usrp_lib.cpp 24.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.0  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */

knopp's avatar
 
knopp committed
22 23
/** usrp_lib.cpp
 *
24
 * \author: HongliangXU : hong-liang-xu@agilent.com
knopp's avatar
 
knopp committed
25 26 27 28 29 30 31 32
 */

#include <string.h>
#include <pthread.h>
#include <unistd.h>
#include <stdio.h>
#include <uhd/utils/thread_priority.hpp>
#include <uhd/usrp/multi_usrp.hpp>
33
#include <uhd/version.hpp>
knopp's avatar
 
knopp committed
34 35 36 37 38 39
#include <boost/lexical_cast.hpp>
#include <boost/algorithm/string.hpp>
#include <iostream>
#include <complex>
#include <fstream>
#include <cmath>
40
#include <time.h>
Rohit Gupta's avatar
Rohit Gupta committed
41
#include "UTIL/LOG/log_extern.h"
knopp's avatar
 
knopp committed
42
#include "common_lib.h"
laurent's avatar
laurent committed
43 44
#include "assertions.h"

45 46 47
#ifdef __SSE4_1__
#  include <smmintrin.h>
#endif
laurent's avatar
laurent committed
48

49 50 51
#ifdef __AVX2__
#  include <immintrin.h>
#endif
52

53 54 55 56
#ifdef __arm__
#  include <arm_neon.h>
#endif

57 58 59 60
/** @addtogroup _USRP_PHY_RF_INTERFACE_
 * @{
 */

laurent's avatar
laurent committed
61 62
/*! \brief USRP Configuration */
typedef struct {
knopp's avatar
 
knopp committed
63

laurent's avatar
laurent committed
64 65 66 67 68
    // --------------------------------
    // variables for USRP configuration
    // --------------------------------
    //! USRP device pointer
    uhd::usrp::multi_usrp::sptr usrp;
69
  
knopp's avatar
 
knopp committed
70
  //create a send streamer and a receive streamer
71
  //! USRP TX Stream
knopp's avatar
 
knopp committed
72
  uhd::tx_streamer::sptr tx_stream;
73
  //! USRP RX Stream
knopp's avatar
 
knopp committed
74 75
  uhd::rx_streamer::sptr rx_stream;

76
  //! USRP TX Metadata
knopp's avatar
 
knopp committed
77
  uhd::tx_metadata_t tx_md;
78
  //! USRP RX Metadata
knopp's avatar
 
knopp committed
79 80
  uhd::rx_metadata_t rx_md;

laurent's avatar
laurent committed
81 82
    //! Sampling rate
    double sample_rate;
knopp's avatar
 
knopp committed
83

laurent's avatar
laurent committed
84 85
    //! TX forward samples. We use usrp_time_offset to get this value
    int tx_forward_nsamps; //166 for 20Mhz
86

laurent's avatar
laurent committed
87 88 89 90 91 92 93 94 95 96
    // --------------------------------
    // Debug and output control
    // --------------------------------
    int num_underflows;
    int num_overflows;
    int num_seq_errors;
    int64_t tx_count;
    int64_t rx_count;
    //! timestamp of RX packet
    openair0_timestamp rx_timestamp;
knopp's avatar
 
knopp committed
97

laurent's avatar
laurent committed
98
} usrp_state_t;
knopp's avatar
 
knopp committed
99 100 101



102 103 104
/*! \brief Called to start the USRP transceiver. Return 0 if OK, < 0 if error
    @param device pointer to the device structure specific to the RF hardware target
*/
laurent's avatar
laurent committed
105
static int trx_usrp_start(openair0_device *device) {
knopp's avatar
 
knopp committed
106

laurent's avatar
laurent committed
107
    usrp_state_t *s = (usrp_state_t*)device->priv;
knopp's avatar
 
knopp committed
108

laurent's avatar
laurent committed
109 110 111 112 113
    // init recv and send streaming
    uhd::stream_cmd_t cmd(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS);
    cmd.time_spec = s->usrp->get_time_now() + uhd::time_spec_t(0.05);
    cmd.stream_now = true;
    s->rx_stream->issue_stream_cmd(cmd);
knopp's avatar
 
