16_t **llr128p);
398 399 400 401 402 403 404 405

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
406 407
void qpsk_qam64(int16_t *stream0_in,
                int16_t *stream1_in,
408
                short *ch_mag_i,
409 410 411
                int16_t *stream0_out,
                int16_t *rho01,
                int32_t length);
412 413 414 415 416 417 418 419 420 421 422 423

/** \brief This function perform LLR computation for dual-stream (QPSK/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr*/
424 425 426
int32_t dlsch_qpsk_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
			 int32_t **rxdataF_comp,
			 int32_t **rxdataF_comp_i,
427
			 int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
428 429
			 int32_t **rho_i,
			 int16_t *dlsch_llr,
430 431 432 433
			 uint8_t symbol,
			 uint8_t first_symbol_flag,
			 uint16_t nb_rb,
			 uint16_t pbch_pss_sss_adj,
434
			 int16_t **llr128p);
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690


/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/QPSK reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam16_qpsk(short *stream0_in,
                short *stream1_in,
                short *ch_mag,
                short *stream0_out,
                short *rho01,
                int length); 
/** \brief This function perform LLR computation for dual-stream (16QAM/QPSK) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
                         int **rxdataF_comp,
                         int **rxdataF_comp_i,
                         int **dl_ch_mag,   //|h_0|^2*(2/sqrt{10})
                         int **rho_i,
                         short *dlsch_llr,
                         unsigned char symbol,
                         unsigned char first_symbol_flag,
                         unsigned short nb_rb,
                         uint16_t pbch_pss_sss_adjust,
                         short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/16QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam16_qam16(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (16QAM/16QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,   //|h_0|^2*(2/sqrt{10})
                          int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam16_qam64(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (16QAM/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,   //|h_0|^2*(2/sqrt{10})
                          int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam64_qpsk(short *stream0_in,
                short *stream1_in,
                short *ch_mag,
                short *stream0_out,
                short *rho01,
                int length);

/** \brief This function perform LLR computation for dual-stream (64QAM/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
                         int **rxdataF_comp,
                         int **rxdataF_comp_i,
                         int **dl_ch_mag,
                         int **rho_i,
                         short *dlsch_llr,
                         unsigned char symbol,
                         unsigned char first_symbol_flag,
                         unsigned short nb_rb,
                         uint16_t pbch_pss_sss_adjust,
                         short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/16QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam64_qam16(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (64QAM/16QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,
                          int **dl_ch_mag_i,
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam64_qam64(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (64QAM/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,
                          int **dl_ch_mag_i,
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);


/** \brief This function generates log-likelihood ratios (decoder input) for single-stream QPSK received waveforms.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag 
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr
*/
691 692 693
int32_t dlsch_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
		   int32_t **rxdataF_comp,
		   int16_t *dlsch_llr,
694 695 696 697
		   uint8_t symbol,
		   uint8_t first_symbol_flag,
		   uint16_t nb_rb,
		   uint16_t pbch_pss_sss_adj,
698
		   int16_t **llr128p);
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713

/**
   \brief This function generates log-likelihood ratios (decoder input) for single-stream 16QAM received waveforms
   @param frame_parms Frame descriptor structure
   @param rxdataF_comp Compensated channel output
   @param dlsch_llr llr output
   @param dl_ch_mag Squared-magnitude of channel in each resource element position corresponding to allocation and weighted for mid-point in 16QAM constellation
   @param symbol OFDM symbol index in sub-frame
   @param first_symbol_flag
   @param nb_rb number of RBs for this allocation
   @param pbch_pss_sss_adjust  Adjustment factor in RE for PBCH/PSS/SSS allocations
   @param llr128p pointer to pointer to symbol in dlsch_llr
*/

void dlsch_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
714 715 716
		     int32_t **rxdataF_comp,
		     int16_t *dlsch_llr,
		     int32_t **dl_ch_mag,
717 718 719 720
		     uint8_t symbol,
		     uint8_t first_symbol_flag,
		     uint16_t nb_rb,
		     uint16_t pbch_pss_sss_adjust,
721
		     int16_t **llr128p);
722 723 724 725 726 727 728 729 730 731 732 733 734 735

/**
   \brief This function generates log-likelihood ratios (decoder input) for single-stream 16QAM received waveforms
   @param frame_parms Frame descriptor structure
   @param rxdataF_comp Compensated channel output
   @param dlsch_llr llr output
   @param dl_ch_mag Squared-magnitude of channel in each resource element position corresponding to allocation, weighted by first mid-point of 64-QAM constellation
   @param dl_ch_magb Squared-magnitude of channel in each resource element position corresponding to allocation, weighted by second mid-point of 64-QAM constellation
   @param symbol OFDM symbol index in sub-frame
   @param first_symbol_flag
   @param nb_rb number of RBs for this allocation
   @param pbch_pss_sss_adjust PBCH/PSS/SSS RE adjustment (in REs)
*/
void dlsch_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
736 737 738 739
		     int32_t **rxdataF_comp,
		     int16_t *dlsch_llr,
		     int32_t **dl_ch_mag,
		     int32_t **dl_ch_magb,
740 741 742 743 744 745 746
		     uint8_t symbol,
		     uint8_t first_symbol_flag,
		     uint16_t nb_rb,
		     uint16_t pbch_pss_sss_adjust,
		     short **llr_save);

/** \fn dlsch_siso(LTE_DL_FRAME_PARMS *frame_parms,
747 748
    int32_t **rxdataF_comp,
    int32_t **rxdataF_comp_i,
749 750 751 752 753 754 755 756 757 758 759
    uint8_t l,
    uint16_t nb_rb)
    \brief This function does the first stage of llr computation for SISO, by just extracting the pilots, PBCH and primary/secondary synchronization sequences.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param l symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
*/

void dlsch_siso(LTE_DL_FRAME_PARMS *frame_parms,
760 761
		int32_t **rxdataF_comp,
		int32_t **rxdataF_comp_i,
762 763 764 765
		uint8_t l,
		uint16_t nb_rb);

/** \fn dlsch_alamouti(LTE_DL_FRAME_PARMS *frame_parms,
766 767 768
    int32_t **rxdataF_comp,
    int32_t **dl_ch_mag,
    int32_t **dl_ch_magb,
769 770 771 772 773 774 775 776 777 778 779
    uint8_t symbol,
    uint16_t nb_rb)
    \brief This function does Alamouti combining on RX and prepares LLR inputs by skipping pilots, PBCH and primary/secondary synchronization signals.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param symbol Symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
*/
void dlsch_alamouti(LTE_DL_FRAME_PARMS *frame_parms,
780 781 782
		    int32_t **rxdataF_comp,
		    int32_t **dl_ch_mag,
		    int32_t **dl_ch_magb,
783 784 785 786
		    uint8_t symbol,
		    uint16_t nb_rb);

