bladerf_lib.c 41.3 KB
Newer Older
nikaeinn's avatar
nikaeinn committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*******************************************************************************
    OpenAirInterface 
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is 
    included in this distribution in the file called "COPYING". If not, 
    see <http://www.gnu.org/licenses/>.

   Contact Information
   OpenAirInterface Admin: openair_admin@eurecom.fr
   OpenAirInterface Tech : openair_tech@eurecom.fr
24
   OpenAirInterface Dev  : openair4g-devel@lists.eurecom.fr
nikaeinn's avatar
nikaeinn committed
25
26
27
28
29
30
31
32
33
  
   Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE

 *******************************************************************************/

/** bladerf_lib.c
 *
 * Author: navid nikaein
 */
34
35
36
37
38
39


#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include "bladerf_lib.h"
40
#include "math.h"
41

42
43
44
45
46
/** @addtogroup _BLADERF_PHY_RF_INTERFACE_
 * @{
 */

//! Number of BladeRF devices 
nikaeinn's avatar
nikaeinn committed
47
48
49
50
51
52
53
54
#ifdef __SSE4_1__
#  include <smmintrin.h>
#endif
 
#ifdef __AVX2__
#  include <immintrin.h>
#endif

55
int num_devices=0;
56

57
58
59
/*These items configure the underlying asynch stream used by the the sync interface. 
 */

60
61
/*! \brief BladeRF Init function (not used at the moment)
 * \param device RF frontend parameters set by application
62
 * \returns 0 on success
63
64
 */
int trx_brf_init(openair0_device *device) {
65
   return 0;
66
67
}

68
69
/*! \brief get current timestamp
 *\param device the hardware to use 
70
 *\param module the bladeRf module
71
 *\returns timestamp of BladeRF
72
 */
73
 
nikaeinn's avatar
nikaeinn committed
74
openair0_timestamp trx_get_timestamp(openair0_device *device, bladerf_module module) {
75
  int status;
76
77
  struct bladerf_metadata meta;
  brf_state_t *brf = (brf_state_t*)device->priv;
nikaeinn's avatar
nikaeinn committed
78
  memset(&meta, 0, sizeof(meta));
79
  
nikaeinn's avatar
nikaeinn committed
80
81
82
83
84
  if ((status=bladerf_get_timestamp(brf->dev, module, &meta.timestamp)) != 0) {
    fprintf(stderr,"Failed to get current %s timestamp: %s\n",(module == BLADERF_MODULE_RX ) ? "RX" : "TX", bladerf_strerror(status));
    return -1; 
  } // else {printf("Current RX timestampe  0x%016"PRIx64"\n", meta.timestamp); }

85
  return meta.timestamp;
86
87
}

88
/*! \brief Start BladeRF
89
90
 * \param device the hardware to use 
 * \returns 0 on success
91
92
 */
int trx_brf_start(openair0_device *device) {
93

94
  return 0;
95
96
}

97
/*! \brief Called to send samples to the BladeRF RF target
98
99
100
101
102
103
104
      \param device pointer to the device structure specific to the RF hardware target
      \param timestamp The timestamp at whicch the first sample MUST be sent 
      \param buff Buffer which holds the samples
      \param nsamps number of samples to be sent
      \param cc index of the component carrier
      \param flags Ignored for the moment
      \returns 0 on success
105
*/ 
106
static int trx_brf_write(openair0_device *device,openair0_timestamp ptimestamp, void **buff, int nsamps, int cc, int flags) {
107
  
nikaeinn's avatar
nikaeinn committed
108
  int status;
109
  brf_state_t *brf = (brf_state_t*)device->priv;
110
  /* BRF has only 1 rx/tx chaine : is it correct? */
nikaeinn's avatar
nikaeinn committed
111
  int16_t *samples = (int16_t*)buff[0];
112
  
nikaeinn's avatar
nikaeinn committed
113
114
115
116
117
118
119
  //memset(&brf->meta_tx, 0, sizeof(brf->meta_tx));
  // When  BLADERF_META_FLAG_TX_NOW is used the timestamp is not used, so one can't schedule a tx 
  if (brf->meta_tx.flags == 0 ) 
    brf->meta_tx.flags = (BLADERF_META_FLAG_TX_BURST_START);// | BLADERF_META_FLAG_TX_BURST_END);// |  BLADERF_META_FLAG_TX_NOW);
  