knopp committed
114

laurent's avatar
laurent committed
115 116 117 118
    s->tx_md.time_spec = cmd.time_spec + uhd::time_spec_t(1-(double)s->tx_forward_nsamps/s->sample_rate);
    s->tx_md.has_time_spec = true;
    s->tx_md.start_of_burst = true;
    s->tx_md.end_of_burst = false;
knopp's avatar
 
knopp committed
119

laurent's avatar
laurent committed
120 121 122 123
    s->rx_count = 0;
    s->tx_count = 0;
    s->rx_timestamp = 0;
    return 0;
knopp's avatar
 
knopp committed
124
}
125 126 127
/*! \brief Terminate operation of the USRP transceiver -- free all associated resources 
 * \param device the hardware to use
 */
laurent's avatar
laurent committed
128 129
static void trx_usrp_end(openair0_device *device) {
    usrp_state_t *s = (usrp_state_t*)device->priv;
knopp's avatar
 
knopp committed
130

laurent's avatar
laurent committed
131 132 133 134 135
    s->rx_stream->issue_stream_cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS);
    //send a mini EOB packet
    s->tx_md.end_of_burst = true;
    s->tx_stream->send("", 0, s->tx_md);
    s->tx_md.end_of_burst = false;
knopp's avatar
 
knopp committed
136 137

}
138

139 140
/*! \brief Called to send samples to the USRP RF target
      @param device pointer to the device structure specific to the RF hardware target
laurent's avatar
laurent committed
141
      @param timestamp The timestamp at whicch the first sample MUST be sent
142 143 144 145
      @param buff Buffer which holds the samples
      @param nsamps number of samples to be sent
      @param antenna_id index of the antenna if the device has multiple anteannas
      @param flags flags must be set to TRUE if timestamp parameter needs to be applied
laurent's avatar
laurent committed
146 147 148 149
*/
static int trx_usrp_write(openair0_device *device, openair0_timestamp timestamp, void **buff, int nsamps, int cc, int flags) {
    int ret=0;
    usrp_state_t *s = (usrp_state_t*)device->priv;
knopp's avatar
knopp committed
150

laurent's avatar
laurent committed
151 152
    s->tx_md.time_spec = uhd::time_spec_t::from_ticks(timestamp, s->sample_rate);
    s->tx_md.has_time_spec = flags;
knopp's avatar
knopp committed
153

laurent's avatar
laurent committed
154 155 156 157 158 159 160
    if (cc>1) {
        std::vector<void *> buff_ptrs;
        for (int i=0; i<cc; i++)
            buff_ptrs.push_back(buff[i]);
        ret = (int)s->tx_stream->send(buff_ptrs, nsamps, s->tx_md,1e-3);
    } else
        ret = (int)s->tx_stream->send(buff[0], nsamps, s->tx_md,1e-3);
161

laurent's avatar
laurent committed
162
    s->tx_md.start_of_burst = false;
163

laurent's avatar
laurent committed
164 165
    if (ret != nsamps)
        LOG_E(PHY,"[xmit] tx samples %d != %d\n",ret,nsamps);
166