/** \fn dlsch_antcyc(LTE_DL_FRAME_PARMS *frame_parms,
787 788 789
    int32_t **rxdataF_comp,
    int32_t **dl_ch_mag,
    int32_t **dl_ch_magb,
790 791 792 793 794 795 796 797 798 799 800
    uint8_t symbol,
    uint16_t nb_rb)
    \brief This function does antenna selection (based on antenna cycling pattern) on RX and prepares LLR inputs by skipping pilots, PBCH and primary/secondary synchronization signals.  Note that this is not LTE, it is just included for comparison purposes.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param symbol Symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
*/
void dlsch_antcyc(LTE_DL_FRAME_PARMS *frame_parms,
801 802 803
		  int32_t **rxdataF_comp,
		  int32_t **dl_ch_mag,
		  int32_t **dl_ch_magb,
804 805 806 807
		  uint8_t symbol,
		  uint16_t nb_rb);

/** \fn dlsch_detection_mrc(LTE_DL_FRAME_PARMS *frame_parms,
808 809 810 811 812 813
    int32_t **rxdataF_comp,
    int32_t **rxdataF_comp_i,
    int32_t **rho,
    int32_t **rho_i,
    int32_t **dl_ch_mag,
    int32_t **dl_ch_magb,
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
    uint8_t symbol,
    uint16_t nb_rb,
    uint8_t dual_stream_UE)

    \brief This function does maximal-ratio combining for dual-antenna receivers.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho Cross correlation between spatial channels
    @param rho_i Cross correlation between signal and inteference channels
    @param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param symbol Symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
    @param dual_stream_UE Flag to indicate dual-stream detection
*/
void dlsch_detection_mrc(LTE_DL_FRAME_PARMS *frame_parms,
831 832 833 834 835 836 837 838
			 int32_t **rxdataF_comp,
			 int32_t **rxdataF_comp_i,
			 int32_t **rho,
			 int32_t **rho_i,
			 int32_t **dl_ch_mag,
			 int32_t **dl_ch_magb,
			 int32_t **dl_ch_mag_i,
			 int32_t **dl_ch_magb_i,
839 840 841 842
			 uint8_t symbol,
			 uint16_t nb_rb,
			 uint8_t dual_stream_UE);

843 844 845 846
/** \fn dlsch_extract_rbs_single(int32_t **rxdataF,
    int32_t **dl_ch_estimates,
    int32_t **rxdataF_ext,
    int32_t **dl_ch_estimates_ext,
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
    uint16_t pmi,
    uint8_t *pmi_ext,
    uint32_t *rb_alloc,
    uint8_t symbol,
    uint8_t subframe,
    LTE_DL_FRAME_PARMS *frame_parms)
    \brief This function extracts the received resource blocks, both channel estimates and data symbols,
    for the current allocation and for single antenna eNB transmission.
    @param rxdataF Raw FFT output of received signal
    @param dl_ch_estimates Channel estimates of current slot
    @param rxdataF_ext FFT output for RBs in this allocation
    @param dl_ch_estimates_ext Channel estimates for RBs in this allocation
    @param pmi subband Precoding matrix indicator
    @param pmi_ext Extracted PMI for chosen RBs
    @param rb_alloc RB allocation vector
    @param symbol Symbol to extract
    @param subframe Subframe number
    @param frame_parms Pointer to frame descriptor
*/
866 867 868 869
uint16_t dlsch_extract_rbs_single(int32_t **rxdataF,
				  int32_t **dl_ch_estimates,
				  int32_t **rxdataF_ext,
				  int32_t **dl_ch_estimates_ext,
870 871 872 873 874 875 876
				  uint16_t pmi,
				  uint8_t *pmi_ext,
				  uint32_t *rb_alloc,
				  uint8_t symbol,
				  uint8_t subframe,
				  LTE_DL_FRAME_PARMS *frame_parms);

877 878 879 880
/** \fn dlsch_extract_rbs_dual(int32_t **rxdataF,
    int32_t **dl_ch_estimates,
    int32_t **rxdataF_ext,
    int32_t **dl_ch_estimates_ext,
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
    uint16_t pmi,
    uint8_t *pmi_ext,
    uint32_t *rb_alloc,
    uint8_t symbol,
    LTE_DL_FRAME_PARMS *frame_parms)
    \brief This function extracts the received resource blocks, both channel estimates and data symbols,
    for the current allocation and for dual antenna eNB transmission.
    @param rxdataF Raw FFT output of received signal
    @param dl_ch_estimates Channel estimates of current slot
    @param rxdataF_ext FFT output for RBs in this allocation
    @param dl_ch_estimates_ext Channel estimates for RBs in this allocation
    @param pmi subband Precoding matrix indicator
    @param pmi_ext Extracted PMI for chosen RBs
    @param rb_alloc RB allocation vector
    @param symbol Symbol to extract
    @param subframe Subframe index
    @param frame_parms Pointer to frame descriptor
*/
899 900 901 902
uint16_t dlsch_extract_rbs_dual(int32_t **rxdataF,
				int32_t **dl_ch_estimates,
				int32_t **rxdataF_ext,
				int32_t **dl_ch_estimates_ext,
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
				uint16_t pmi,
				uint8_t *pmi_ext,
				uint32_t *rb_alloc,
				uint8_t symbol,
				uint8_t subframe,
				LTE_DL_FRAME_PARMS *frame_parms);