  
  brf->meta_tx.timestamp= (uint64_t) (ptimestamp); 
navid's avatar
navid committed
120
  status = bladerf_sync_tx(brf->dev, samples, (unsigned int) nsamps, &brf->meta_tx, 2*brf->tx_timeout_ms);
nikaeinn's avatar
nikaeinn committed
121
122
123
 
  if (brf->meta_tx.flags == BLADERF_META_FLAG_TX_BURST_START) 
    brf->meta_tx.flags =  BLADERF_META_FLAG_TX_UPDATE_TIMESTAMP;
124
  
nikaeinn's avatar
nikaeinn committed
125

126
  if (status != 0) {
nikaeinn's avatar
nikaeinn committed
127
    //fprintf(stderr,"Failed to TX sample: %s\n", bladerf_strerror(status));
128
    brf->num_tx_errors++;
129
    brf_error(status);
navid's avatar
navid committed
130
131
132
133
134
  } else if (brf->meta_tx.status & BLADERF_META_STATUS_UNDERRUN){
    /* libbladeRF does not report this status. It is here for future use. */ 
    fprintf(stderr, "TX Underrun detected. %u valid samples were read.\n",  brf->meta_tx.actual_count);
    brf->num_underflows++;
  } 
nikaeinn's avatar
nikaeinn committed
135
136
  //printf("Provided TX timestampe  %u, meta timestame %u\n", ptimestamp,brf->meta_tx.timestamp);
  
navid's avatar
navid committed
137
138
139
140
141
142
  //    printf("tx status %d \n",brf->meta_tx.status);
  brf->tx_current_ts=brf->meta_tx.timestamp;
  brf->tx_actual_nsamps+=brf->meta_tx.actual_count;
  brf->tx_nsamps+=nsamps;
  brf->tx_count++;
  
143

navid's avatar
navid committed
144
  return(0);
145
146
}

147
148
149
150
151
152
153
154
155
/*! \brief Receive samples from hardware.
 * Read \ref nsamps samples from each channel to buffers. buff[0] is the array for
 * the first channel. *ptimestamp is the time at which the first sample
 * was received.
 * \param device the hardware to use
 * \param[out] ptimestamp the time at which the first sample was received.
 * \param[out] buff An array of pointers to buffers for received samples. The buffers must be large enough to hold the number of samples \ref nsamps.
 * \param nsamps Number of samples. One sample is 2 byte I + 2 byte Q => 4 byte.
 * \param cc  Index of component carrier
156
 * \returns number of samples read
157
*/
158
static int trx_brf_read(openair0_device *device, openair0_timestamp *ptimestamp, void **buff, int nsamps, int cc) {
nikaeinn's avatar
nikaeinn committed
159
160

  int status=0;
161
162
163
  brf_state_t *brf = (brf_state_t*)device->priv;
  
  // BRF has only one rx/tx chain
nikaeinn's avatar
nikaeinn committed
164
165
166
  int16_t *samples = (int16_t*)buff[0];
  
  brf->meta_rx.flags = BLADERF_META_FLAG_RX_NOW;
navid's avatar
navid committed
167
  status = bladerf_sync_rx(brf->dev, samples, (unsigned int) nsamps, &brf->meta_rx, 2*brf->rx_timeout_ms);
168
  
169
  //  printf("Current RX timestampe  %u, nsamps %u, actual %u, cc %d\n",  brf->meta_rx.timestamp, nsamps, brf->meta_rx.actual_count, cc);
nikaeinn's avatar
nikaeinn committed
170
   
171
  if (status != 0) {
172
    fprintf(stderr, "RX failed: %s\n", bladerf_strerror(status)); 
173
    //    printf("RX failed: %s\n", bladerf_strerror(status)); 
174
175
176
    brf->num_rx_errors++;
  } else if ( brf->meta_rx.status & BLADERF_META_STATUS_OVERRUN) {
    brf->num_overflows++;
177
    printf("RX overrun (%d) is detected. t=" "%" PRIu64 "Got %u samples. nsymps %d\n", 
178
	   brf->num_overflows,brf->meta_rx.timestamp,  brf->meta_rx.actual_count, nsamps);
nikaeinn's avatar
nikaeinn committed
179
  } 
180

nikaeinn's avatar
nikaeinn committed
181
  //printf("Current RX timestampe  %u\n",  brf->meta_rx.timestamp);
navid's avatar
navid committed
182
183
184
185
186
187
  //printf("[BRF] (buff %p) ts=0x%"PRIu64" %s\n",samples, brf->meta_rx.timestamp,bladerf_strerror(status));
  brf->rx_current_ts=brf->meta_rx.timestamp;
  brf->rx_actual_nsamps+=brf->meta_rx.actual_count;
  brf->rx_nsamps+=nsamps;
  brf->rx_count++;
  