laurent's avatar
laurent committed
167
    return ret;
knopp's avatar
 
knopp committed
168 169
}

170 171 172 173 174 175 176 177 178 179 180
/*! \brief Receive samples from hardware.
 * Read \ref nsamps samples from each channel to buffers. buff[0] is the array for
 * the first channel. *ptimestamp is the time at which the first sample
 * was received.
 * \param device the hardware to use
 * \param[out] ptimestamp the time at which the first sample was received.
 * \param[out] buff An array of pointers to buffers for received samples. The buffers must be large enough to hold the number of samples \ref nsamps.
 * \param nsamps Number of samples. One sample is 2 byte I + 2 byte Q => 4 byte.
 * \param antenna_id Index of antenna for which to receive samples
 * \returns the number of sample read
*/
laurent's avatar
laurent committed
181 182 183 184
static int trx_usrp_read(openair0_device *device, openair0_timestamp *ptimestamp, void **buff, int nsamps, int cc) {
    usrp_state_t *s = (usrp_state_t*)device->priv;
    int samples_received=0,i,j;
    int nsamps2;  // aligned to upper 32 or 16 byte boundary
185 186
#if defined(__x86_64) || defined(__i386__)
#ifdef __AVX2__
laurent's avatar
laurent committed
187 188
    nsamps2 = (nsamps+7)>>3;
    __m256i buff_tmp[2][nsamps2];
189
#else
laurent's avatar
laurent committed
190 191
    nsamps2 = (nsamps+3)>>2;
    __m128i buff_tmp[2][nsamps2];
192 193
#endif
#elif defined(__arm__)
laurent's avatar
laurent committed
194 195
    nsamps2 = (nsamps+3)>>2;
    int16x8_t buff_tmp[2][nsamps2];
196 197
#endif

laurent's avatar
laurent committed
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    if (device->type == USRP_B200_DEV) {
        if (cc>1) {
            // receive multiple channels (e.g. RF A and RF B)
            std::vector<void *> buff_ptrs;
            for (int i=0; i<cc; i++) buff_ptrs.push_back(buff_tmp[i]);
            samples_received = s->rx_stream->recv(buff_ptrs, nsamps, s->rx_md);
        } else {
            // receive a single channel (e.g. from connector RF A)
            samples_received=0;
            while (samples_received != nsamps) {
                samples_received += s->rx_stream->recv(buff_tmp[0]+samples_received,
                                                       nsamps-samples_received, s->rx_md);
                if (s->rx_md.error_code!=uhd::rx_metadata_t::ERROR_CODE_NONE)
                    break;
            }
        }
        // bring RX data into 12 LSBs for softmodem RX
        for (int i=0; i<cc; i++) {
            for (int j=0; j<nsamps2; j++) {
217 218
#if defined(__x86_64__) || defined(__i386__)
#ifdef __AVX2__
219
        ((__m256i *)buff[i])[j] = _mm256_srai_epi16(buff_tmp[i][j],4);
220
#else
221
        ((__m128i *)buff[i])[j] = _mm_srai_epi16(buff_tmp[i][j],4);
222 223
#endif
#elif defined(__arm__)
224
        ((int16x8_t*)buff[i])[j] = vshrq_n_s16(buff_tmp[i][j],4);
225
#endif
226
      }
227
    }
228
  } else if (device->type == USRP_X300_DEV) {
229
    if (cc>1) { 
230 231 232 233 234 235 236 237
    // receive multiple channels (e.g. RF A and RF B)
      std::vector<void *> buff_ptrs;
 
      for (int i=0;i<cc;i++) buff_ptrs.push_back(buff[i]);
      samples_received = s->rx_stream->recv(buff_ptrs, nsamps, s->rx_md);
    } else {
    // receive a single channel (e.g. from connector RF A)
      samples_received = s->rx_stream->recv(buff[0], nsamps, s->rx_md);
navid's avatar
navid committed
238
    }
239
  }
laurent's avatar
laurent committed
240 241
    if (samples_received < nsamps)
        LOG_E(PHY,"[recv] received %d samples out of %d\n",samples_received,nsamps);
242

laurent's avatar
laurent committed
243 244
    if ( s->rx_md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE)
        LOG_E(PHY,s->rx_md.to_pp_string(true).c_str());
navid's avatar
navid committed
245

laurent's avatar
laurent committed
246 247 248 249 250 251 252
    s->rx_count += nsamps;
    s->rx_timestamp = s->rx_md.time_spec.to_ticks(s->sample_rate);
    *ptimestamp = s->rx_timestamp;
#ifdef DEBUG_USRP
    check(50);
#endif
    return samples_received;
knopp's avatar
 