/** \brief This function performs channel compensation (matched filtering) on the received RBs for this allocation.  In addition, it computes the squared-magnitude of the channel with weightings for 16QAM/64QAM detection as well as dual-stream detection (cross-correlation)
    @param rxdataF_ext Frequency-domain received signal in RBs to be demodulated
    @param dl_ch_estimates_ext Frequency-domain channel estimates in RBs to be demodulated
    @param dl_ch_mag First Channel magnitudes (16QAM/64QAM)
    @param dl_ch_magb Second weighted Channel magnitudes (64QAM)
    @param rxdataF_comp Compensated received waveform 
    @param rho Cross-correlation between two spatial channels on each RX antenna
    @param frame_parms Pointer to frame descriptor
    @param symbol Symbol on which to operate
    @param first_symbol_flag set to 1 on first DLSCH symbol
    @param mod_order Modulation order of allocation
    @param nb_rb Number of RBs in allocation
    @param output_shift Rescaling for compensated output (should be energy-normalizing)
    @param phy_measurements Pointer to UE PHY measurements
*/
925 926 927 928 929 930
void dlsch_channel_compensation(int32_t **rxdataF_ext,
				int32_t **dl_ch_estimates_ext,
				int32_t **dl_ch_mag,
				int32_t **dl_ch_magb,
				int32_t **rxdataF_comp,
				int32_t **rho,
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
				LTE_DL_FRAME_PARMS *frame_parms,
				uint8_t symbol,
				uint8_t first_symbol_flag,
				uint8_t mod_order,
				uint16_t nb_rb,
				uint8_t output_shift,
				PHY_MEASUREMENTS *phy_measurements);

void dlsch_dual_stream_correlation(LTE_DL_FRAME_PARMS *frame_parms,
                                   unsigned char symbol,
                                   unsigned short nb_rb,
                                   int **dl_ch_estimates_ext,
                                   int **dl_ch_estimates_ext_i,
                                   int **dl_ch_rho_ext,
                                   unsigned char output_shift);

void dlsch_channel_compensation_prec(int **rxdataF_ext,
				     int **dl_ch_estimates_ext,
				     int **dl_ch_mag,
				     int **dl_ch_magb,
				     int **rxdataF_comp,
				     unsigned char *pmi_ext,
				     LTE_DL_FRAME_PARMS *frame_parms,
				     PHY_MEASUREMENTS *phy_measurements,
				     int eNB_id,
				     unsigned char symbol,
				     unsigned char mod_order,
				     unsigned short nb_rb,
				     unsigned char output_shift,
				     unsigned char dl_power_off);

/** \brief This function computes the average channel level over all allocated RBs and antennas (TX/RX) in order to compute output shift for compensated signal
    @param dl_ch_estimates_ext Channel estimates in allocated RBs
    @param frame_parms Pointer to frame descriptor
    @param avg Pointer to average signal strength
    @param pilots_flag Flag to indicate pilots in symbol
    @param nb_rb Number of allocated RBs
*/
969
void dlsch_channel_level(int32_t **dl_ch_estimates_ext,
970
			 LTE_DL_FRAME_PARMS *frame_parms,
971
			 int32_t *avg,
972 973 974
			 uint8_t pilots_flag,
			 uint16_t nb_rb);

975
void dlsch_channel_level_prec(int32_t **dl_ch_estimates_ext,
976 977
                              LTE_DL_FRAME_PARMS *frame_parms,
                              unsigned char *pmi_ext,
978
                              int32_t *avg,
979 980 981
                              uint8_t symbol_mod,
                              uint16_t nb_rb);

982
void dlsch_scale_channel(int32_t **dl_ch_estimates_ext,
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
                         LTE_DL_FRAME_PARMS *frame_parms,
                         LTE_UE_DLSCH_t **dlsch_ue,
                         uint8_t symbol_mod,
                         uint16_t nb_rb);

/** \brief This is the top-level entry point for DLSCH decoding in UE.  It should be replicated on several
    threads (on multi-core machines) corresponding to different HARQ processes. The routine first 
    computes the segmentation information, followed by rate dematching and sub-block deinterleaving the of the
    received LLRs computed by dlsch_demodulation for each transport block segment. It then calls the
    turbo-decoding algorithm for each segment and stops after either after unsuccesful decoding of at least
    one segment or correct decoding of all segments.  Only the segment CRCs are check for the moment, the
    overall CRC is ignored.  Finally transport block reassembly is performed.
    @param phy_vars_ue Pointer to ue variables
    @param dlsch_llr Pointer to LLR values computed by dlsch_demodulation
    @param lte_frame_parms Pointer to frame descriptor
    @param dlsch Pointer to DLSCH descriptor
    @param subframe Subframe number
    @param num_pdcch_symbols Number of PDCCH symbols
    @param is_crnti indicates if PDSCH belongs to a CRNTI (necessary for parallelizing decoding threads)
    @param llr8_flag If 1, indicate that the 8-bit turbo decoder should be used
    @returns 0 on success, 1 on unsuccessful decoding
*/
uint32_t dlsch_decoding(PHY_VARS_UE *phy_vars_ue,
1006
			int16_t *dlsch_llr,
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
			LTE_DL_FRAME_PARMS *lte_frame_parms,
			LTE_UE_DLSCH_t *dlsch,
			LTE_DL_UE_HARQ_t *harq_process,
			uint8_t subframe,
			uint8_t harq_pid,
			uint8_t is_crnti,
			uint8_t llr8_flag);

uint32_t dlsch_decoding_emul(PHY_VARS_UE *phy_vars_ue,
			     uint8_t subframe,
			     uint8_t dlsch_id,
			     uint8_t eNB_id);

/** \brief This function is the top-level entry point to PDSCH demodulation, after frequency-domain transformation and channel estimation.  It performs
    - RB extraction (signal and channel estimates)
    - channel compensation (matched filtering)
    - RE extraction (pilot, PBCH, synch. signals)
    - antenna combining (MRC, Alamouti, cycling)
    - LLR computation
    @param phy_vars_ue Pointer to PHY variables
    @param type Type of PDSCH (SI_PDSCH,RA_PDSCH,PDSCH,PMCH)
    @param eNB_id eNb index (Nid1) 0,1,2
    @param eNB_id_i Interfering eNB index (Nid1) 0,1,2, or 3 in case of MU-MIMO IC receiver
    @param subframe Subframe number
    @param symbol Symbol on which to act (within sub-frame)
    @param first_symbol_flag set to 1 on first DLSCH symbol
    @param dual_stream_UE Flag to indicate dual-stream interference cancellation
    @param i_mod Modulation order of the interfering stream
*/
1036
int32_t rx_pdsch(PHY_VARS_UE *phy_vars_ue,
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	     PDSCH_t type,
	     uint8_t eNB_id,
	     uint8_t eNB_id_i,
	     uint8_t subframe,
	     uint8_t symbol,
	     uint8_t first_symbol_flag,
	     uint8_t dual_stream_UE,
	     uint8_t i_mod,
	     uint8_t harq_pid);