188
189
  
  *ptimestamp = brf->meta_rx.timestamp;
nikaeinn's avatar
nikaeinn committed
190
 
191
  return brf->meta_rx.actual_count;
192
193
194

}

195
196
197
/*! \brief Terminate operation of the BladeRF transceiver -- free all associated resources 
 * \param device the hardware to use
 */
198
void trx_brf_end(openair0_device *device) {
199
200

  int status;
201
  brf_state_t *brf = (brf_state_t*)device->priv;
202
  // Disable RX module, shutting down our underlying RX stream
203
  if ((status=bladerf_enable_module(brf->dev, BLADERF_MODULE_RX, false))  != 0) {
204
205
    fprintf(stderr, "Failed to disable RX module: %s\n", bladerf_strerror(status));
  }
206
  if ((status=bladerf_enable_module(brf->dev, BLADERF_MODULE_TX, false))  != 0) {
207
208
    fprintf(stderr, "Failed to disable TX module: %s\n",  bladerf_strerror(status));
  }
209
  bladerf_close(brf->dev);
210
211
}

212
213
214
215
/*! \brief print the BladeRF statistics  
* \param device the hardware to use
* \returns  0 on success
*/
216
217
218
219
220
221
int trx_brf_get_stats(openair0_device* device) {

  return(0);

}

222
223
224
225
/*! \brief Reset the BladeRF statistics  
* \param device the hardware to use
* \returns  0 on success
*/
226
227
228
229
230
231
int trx_brf_reset_stats(openair0_device* device) {

  return(0);

}

232
233
234
/*! \brief Stop BladeRF
 * \param card the hardware to use
 * \returns 0 in success 
235
 */
Rohit Gupta's avatar
Rohit Gupta committed
236
int trx_brf_stop(openair0_device* device) {
237
238
239
240
241

  return(0);

}

242
243
/*! \brief Set frequencies (TX/RX)
 * \param device the hardware to use
244
245
 * \param openair0_cfg1 openair0 Config structure (ignored. It is there to comply with RF common API)
 * \param exmimo_dump_config (ignored)
246
247
 * \returns 0 in success 
 */
248
int trx_brf_set_freq(openair0_device* device, openair0_config_t *openair0_cfg1,int exmimo_dump_config) {
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
  int status;
  brf_state_t *brf = (brf_state_t *)device->priv;
  openair0_config_t *openair0_cfg = (openair0_config_t *)device->openair0_cfg;


  if ((status=bladerf_set_frequency(brf->dev, BLADERF_MODULE_TX, (unsigned int) openair0_cfg->tx_freq[0])) != 0){
    fprintf(stderr,"Failed to set TX frequency: %s\n",bladerf_strerror(status));
    brf_error(status);
  }else 
    printf("[BRF] set TX Frequency to %u\n", (unsigned int) openair0_cfg->tx_freq[0]);

  if ((status=bladerf_set_frequency(brf->dev, BLADERF_MODULE_RX, (unsigned int) openair0_cfg->rx_freq[0])) != 0){
    fprintf(stderr,"Failed to set RX frequency: %s\n",bladerf_strerror(status));
    brf_error(status);
  } else 
    printf("[BRF] set RX frequency to %u\n",(unsigned int)openair0_cfg->rx_freq[0]);

267
268
269
  return(0);

}
270
271
272

/*! \brief Set Gains (TX/RX)
 * \param device the hardware to use
273
 * \param openair0_cfg openair0 Config structure
274
275
 * \returns 0 in success 
 */
276
int trx_brf_set_gains(openair0_device* device, openair0_config_t *openair0_cfg) {
277
278
279
280
281

  return(0);