knopp committed
253 254
}

255 256 257 258
/*! \brief Compares two variables within precision
 * \param a first variable
 * \param b second variable
*/
laurent's avatar
laurent committed
259
static bool is_equal(double a, double b) {
knopp's avatar
 
knopp committed
260 261
  return std::fabs(a-b) < std::numeric_limits<double>::epsilon();
}
knopp's avatar
 
knopp committed
262

263 264 265 266 267 268
/*! \brief Set frequencies (TX/RX)
 * \param device the hardware to use
 * \param openair0_cfg RF frontend parameters set by application
 * \param dummy dummy variable not used
 * \returns 0 in success 
 */
269
int trx_usrp_set_freq(openair0_device* device, openair0_config_t *openair0_cfg, int dummy) {
knopp's avatar
 
knopp committed
270

laurent's avatar
laurent committed
271
    usrp_state_t *s = (usrp_state_t*)device->priv;
knopp's avatar
 
knopp committed
272

laurent's avatar
laurent committed
273 274 275 276 277
    LOG_I(PHY,"Setting USRP TX Freq %f, RX Freq %f\n",openair0_cfg[0].tx_freq[0],openair0_cfg[0].rx_freq[0]);
    s->usrp->set_tx_freq(openair0_cfg[0].tx_freq[0]);
    s->usrp->set_rx_freq(openair0_cfg[0].rx_freq[0]);

    return(0);
knopp's avatar
 
knopp committed
278 279 280

}

laurent's avatar
laurent committed
281
/*! \brief Set RX frequencies
282 283
 * \param device the hardware to use
 * \param openair0_cfg RF frontend parameters set by application
laurent's avatar
laurent committed
284
 * \returns 0 in success
285
 */
knopp's avatar
 
knopp committed
286 287
int openair0_set_rx_frequencies(openair0_device* device, openair0_config_t *openair0_cfg) {

laurent's avatar
laurent committed
288 289 290
    usrp_state_t *s = (usrp_state_t*)device->priv;
    static int first_call=1;
    static double rf_freq,diff;
knopp's avatar
 
knopp committed
291

laurent's avatar
laurent committed
292
    uhd::tune_request_t rx_tune_req(openair0_cfg[0].rx_freq[0]);
knopp's avatar
 
knopp committed
293

laurent's avatar
laurent committed
294 295 296 297 298 299
    rx_tune_req.rf_freq_policy = uhd::tune_request_t::POLICY_MANUAL;
    rx_tune_req.rf_freq = openair0_cfg[0].rx_freq[0];
    rf_freq=openair0_cfg[0].rx_freq[0];
    s->usrp->set_rx_freq(rx_tune_req);

    return(0);
knopp's avatar
 
knopp committed
300 301 302

}

303 304 305
/*! \brief Set Gains (TX/RX)
 * \param device the hardware to use
 * \param openair0_cfg RF frontend parameters set by application
laurent's avatar
laurent committed
306
 * \returns 0 in success
307
 */
laurent's avatar
laurent committed
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
int trx_usrp_set_gains(openair0_device* device,
                       openair0_config_t *openair0_cfg) {

    usrp_state_t *s = (usrp_state_t*)device->priv;

    s->usrp->set_tx_gain(openair0_cfg[0].tx_gain[0]);
    ::uhd::gain_range_t gain_range = s->usrp->get_rx_gain_range(0);
    // limit to maximum gain
    if (openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0] > gain_range.stop()) {
        LOG_E(PHY,"RX Gain 0 too high, reduce by %f dB\n",
              openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0] - gain_range.stop());
        exit(-1);
    }
    s->usrp->set_rx_gain(openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0]);
    LOG_I(PHY,"Setting USRP RX gain to %f (rx_gain %f,gain_range.stop() %f)\n",
          openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0],
          openair0_cfg[0].rx_gain[0],gain_range.stop());
325

knopp's avatar
 
knopp committed
326 327
  return(0);
}
328

329 330 331
/*! \brief Stop USRP
 * \param card refers to the hardware index to use
 */
332
int trx_usrp_stop(openair0_device* device) {
333 334
  return(0);
}
335