1047
int32_t rx_pdcch(LTE_UE_COMMON *lte_ue_common_vars,
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	     LTE_UE_PDCCH **lte_ue_pdcch_vars,
	     LTE_DL_FRAME_PARMS *frame_parms,
	     uint8_t subframe,
	     uint8_t eNB_id,
	     MIMO_mode_t mimo_mode,
	     uint8_t is_secondary_ue);
/*! \brief Performs detection of SSS to find cell ID and other framing parameters (FDD/TDD, normal/extended prefix)
  @param phy_vars_ue Pointer to UE variables
  @param tot_metric Pointer to variable containing maximum metric under framing hypothesis (to be compared to other hypotheses
  @param flip_max Pointer to variable indicating if start of frame is in second have of RX buffer (i.e. PSS/SSS is flipped)
  @param phase_max Pointer to variable (0 ... 6) containing rought phase offset between PSS and SSS (can be used for carrier
  frequency adjustment. 0 means -pi/3, 6 means pi/3.
  @returns 0 on success
*/
1062
int rx_sss(PHY_VARS_UE *phy_vars_ue,int32_t *tot_metric,uint8_t *flip_max,uint8_t *phase_max);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

/*! \brief receiver for the PBCH
  \returns number of tx antennas or -1 if error
*/
uint16_t rx_pbch(LTE_UE_COMMON *lte_ue_common_vars,
		 LTE_UE_PBCH *lte_ue_pbch_vars,
		 LTE_DL_FRAME_PARMS *frame_parms,
		 uint8_t eNB_id,
		 MIMO_mode_t mimo_mode,
		 uint8_t frame_mod4);

uint16_t rx_pbch_emul(PHY_VARS_UE *phy_vars_ue,
		      uint8_t eNB_id,
		      uint8_t pbch_phase);

/*! \brief PBCH scrambling. Applies 36.211 PBCH scrambling procedure.
  \param frame_parms Pointer to frame descriptor
  \param coded_data Output of the coding and rate matching
  \param length Length of the sequence*/ 
void pbch_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
		     uint8_t* coded_data,
		     uint32_t length);

/*! \brief PBCH unscrambling
  This is similar to pbch_scrabling with the difference that inputs are signed s16s (llr values) and instead of flipping bits we change signs.
  \param frame_parms Pointer to frame descriptor
  \param llr Output of the demodulator
  \param length Length of the sequence
  \param frame_mod4 Frame number modulo 4*/ 
void pbch_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
1093
		       int8_t* llr,
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
		       uint32_t length,
		       uint8_t frame_mod4);

/*! \brief DCI Encoding. This routine codes an arbitrary DCI PDU after appending the 8-bit 3GPP CRC.  It then applied sub-block interleaving and rate matching.
  \param a Pointer to DCI PDU (coded in bytes)
  \param A Length of DCI PDU in bits
  \param E Length of DCI PDU in coded bits
  \param e Pointer to sequence
  \param rnti RNTI for CRC scrambling*/ 
void dci_encoding(uint8_t *a,
		  uint8_t A,
		  uint16_t E,
		  uint8_t *e,
		  uint16_t rnti);

/*! \brief Top-level DCI entry point. This routine codes an set of DCI PDUs and performs PDCCH modulation, interleaving and mapping.
  \param num_ue_spec_dci  Number of UE specific DCI pdus to encode
  \param num_common_dci Number of Common DCI pdus to encode
  \param dci_alloc Allocation vectors for each DCI pdu
  \param n_rnti n_RNTI (see )
  \param amp Amplitude of QPSK symbols
  \param frame_parms Pointer to DL Frame parameter structure
  \param txdataF Pointer to tx signal buffers
  \param sub_frame_offset subframe offset in frame
  @returns Number of PDCCH symbols
*/ 
uint8_t generate_dci_top(uint8_t num_ue_spec_dci,
			 uint8_t num_common_dci,
			 DCI_ALLOC_t *dci_alloc, 
			 uint32_t n_rnti,
1124
			 int16_t amp,
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
			 LTE_DL_FRAME_PARMS *frame_parms,
			 mod_sym_t **txdataF,
			 uint32_t sub_frame_offset);

uint8_t generate_dci_top_emul(PHY_VARS_eNB *phy_vars_eNB,
			      uint8_t num_ue_spec_dci,
			      uint8_t num_common_dci,
			      DCI_ALLOC_t *dci_alloc,
			      uint8_t subframe); 


void generate_64qam_table(void);
void generate_16qam_table(void);

uint16_t extract_crc(uint8_t *dci,uint8_t DCI_LENGTH);

/*! \brief LLR from two streams. This function takes two streams (qpsk modulated) and calculates the LLR, considering one stream as interference.
  \param stream0_in pointer to first stream0
  \param stream1_in pointer to first stream1
  \param stream0_out pointer to output stream
  \param rho01 pointer to correlation matrix
  \param length*/ 
void qpsk_qpsk_prec(short *stream0_in,
		    short *stream1_in,
		    short *stream0_out,
		    short *rho01,
		    int length
		    );

/** \brief Attempt decoding of a particular DCI with given length and format.
    @param DCI_LENGTH length of DCI in bits
    @param DCI_FMT Format of DCI
    @param e e-sequence (soft bits)
    @param decoded_output Output of Viterbi decoder
*/
void dci_decoding(uint8_t DCI_LENGTH,
		  uint8_t DCI_FMT,
1162
		  int8_t *e,
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
		  uint8_t *decoded_output);

/** \brief Do 36.213 DCI decoding procedure by searching different RNTI options and aggregation levels.  Currently does
    not employ the complexity reducing procedure based on RNTI.
    @param phy_vars_ue UE variables
    @param dci_alloc Pointer to DCI_ALLOC_t array to store results for DLSCH/ULSCH programming
    @param do_common If 1 perform search in common search-space else ue-specific search-space 
    @param eNB_id eNB Index on which to act
    @param subframe Index of subframe
    @returns bitmap of occupied CCE positions (i.e. those detected)
*/
uint16_t dci_decoding_procedure(PHY_VARS_UE *phy_vars_ue,
				DCI_ALLOC_t *dci_alloc,
				int do_common,
1177
				int16_t eNB_id,
1178 1179 1180 1181 1182 1183 1184 1185
				uint8_t subframe);


uint16_t dci_decoding_procedure_emul(LTE_UE_PDCCH **lte_ue_pdcch_vars,
				     uint8_t num_ue_spec_dci,
				     uint8_t num_common_dci,
				     DCI_ALLOC_t *dci_alloc_tx,
				     DCI_ALLOC_t *dci_alloc_rx,
1186
				     int16_t eNB_id);
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

/** \brief Compute Q (modulation order) based on I_MCS PDSCH.  Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS */
uint8_t get_Qm(uint8_t I_MCS);

/** \brief Compute Q (modulation order) based on I_MCS for PUSCH.  Implements table 8.6.1-1 from 36.213.
    @param I_MCS */
uint8_t get_Qm_ul(uint8_t I_MCS);

/** \brief Compute I_TBS (transport-block size) based on I_MCS for PDSCH.  Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS */
uint8_t get_I_TBS(uint8_t I_MCS);