336
/*! \brief USRPB210 RX calibration table */
337
rx_gain_calib_table_t calib_table_b210[] = {
laurent's avatar
laurent committed
338 339 340 341 342 343 344
    {3500000000.0,44.0},
    {2660000000.0,49.0},
    {2300000000.0,50.0},
    {1880000000.0,53.0},
    {816000000.0,58.0},
    {-1,0}
};
345

346
/*! \brief USRPB210 RX calibration table */
347
rx_gain_calib_table_t calib_table_b210_38[] = {
laurent's avatar
laurent committed
348 349 350 351 352 353 354
    {3500000000.0,44.0},
    {2660000000.0,49.8},
    {2300000000.0,51.0},
    {1880000000.0,53.0},
    {816000000.0,57.0},
    {-1,0}
};
355

356
/*! \brief USRPx310 RX calibration table */
357
rx_gain_calib_table_t calib_table_x310[] = {
laurent's avatar
laurent committed
358 359 360 361 362 363 364 365 366
    {3500000000.0,77.0},
    {2660000000.0,81.0},
    {2300000000.0,81.0},
    {1880000000.0,82.0},
    {816000000.0,85.0},
    {-1,0}
};

/*! \brief Set RX gain offset
367 368
 * \param openair0_cfg RF frontend parameters set by application
 * \param chain_index RF chain to apply settings to
laurent's avatar
laurent committed
369
 * \returns 0 in success
370
 */
371
void set_rx_gain_offset(openair0_config_t *openair0_cfg, int chain_index,int bw_gain_adjust) {
372

laurent's avatar
laurent committed
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
    int i=0;
    // loop through calibration table to find best adjustment factor for RX frequency
    double min_diff = 6e9,diff,gain_adj=0.0;
    if (bw_gain_adjust==1) {
        switch ((int)openair0_cfg[0].sample_rate) {
        case 30720000:
            break;
        case 23040000:
            gain_adj=1.25;
            break;
        case 15360000:
            gain_adj=3.0;
            break;
        case 7680000:
            gain_adj=6.0;
            break;
        case 3840000:
            gain_adj=9.0;
            break;
        case 1920000:
            gain_adj=12.0;
            break;
        default:
            LOG_E(PHY,"unknown sampling rate %d\n",(int)openair0_cfg[0].sample_rate);
            exit(-1);
            break;
        }
400
    }
laurent's avatar
laurent committed
401 402 403 404 405
    while (openair0_cfg->rx_gain_calib_table[i].freq>0) {
        diff = fabs(openair0_cfg->rx_freq[chain_index] - openair0_cfg->rx_gain_calib_table[i].freq);
        LOG_I(PHY,"cal %d: freq %f, offset %f, diff %f\n",
              i,
              openair0_cfg->rx_gain_calib_table[i].freq,
406
	   openair0_cfg->rx_gain_calib_table[i].offset,diff);
407 408
    if (min_diff > diff) {
      min_diff = diff;
409
      openair0_cfg->rx_gain_offset[chain_index] = openair0_cfg->rx_gain_calib_table[i].offset+gain_adj;
410 411
    }
    i++;
laurent's avatar
laurent committed
412
    }
413 414
}

laurent's avatar
laurent committed
415
/*! \brief print the USRP statistics
416 417 418
* \param device the hardware to use
* \returns  0 on success
*/
419
int trx_usrp_get_stats(openair0_device* device) {
laurent's avatar
laurent committed
420
    return(0);
421
}
422

laurent's avatar
laurent committed
423 424 425 426
/*! \brief Reset the USRP statistics
 * \param device the hardware to use
 * \returns  0 on success
 */
427
int trx_usrp_reset_stats(openair0_device* device) {
laurent's avatar
laurent committed
428
    return(0);
429
}
430