/** \brief Compute I_TBS (transport-block size) based on I_MCS for PUSCH.  Implements table 8.6.1-1 from 36.213.
    @param I_MCS */
unsigned char get_I_TBS_UL(unsigned char I_MCS);

/** \brief Compute Q (modulation order) based on downlink I_MCS. Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS
    @param nb_rb
    @return Transport block size */
1208
uint32_t get_TBS_DL(uint8_t mcs, uint16_t nb_rb);
1209 1210 1211 1212 1213

/** \brief Compute Q (modulation order) based on uplink I_MCS. Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS
    @param nb_rb
    @return Transport block size */
1214
uint32_t get_TBS_UL(uint8_t mcs, uint16_t nb_rb);
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224

/* \brief Return bit-map of resource allocation for a given DCI rballoc (RIV format) and vrb type
   @param vrb_type VRB type (0=localized,1=distributed)
   @param rb_alloc_dci rballoc field from DCI
*/
uint32_t get_rballoc(uint8_t vrb_type,uint16_t rb_alloc_dci);

/* \brief Return bit-map of resource allocation for a given DCI rballoc (RIV format) and vrb type
   @returns Transmission mode (1-7)
*/
1225
uint8_t get_transmission_mode(module_id_t Mod_id, uint8_t CC_id, rnti_t rnti);
1226

1227

1228 1229 1230 1231 1232 1233 1234
/* \brief 
   @param ra_header Header of resource allocation (0,1) (See sections 7.1.6.1/7.1.6.2 of 36.213 Rel8.6)
   @param rb_alloc Bitmap allocation from DCI (format 1,2) 
   @returns number of physical resource blocks
*/
uint32_t conv_nprb(uint8_t ra_header,uint32_t rb_alloc,int N_RB_DL);

1235
int get_G(LTE_DL_FRAME_PARMS *frame_parms,uint16_t nb_rb,uint32_t *rb_alloc,uint8_t mod_order,uint8_t Nl,uint8_t num_pdcch_symbols,int frame,uint8_t subframe);
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272

int adjust_G(LTE_DL_FRAME_PARMS *frame_parms,uint32_t *rb_alloc,uint8_t mod_order,uint8_t subframe);
int adjust_G2(LTE_DL_FRAME_PARMS *frame_parms,uint32_t *rb_alloc,uint8_t mod_order,uint8_t subframe,uint8_t symbol);


#ifndef modOrder
#define modOrder(I_MCS,I_TBS) ((I_MCS-I_TBS)*2+2) // Find modulation order from I_TBS and I_MCS
#endif

/** \fn uint8_t I_TBS2I_MCS(uint8_t I_TBS);
    \brief This function maps I_tbs to I_mcs according to Table 7.1.7.1-1 in 3GPP TS 36.213 V8.6.0. Where there is two supported modulation orders for the same I_TBS then either high or low modulation is chosen by changing the equality of the two first comparisons in the if-else statement.
    \param I_TBS Index of Transport Block Size
    \return I_MCS given I_TBS
*/
uint8_t I_TBS2I_MCS(uint8_t I_TBS);

/** \fn uint8_t SE2I_TBS(float SE,
    uint8_t N_PRB,
    uint8_t symbPerRB);
    \brief This function maps a requested throughput in number of bits to I_tbs. The throughput is calculated as a function of modulation order, RB allocation and number of symbols per RB. The mapping orginates in the "Transport block size table" (Table 7.1.7.2.1-1 in 3GPP TS 36.213 V8.6.0)
    \param SE Spectral Efficiency (before casting to integer, multiply by 1024, remember to divide result by 1024!)
    \param N_PRB Number of PhysicalResourceBlocks allocated \sa lte_frame_parms->N_RB_DL
    \param symbPerRB Number of symbols per resource block allocated to this channel
    \return I_TBS given an SE and an N_PRB
*/
uint8_t SE2I_TBS(float SE,
		 uint8_t N_PRB,
		 uint8_t symbPerRB);
/** \brief This function generates the sounding reference symbol (SRS) for the uplink according to 36.211 v8.6.0. If IFFT_FPGA is defined, the SRS is quantized to a QPSK sequence.
    @param frame_parms LTE DL Frame Parameters
    @param soundingrs_ul_config_dedicated Dynamic configuration from RRC during Connection Establishment
    @param txdataF pointer to the frequency domain TX signal
    @returns 0 on success*/
int generate_srs_rx(LTE_DL_FRAME_PARMS *frame_parms,
		    SOUNDINGRS_UL_CONFIG_DEDICATED *soundingrs_ul_config_dedicated,		    
		    int *txdataF);

1273
int32_t generate_srs_tx_emul(PHY_VARS_UE *phy_vars_ue,
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
			 uint8_t subframe);

/*!
  \brief This function is similar to generate_srs_tx but generates a conjugate sequence for channel estimation. If IFFT_FPGA is defined, the SRS is quantized to a QPSK sequence.
  @param phy_vars_ue Pointer to PHY_VARS structure
  @param eNB_id Index of destination eNB for this SRS
  @param amp Linear amplitude of SRS
  @param subframe Index of subframe on which to act
  @returns 0 on success, -1 on error with message
*/

1285
int32_t generate_srs_tx(PHY_VARS_UE *phy_vars_ue,
1286
		    uint8_t eNB_id,
1287
		    int16_t amp,
1288 1289 1290 1291 1292 1293
		    uint32_t subframe);

/*!
  \brief This function generates the downlink reference signal for the PUSCH according to 36.211 v8.6.0. The DRS occuies the RS defined by rb_alloc and the symbols 2 and 8 for extended CP and 3 and 10 for normal CP.
*/

1294
int32_t generate_drs_pusch(PHY_VARS_UE *phy_vars_ue,
1295
		       uint8_t eNB_id,
1296
		       int16_t amp,
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		       uint32_t subframe,
		       uint32_t first_rb,
		       uint32_t nb_rb,
		       uint8_t ant);

/*!
  \brief This function initializes the Group Hopping, Sequence Hopping and nPRS sequences for PUCCH/PUSCH according to 36.211 v8.6.0. It should be called after configuration of UE (reception of SIB2/3) and initial configuration of eNB (or after reconfiguration of cell-specific parameters).
  @param frame_parms Pointer to a LTE_DL_FRAME_PARMS structure (eNB or UE)*/
void init_ul_hopping(LTE_DL_FRAME_PARMS *frame_parms);

1307
int32_t compareints (const void * a, const void * b);
1308 1309 1310


void ulsch_modulation(mod_sym_t **txdataF,
1311 1312
		      int16_t amp,
		      frame_t frame,
1313 1314 1315 1316 1317
		      uint32_t subframe,
		      LTE_DL_FRAME_PARMS *frame_parms,
		      LTE_UE_ULSCH_t *ulsch);


1318 1319
void ulsch_extract_rbs_single(int32_t **rxdataF,
			      int32_t **rxdataF_ext,
1320 1321 1322 1323 1324 1325
			      uint32_t first_rb,
			      uint32_t nb_rb,
			      uint8_t l,
			      uint8_t Ns,
			      LTE_DL_FRAME_PARMS *frame_parms);

1326
uint8_t subframe2harq_pid(LTE_DL_FRAME_PARMS *frame_parms,frame_t frame,uint8_t subframe);
1327 1328 1329 1330
uint8_t subframe2harq_pid_eNBrx(LTE_DL_FRAME_PARMS *frame_parms,uint8_t subframe);

int generate_ue_dlsch_params_from_dci(uint8_t subframe,
                                      void *dci_pdu,
1331
                                      rnti_t rnti,
1332 1333 1334 1335 1336 1337 1338 1339
                                      DCI_format_t dci_format,
                                      LTE_UE_DLSCH_t **dlsch,
                                      LTE_DL_FRAME_PARMS *frame_parms,
                                      PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
                                      uint16_t si_rnti,
                                      uint16_t ra_rnti,
                                      uint16_t p_rnti);

1340
int32_t generate_eNB_dlsch_params_from_dci(uint8_t subframe,
1341
				       void *dci_pdu,
1342
				       rnti_t rnti,
1343 1344 1345 1346 1347 1348 1349 1350 1351
				       DCI_format_t dci_format,
				       LTE_eNB_DLSCH_t **dlsch_eNB,
				       LTE_DL_FRAME_PARMS *frame_parms,
				       PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
				       uint16_t si_rnti,
				       uint16_t ra_rnti,
				       uint16_t p_rnti,
				       uint16_t DL_pmi_single);

1352 1353
int32_t generate_eNB_ulsch_params_from_rar(uint8_t *rar_pdu,
				       frame_t frame,
1354 1355 1356 1357 1358
				       uint8_t subframe,
				       LTE_eNB_ULSCH_t *ulsch,
				       LTE_DL_FRAME_PARMS *frame_parms);

int generate_ue_ulsch_params_from_dci(void *dci_pdu,
1359
                                      rnti_t rnti,
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
				      uint8_t subframe,
				      DCI_format_t dci_format,
				      PHY_VARS_UE *phy_vars_ue,
				      uint16_t si_rnti,
				      uint16_t ra_rnti,
				      uint16_t p_rnti,
				      uint16_t cba_rnti,
				      uint8_t eNB_id,
				      uint8_t use_srs);

1370
int32_t generate_ue_ulsch_params_from_rar(PHY_VARS_UE *phy_vars_ue,
1371 1372 1373 1374
				      uint8_t eNB_id);
double sinr_eff_cqi_calc(PHY_VARS_UE *phy_vars_ue,
			 uint8_t eNB_id);
int generate_eNB_ulsch_params_from_dci(void *dci_pdu,
1375
				       rnti_t rnti,
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
				       uint8_t subframe,
				       DCI_format_t dci_format,
				       uint8_t UE_id,
				       PHY_VARS_eNB *PHY_vars_eNB,
				       uint16_t si_rnti,
				       uint16_t ra_rnti,
				       uint16_t p_rnti,
	 				   uint16_t cba_rnti,
				       uint8_t use_srs);

#ifdef USER_MODE
void dump_ulsch(PHY_VARS_eNB *phy_vars_eNb,uint8_t subframe, uint8_t UE_id);

void dump_dlsch(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint8_t subframe,uint8_t harq_pid);
void dump_dlsch_SI(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint8_t subframe);
void dump_dlsch_ra(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint8_t subframe);

void dump_dlsch2(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint16_t coded_bits_per_codeword);
#endif

int dump_dci(LTE_DL_FRAME_PARMS *frame_parms, DCI_ALLOC_t *dci);

int dump_ue_stats(PHY_VARS_UE *phy_vars_ue, char* buffer, int length, runmode_t mode, int input_level_dBm);
int dump_eNB_stats(PHY_VARS_eNB *phy_vars_eNB, char* buffer, int length);



void generate_pcfich_reg_mapping(LTE_DL_FRAME_PARMS *frame_parms);

void pcfich_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
		       uint8_t subframe,
		       uint8_t *b,
		       uint8_t *bt);

void pcfich_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
			 uint8_t subframe,
1412
			 int16_t *d);
1413 1414

void generate_pcfich(uint8_t num_pdcch_symbols,
1415
		     int16_t amp,
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
		     LTE_DL_FRAME_PARMS *frame_parms,
		     mod_sym_t **txdataF,
		     uint8_t subframe);

uint8_t rx_pcfich(LTE_DL_FRAME_PARMS *frame_parms,
		  uint8_t subframe,
		  LTE_UE_PDCCH *lte_ue_pdcch_vars,
		  MIMO_mode_t mimo_mode);

void generate_phich_reg_mapping(LTE_DL_FRAME_PARMS *frame_parms);


void init_transport_channels(uint8_t);

void generate_RIV_tables(void);

/*!
  \brief This function performs the initial cell search procedure - PSS detection, SSS detection and PBCH detection.  At the 
  end, the basic frame parameters are known (Frame configuration - TDD/FDD and cyclic prefix length, 
  N_RB_DL, PHICH_CONFIG and Nid_cell) and the UE can begin decoding PDCCH and DLSCH SI to retrieve the rest.  Once these
  parameters are know, the routine calls some basic initialization routines (cell-specific reference signals, etc.)
  @param phy_vars_ue Pointer to UE variables
*/
int initial_sync(PHY_VARS_UE *phy_vars_ue, runmode_t mode);

void rx_ulsch(PHY_VARS_eNB *phy_vars_eNB,
	      uint32_t subframe,
	      uint8_t eNB_id,  // this is the effective sector id
	      uint8_t UE_id,
	      LTE_eNB_ULSCH_t **ulsch,
	      uint8_t cooperation_flag);

void rx_ulsch_emul(PHY_VARS_eNB *phy_vars_eNB,
		   uint8_t subframe,
		   uint8_t sect_id,
		   uint8_t UE_index);