431
extern "C" {
laurent's avatar
laurent committed
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
    /*! \brief Initialize Openair USRP target. It returns 0 if OK
    * \param device the hardware to use
         * \param openair0_cfg RF frontend parameters set by application
         */
    int device_init(openair0_device* device, openair0_config_t *openair0_cfg) {
        //uhd::set_thread_priority_safe(1.0);
        usrp_state_t *s = (usrp_state_t*)calloc(sizeof(usrp_state_t),1);
        // Initialize USRP device
        device->openair0_cfg = openair0_cfg;

        std::string args = "type=b200";
        uhd::device_addrs_t device_adds = uhd::device::find(args);

        int vers=0,subvers=0,subsubvers=0;
        int bw_gain_adjust=0;

        sscanf(uhd::get_version_string().c_str(),"%d.%d.%d",&vers,&subvers,&subsubvers);
        LOG_I(PHY,"Checking for USRPs : UHD %s (%d.%d.%d)\n",
              uhd::get_version_string().c_str(),vers,subvers,subsubvers);

        if(device_adds.size() == 0)  {
            double usrp_master_clock = 184.32e6;
            std::string args = "type=x300";
455

456 457
    // workaround for an api problem, master clock has to be set with the constructor not via set_master_clock_rate
    args += boost::str(boost::format(",master_clock_rate=%f") % usrp_master_clock);
knopp's avatar
 
knopp committed
458

laurent's avatar
laurent committed
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
            //    args += ",num_send_frames=256,num_recv_frames=256, send_frame_size=4096, recv_frame_size=4096";
            uhd::device_addrs_t device_adds = uhd::device::find(args);

            if(device_adds.size() == 0) {
                std::cerr<<"No USRP Device Found. " << std::endl;
                free(s);
                return -1;
            }
            LOG_I(PHY,"Found USRP X300\n");
            s->usrp = uhd::usrp::multi_usrp::make(args);
            // lock mboard clocks
            s->usrp->set_clock_source("internal");

            //Setting device type to USRP X300/X310
            device->type=USRP_X300_DEV;

            // this is not working yet, master clock has to be set via constructor
            // set master clock rate and sample rate for tx & rx for streaming
            //s->usrp->set_master_clock_rate(usrp_master_clock);

            openair0_cfg[0].rx_gain_calib_table = calib_table_x310;

            switch ((int)openair0_cfg[0].sample_rate) {
            case 30720000:
                // from usrp_time_offset
                openair0_cfg[0].tx_sample_advance     = 15;
                openair0_cfg[0].tx_bw                 = 20e6;
                openair0_cfg[0].rx_bw                 = 20e6;
                break;
            case 15360000:
                openair0_cfg[0].tx_sample_advance     = 45;
                openair0_cfg[0].tx_bw                 = 10e6;
                openair0_cfg[0].rx_bw                 = 10e6;
                break;
            case 7680000:
                openair0_cfg[0].tx_sample_advance     = 50;
                openair0_cfg[0].tx_bw                 = 5e6;
                openair0_cfg[0].rx_bw                 = 5e6;
                break;
            case 1920000:
                openair0_cfg[0].tx_sample_advance     = 50;
                openair0_cfg[0].tx_bw                 = 1.25e6;
                openair0_cfg[0].rx_bw                 = 1.25e6;
                break;
            default:
                LOG_E(PHY,"Error: unknown sampling rate %f\n",openair0_cfg[0].sample_rate);
                exit(-1);
                break;
            }

        } else {
            LOG_I(PHY,"Found USRP B200\n");
            args += ",num_send_frames=256,num_recv_frames=256, send_frame_size=15360, recv_frame_size=15360" ;
            s->usrp = uhd::usrp::multi_usrp::make(args);
            device->type = USRP_B200_DEV;
            if ((vers == 3) && (subvers == 9) && (subsubvers>=2)) {
                openair0_cfg[0].rx_gain_calib_table = calib_table_b210;
                bw_gain_adjust=0;
            } else {
                openair0_cfg[0].rx_gain_calib_table = calib_table_b210_38;
                bw_gain_adjust=1;
            }

            switch ((int)openair0_cfg[0].sample_rate) {
            case 30720000:
                s->usrp->set_master_clock_rate(30.72e6);
                openair0_cfg[0].tx_sample_advance     = 115;
                openair0_cfg[0].tx_bw                 = 20e6;
                openair0_cfg[0].rx_bw                 = 20e6;
                break;
            case 23040000:
                s->usrp->set_master_clock_rate(23.04e6); //to be checked
                openair0_cfg[0].tx_sample_advance     = 113;
                openair0_cfg[0].tx_bw                 = 20e6;
                openair0_cfg[0].rx_bw                 = 20e6;
                break;
            case 15360000:
                s->usrp->set_master_clock_rate(30.72e06);
                openair0_cfg[0].tx_sample_advance     = 103;
                openair0_cfg[0].tx_bw                 = 20e6;
                openair0_cfg[0].rx_bw                 = 20e6;
                break;
            case 7680000:
                s->usrp->set_master_clock_rate(30.72e6);
                openair0_cfg[0].tx_sample_advance     = 80;
                openair0_cfg[0].tx_bw                 = 20e6;
                openair0_cfg[0].rx_bw                 = 20e6;
                break;
            case 1920000:
                s->usrp->set_master_clock_rate(30.72e6);
                openair0_cfg[0].tx_sample_advance     = 40;
                openair0_cfg[0].tx_bw                 = 20e6;
                openair0_cfg[0].rx_bw                 = 20e6;
                break;
            default:
                LOG_E(PHY,"Error: unknown sampling rate %f\n",openair0_cfg[0].sample_rate);
                exit(-1);
                break;
            }
        }
        openair0_cfg[0].iq_txshift = 4;//shift
        openair0_cfg[0].iq_rxrescale = 15;//rescale iqs

        for(int i=0; i<s->usrp->get_rx_num_channels(); i++) {
            if (i<openair0_cfg[0].rx_num_channels) {
                s->usrp->set_rx_rate(openair0_cfg[0].sample_rate,i);
                s->usrp->set_rx_freq(openair0_cfg[0].rx_freq[i],i);
                set_rx_gain_offset(&openair0_cfg[0],i,bw_gain_adjust);

                ::uhd::gain_range_t gain_range = s->usrp->get_rx_gain_range(i);
                // limit to maximum gain
                AssertFatal( openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i] <= gain_range.stop(),
                             "RX Gain too high, lower by %f dB\n",
                             openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i] - gain_range.stop());
                s->usrp->set_rx_gain(openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i],i);
                LOG_I(PHY,"RX Gain %d %f (%f) => %f (max %f)\n",i,
                      openair0_cfg[0].rx_gain[i],openair0_cfg[0].rx_gain_offset[i],
                      openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i],gain_range.stop());
            }
        }
        for(int i=0; i<s->usrp->get_tx_num_channels(); i++) {
            if (i<openair0_cfg[0].tx_num_channels) {
                s->usrp->set_tx_rate(openair0_cfg[0].sample_rate,i);
                s->usrp->set_tx_freq(openair0_cfg[0].tx_freq[i],i);
                s->usrp->set_tx_gain(openair0_cfg[0].tx_gain[i],i);
            }
        }

        //s->usrp->set_clock_source("external");
        //s->usrp->set_time_source("external");

        // display USRP settings
        LOG_I(PHY,"Actual master clock: %fMHz...\n",s->usrp->get_master_clock_rate()/1e6);

        // create tx & rx streamer
        uhd::stream_args_t stream_args_rx("sc16", "sc16");
        int samples=openair0_cfg[0].sample_rate;
        //while ( samples > s->rx_stream->get_max_num_samps())
        samples/=24000;
        stream_args_rx.args["spp"] = str(boost::format("%d") % samples );
        for (int i = 0; i<openair0_cfg[0].rx_num_channels; i++)
            stream_args_rx.channels.push_back(i);
        s->rx_stream = s->usrp->get_rx_stream(stream_args_rx);
        LOG_I(PHY,"rx_max_num_samps %u\n",s->rx_stream->get_max_num_samps());

        uhd::stream_args_t stream_args_tx("sc16", "sc16");
        for (int i = 0; i<openair0_cfg[0].tx_num_channels; i++)
            stream_args_tx.channels.push_back(i);
        s->tx_stream = s->usrp->get_tx_stream(stream_args_tx);