/*!
  \brief Encoding of PUSCH/ACK/RI/ACK from 36-212.
  @param a Pointer to ulsch SDU
  @param frame_parms Pointer to Frame parameters
  @param ulsch Pointer to ulsch descriptor
  @param harq_pid HARQ process ID
  @param tmode Transmission mode (1-7)
  @param control_only_flag Generate PUSCH with control information only
  @param Nbundled Parameter for ACK/NAK bundling (36.213 Section 7.3)
*/
uint32_t ulsch_encoding(uint8_t *a,
			PHY_VARS_UE *phy_vars_ue,
			uint8_t harq_pid,
			uint8_t eNB_id,
			uint8_t tmode,
			uint8_t control_only_flag,
			uint8_t Nbundled);

/*!
  \brief Encoding of PUSCH/ACK/RI/ACK from 36-212 for emulation
  @param ulsch_buffer Pointer to ulsch SDU
  @param phy_vars_ue Pointer to UE top-level descriptor
  @param eNB_id ID of eNB receiving this PUSCH
  @param harq_pid HARQ process ID
  @param control_only_flag Generate PUSCH with control information only
*/
1479
int32_t ulsch_encoding_emul(uint8_t *ulsch_buffer,
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
			PHY_VARS_UE *phy_vars_ue,
			uint8_t eNB_id,
			uint8_t harq_pid,
			uint8_t control_only_flag);

/*!
  \brief Decoding of PUSCH/ACK/RI/ACK from 36-212.
  @param phy_vars_eNB Pointer to eNB top-level descriptor
  @param UE_id ID of UE transmitting this PUSCH
  @param subframe Index of subframe for PUSCH
  @param control_only_flag Receive PUSCH with control information only
  @param Nbundled Nbundled parameter for ACK/NAK scrambling from 36-212/36-213
  @param llr8_flag If 1, indicate that the 8-bit turbo decoder should be used
  @returns 0 on success
*/
unsigned int  ulsch_decoding(PHY_VARS_eNB *phy_vars_eNB,
			     uint8_t UE_id,
			     uint8_t subframe,
			     uint8_t control_only_flag,
			     uint8_t Nbundled,
			     uint8_t llr8_flag);

uint32_t ulsch_decoding_emul(PHY_VARS_eNB *phy_vars_eNB,
			     uint8_t subframe,
			     uint8_t UE_index,
				 uint16_t *crnti);

void generate_phich_top(PHY_VARS_eNB *phy_vars_eNB,
			uint8_t subframe,
1509
			int16_t amp,
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
			uint8_t sect_id,
			uint8_t abstraction_flag);

/* \brief  This routine demodulates the PHICH and updates PUSCH/ULSCH parameters.
   @param phy_vars_ue Pointer to UE variables
   @param subframe Subframe of received PDCCH/PHICH
   @param eNB_id Index of eNB
*/

void rx_phich(PHY_VARS_UE *phy_vars_ue,
	      uint8_t subframe,
	      uint8_t eNB_id);


/** \brief  This routine provides the relationship between a PHICH TXOp and its corresponding PUSCH subframe (Table 8.3.-1 from 36.213).
    @param frame_parms Pointer to DL frame configuration parameters
    @param subframe Subframe of received/transmitted PHICH
    @returns subframe of PUSCH transmission
*/
uint8_t phich_subframe2_pusch_subframe(LTE_DL_FRAME_PARMS *frame_parms,uint8_t subframe);

/** \brief  This routine provides the relationship between a PHICH TXOp and its corresponding PUSCH frame (Table 8.3.-1 from 36.213).
    @param frame_parms Pointer to DL frame configuration parameters
    @param frame Frame of received/transmitted PHICH
    @param subframe Subframe of received/transmitted PHICH
    @returns frame of PUSCH transmission
*/
1537
uint8_t phich_frame2_pusch_frame(LTE_DL_FRAME_PARMS *frame_parms,frame_t frame,uint8_t subframe);;
1538

1539
void print_CQI(void *o,UCI_format_t uci_format,uint8_t eNB_id,int N_RB_DL);
1540 1541 1542

void extract_CQI(void *o,UCI_format_t uci_format,LTE_eNB_UE_stats *stats,uint16_t * crnti, uint8_t * access_mode);

1543
void fill_CQI(LTE_UE_ULSCH_t *ulsch,PHY_MEASUREMENTS *meas,uint8_t eNB_id, int N_RB_DL, rnti_t rnti, uint8_t trans_mode,double sinr_eff);
1544 1545
void reset_cba_uci(void *o);

1546 1547
uint16_t quantize_subband_pmi(PHY_MEASUREMENTS *meas,uint8_t eNB_id,int nb_subbands);
uint16_t quantize_subband_pmi2(PHY_MEASUREMENTS *meas,uint8_t eNB_id,uint8_t a_id,int nb_subbands);
1548

1549
uint64_t pmi2hex_2Ar1(uint32_t pmi);
1550

1551
uint64_t pmi2hex_2Ar2(uint32_t pmi);
1552

1553
uint64_t cqi2hex(uint32_t cqi);
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565

uint16_t computeRIV(uint16_t N_RB_DL,uint16_t RBstart,uint16_t Lcrbs);

uint32_t pmi_extend(LTE_DL_FRAME_PARMS *frame_parms,uint8_t wideband_pmi);


uint16_t get_nCCE(uint8_t num_pdcch_symbols,LTE_DL_FRAME_PARMS *frame_parms,uint8_t mi);

uint16_t get_nquad(uint8_t num_pdcch_symbols,LTE_DL_FRAME_PARMS *frame_parms,uint8_t mi);

uint8_t get_mi(LTE_DL_FRAME_PARMS *frame,uint8_t subframe);

1566
uint16_t get_nCCE_max(uint8_t Mod_id,uint8_t CC_id);
1567 1568 1569 1570 1571 1572 1573

uint8_t get_num_pdcch_symbols(uint8_t num_dci,DCI_ALLOC_t *dci_alloc,LTE_DL_FRAME_PARMS *frame_parms,uint8_t subframe);

void pdcch_interleaving(LTE_DL_FRAME_PARMS *frame_parms,mod_sym_t **z, mod_sym_t **wbar,uint8_t n_symbols_pdcch,uint8_t mi);

void pdcch_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
			uint8_t subframe,
1574
			int8_t* llr,
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
			uint32_t length);

void pdcch_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
		      uint8_t subframe,
		      uint8_t *e,
		      uint32_t length);

void dlsch_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
		      int mbsfn_flag,
		      LTE_eNB_DLSCH_t *dlsch,
		      int G,
		      uint8_t q,
		      uint8_t Ns);

void dlsch_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
			int mbsfn_flag,
			LTE_UE_DLSCH_t *dlsch,
			int G,
1593
			int16_t* llr,
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
			uint8_t q,
			uint8_t Ns);

void init_ncs_cell(LTE_DL_FRAME_PARMS *frame_parms,uint8_t ncs_cell[20][7]);

void generate_pucch(mod_sym_t **txdataF,
		    LTE_DL_FRAME_PARMS *frame_parms,
		    uint8_t ncs_cell[20][7],
		    PUCCH_FMT_t fmt,
		    PUCCH_CONFIG_DEDICATED *pucch_config_dedicated,
		    uint16_t n1_pucch,
		    uint16_t n2_pucch,
		    uint8_t shortened_format,
		    uint8_t *payload,
1608
		    int16_t amp,
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
		    uint8_t subframe);

void generate_pucch_emul(PHY_VARS_UE *phy_vars_ue,
			 PUCCH_FMT_t format,
			 uint8_t ncs1,
			 uint8_t *pucch_ack_payload,
			 uint8_t sr,
			 uint8_t subframe);