        /* Setting TX/RX BW after streamers are created due to USRP calibration issue */
        for(int i=0; i<s->usrp->get_tx_num_channels() && i<openair0_cfg[0].tx_num_channels; i++)
            s->usrp->set_tx_bandwidth(openair0_cfg[0].tx_bw,i);

        for(int i=0; i<s->usrp->get_rx_num_channels() && i<openair0_cfg[0].rx_num_channels; i++)
            s->usrp->set_rx_bandwidth(openair0_cfg[0].rx_bw,i);

        s->usrp->set_time_now(uhd::time_spec_t(0.0));

        for (int i=0; i<openair0_cfg[0].rx_num_channels; i++) {
            LOG_I(PHY,"RX Channel %d\n",i);
            LOG_I(PHY,"  Actual RX sample rate: %fMSps...\n",s->usrp->get_rx_rate(i)/1e6);
            LOG_I(PHY,"  Actual RX frequency: %fGHz...\n", s->usrp->get_rx_freq(i)/1e9);
            LOG_I(PHY,"  Actual RX gain: %f...\n", s->usrp->get_rx_gain(i));
            LOG_I(PHY,"  Actual RX bandwidth: %fM...\n", s->usrp->get_rx_bandwidth(i)/1e6);
            LOG_I(PHY,"  Actual RX antenna: %s...\n", s->usrp->get_rx_antenna(i).c_str());
        }

        for (int i=0; i<openair0_cfg[0].tx_num_channels; i++) {
            LOG_I(PHY,"TX Channel %d\n",i);
            LOG_I(PHY,"  Actual TX sample rate: %fMSps...\n", s->usrp->get_tx_rate(i)/1e6);
            LOG_I(PHY,"  Actual TX frequency: %fGHz...\n", s->usrp->get_tx_freq(i)/1e9);
            LOG_I(PHY,"  Actual TX gain: %f...\n", s->usrp->get_tx_gain(i));
            LOG_I(PHY,"  Actual TX bandwidth: %fM...\n", s->usrp->get_tx_bandwidth(i)/1e6);
            LOG_I(PHY,"  Actual TX antenna: %s...\n", s->usrp->get_tx_antenna(i).c_str());
        }

        LOG_I(PHY,"Device timestamp: %f...\n", s->usrp->get_time_now().get_real_secs());

        device->priv = s;
        device->trx_start_func = trx_usrp_start;
        device->trx_write_func = trx_usrp_write;
        device->trx_read_func  = trx_usrp_read;
642 643 644 645 646 647
  device->trx_get_stats_func = trx_usrp_get_stats;
  device->trx_reset_stats_func = trx_usrp_reset_stats;
  device->trx_end_func   = trx_usrp_end;
  device->trx_stop_func  = trx_usrp_stop;
  device->trx_set_freq_func = trx_usrp_set_freq;
  device->trx_set_gains_func   = trx_usrp_set_gains;
648 649
  device->openair0_cfg = openair0_cfg;

knopp's avatar
knopp committed
650
  s->sample_rate = openair0_cfg[0].sample_rate;
knopp's avatar
 
knopp committed
651 652 653 654 655 656 657 658 659
  // TODO:
  // init tx_forward_nsamps based usrp_time_offset ex
  if(is_equal(s->sample_rate, (double)30.72e6))
    s->tx_forward_nsamps  = 176;
  if(is_equal(s->sample_rate, (double)15.36e6))
    s->tx_forward_nsamps = 90;
  if(is_equal(s->sample_rate, (double)7.68e6))
    s->tx_forward_nsamps = 50;
  return 0;
660
  }
knopp's avatar
 
knopp committed
661
}
662
/*@}*/