1619
int32_t rx_pucch(PHY_VARS_eNB *phy_vars_eNB,
1620 1621 1622 1623 1624 1625 1626 1627 1628
	     PUCCH_FMT_t fmt,
	     uint8_t UE_id,
	     uint16_t n1_pucch,
	     uint16_t n2_pucch,
	     uint8_t shortened_format,
	     uint8_t *payload,
	     uint8_t subframe,
	     uint8_t pucch1_thres);

1629
int32_t rx_pucch_emul(PHY_VARS_eNB *phy_vars_eNB,
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
		  uint8_t UE_index,
		  PUCCH_FMT_t fmt,
		  uint8_t n1_pucch_sel,
		  uint8_t *payload,
		  uint8_t subframe);


/*!
  \brief Check for PRACH TXop in subframe
  @param frame_parms Pointer to LTE_DL_FRAME_PARMS
  @param frame frame index to check
  @param subframe subframe index to check
  @returns 0 on success
*/
1644
int is_prach_subframe(LTE_DL_FRAME_PARMS *frame_parms,frame_t frame, uint8_t subframe);
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655

/*!
  \brief Generate PRACH waveform
  @param phy_vars_ue Pointer to ue top-level descriptor
  @param eNB_id Index of destination eNB
  @param subframe subframe index to operate on
  @param index of preamble (0-63)
  @param Nf System frame number
  @returns 0 on success
  
*/
1656
int32_t generate_prach(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint8_t subframe,uint16_t Nf);
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

/*!
  \brief Process PRACH waveform
  @param phy_vars_eNB Pointer to eNB top-level descriptor
  @param subframe subframe index to operate on
  @param preamble_energy_list List of energies for each candidate preamble
  @param preamble_delay_list List of delays for each candidate preamble
  @param Nf System frame number
  @param tdd_mapindex Index of PRACH resource in Table 5.7.1-4 (TDD)
  @returns 0 on success
  
*/
void rx_prach(PHY_VARS_eNB *phy_vars_eNB,uint8_t subframe,uint16_t *preamble_energy_list, uint16_t *preamble_delay_list, uint16_t Nf, uint8_t tdd_mapindex);

/*!
  \brief Helper for MAC, returns number of available PRACH in TDD for a particular configuration index
  @param frame_parms Pointer to LTE_DL_FRAME_PARMS structure
  @returns 0-5 depending on number of available prach
*/
uint8_t get_num_prach_tdd(LTE_DL_FRAME_PARMS *frame_parms);

/*!
  \brief Return the PRACH format as a function of the Configuration Index and Frame type.
  @param prach_ConfigIndex PRACH Configuration Index
  @param frame_type 0-FDD, 1-TDD
  @returns 0-1 accordingly
*/
uint8_t get_prach_fmt(uint8_t prach_ConfigIndex,lte_frame_type_t frame_type);

/*!
  \brief Helper for MAC, returns frequency index of PRACH resource in TDD for a particular configuration index
  @param frame_parms Pointer to LTE_DL_FRAME_PARMS structure
  @returns 0-5 depending on number of available prach
*/
uint8_t get_fid_prach_tdd(LTE_DL_FRAME_PARMS *frame_parms,uint8_t tdd_map_index);

/*!
  \brief Comp ute DFT of PRACH ZC sequences.  Used for generation of prach in UE and reception of PRACH in eNB.
  @param prach_config_common Pointer to prachConfigCommon structure
  @param Xu DFT output 
*/
void compute_prach_seq(PRACH_CONFIG_COMMON *prach_config_common,
		       lte_frame_type_t frame_type,
		       uint32_t X_u[64][839]);

void init_prach_tables(int N_ZC);

/*!
  \brief Return the status of MBSFN in this frame/subframe
  @param frame Frame index
  @param subframe Subframe index
  @param frame_parms Pointer to frame parameters
  @returns 1 if subframe is for MBSFN
*/
1711
int is_pmch_subframe(frame_t frame, int subframe, LTE_DL_FRAME_PARMS *frame_parms);
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
 
//ICIC algos
uint8_t Get_SB_size(uint8_t n_rb_dl);
//end ALU's algo


uint32_t dlsch_decoding_abstraction(double *dlsch_MIPB,
				    LTE_DL_FRAME_PARMS *lte_frame_parms,
				    LTE_UE_DLSCH_t *dlsch,
				    uint8_t subframe,
				    uint8_t num_pdcch_symbols);

// DL power control functions
double get_pa_dB(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated);

double computeRhoA_eNB(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,  
                       LTE_eNB_DLSCH_t *dlsch_eNB );

double computeRhoB_eNB(PDSCH_CONFIG_DEDICATED  *pdsch_config_dedicated,
                       PDSCH_CONFIG_COMMON *pdsch_config_common,
                       uint8_t n_antenna_port,
                       LTE_eNB_DLSCH_t *dlsch_eNB);

double computeRhoA_UE(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,  
                      LTE_UE_DLSCH_t *dlsch_ue,
                      uint8_t dl_power_off);

double computeRhoB_UE(PDSCH_CONFIG_DEDICATED  *pdsch_config_dedicated,
                      PDSCH_CONFIG_COMMON *pdsch_config_common,
                      uint8_t n_antenna_port,
                      LTE_UE_DLSCH_t *dlsch_ue,
                      uint8_t dl_power_off);

/*void compute_sqrt_RhoAoRhoB(PDSCH_CONFIG_DEDICATED  *pdsch_config_dedicated,
  PDSCH_CONFIG_COMMON *pdsch_config_common,
  uint8_t n_antenna_port,
  LTE_UE_DLSCH_t *dlsch_ue);
*/
/**@}*/
#endif