}

282
283


284
285
286
287
#define RXDCLENGTH 16384
int16_t cos_fsover8[8]  = {2047,   1447,      0,  -1448,  -2047,  -1448,     0,   1447};
int16_t cos_3fsover8[8] = {2047,  -1448,      0,   1447,  -2047,   1447,     0,  -1448};

Rohit Gupta's avatar
Rohit Gupta committed
288
/*! \brief calibration table for BladeRF */
289
290
291
292
293
294
rx_gain_calib_table_t calib_table_fx4[] = {
  {2300000000.0,53.5},
  {1880000000.0,57.0},
  {816000000.0,73.0},
  {-1,0}};

295
296
297
298
/*! \brief set RX gain offset from calibration table
 * \param openair0_cfg RF frontend parameters set by application
 * \param chain_index RF chain ID
 */
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
void set_rx_gain_offset(openair0_config_t *openair0_cfg, int chain_index) {

  int i=0;
  // loop through calibration table to find best adjustment factor for RX frequency
  double min_diff = 6e9,diff;
  
  while (openair0_cfg->rx_gain_calib_table[i].freq>0) {
    diff = fabs(openair0_cfg->rx_freq[chain_index] - openair0_cfg->rx_gain_calib_table[i].freq);
    printf("cal %d: freq %f, offset %f, diff %f\n",
	   i,
	   openair0_cfg->rx_gain_calib_table[i].freq,
	   openair0_cfg->rx_gain_calib_table[i].offset,diff);
    if (min_diff > diff) {
      min_diff = diff;
      openair0_cfg->rx_gain_offset[chain_index] = openair0_cfg->rx_gain_calib_table[i].offset;
    }
    i++;
  }
  
}

320
321
322
/*! \brief Calibrate LMSSDR RF 
 * \param device the hardware to use
 */
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
void calibrate_rf(openair0_device *device) {


  brf_state_t *brf = (brf_state_t *)device->priv;
  openair0_timestamp ptimestamp;
  int16_t *calib_buffp,*calib_tx_buffp;
  int16_t calib_buff[2*RXDCLENGTH];
  int16_t calib_tx_buff[2*RXDCLENGTH];
  int i,j,offI,offQ,offIold,offQold,offInew,offQnew,offphase,offphaseold,offphasenew,offgain,offgainold,offgainnew;
  int32_t meanI,meanQ,meanIold,meanQold;
  int cnt=0,loop;

  // put TX on a far-away frequency to avoid interference in RX band
  bladerf_set_frequency(brf->dev,BLADERF_MODULE_TX, (unsigned int) device->openair0_cfg->rx_freq[0] + 200e6);  
  // Set gains to close to max
  bladerf_set_gain(brf->dev, BLADERF_MODULE_RX, 60);
  bladerf_set_gain(brf->dev, BLADERF_MODULE_TX, 60);

  // fill TX buffer with fs/8 complex sinusoid
  j=0;
  for (i=0;i<RXDCLENGTH;i++) {
    calib_tx_buff[j++] = cos_fsover8[i&7];
    calib_tx_buff[j++] = cos_fsover8[(i+6)&7];  // sin
  }
  calib_buffp = &calib_buff[0];
  calib_tx_buffp = &calib_tx_buff[0];
  // Calibrate RX DC offset

  offIold=offQold=2048;
  bladerf_set_correction(brf->dev,BLADERF_MODULE_RX,BLADERF_CORR_LMS_DCOFF_I,offIold);
  bladerf_set_correction(brf->dev,BLADERF_MODULE_RX,BLADERF_CORR_LMS_DCOFF_Q,offQold);
  for (i=0;i<10;i++)
    trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
  
  for (meanIold=meanQold=i=j=0;i<RXDCLENGTH;i++) {
    meanIold+=calib_buff[j++];
    meanQold+=calib_buff[j++];
  }
  meanIold/=RXDCLENGTH;
  meanQold/=RXDCLENGTH;
  printf("[BRF] RX DC: (%d,%d) => (%d,%d)\n",offIold,offQold,meanIold,meanQold);

  offI=offQ=-2048;
  bladerf_set_correction(brf->dev,BLADERF_MODULE_RX,BLADERF_CORR_LMS_DCOFF_I,offI);
  bladerf_set_correction(brf->dev,BLADERF_MODULE_RX,BLADERF_CORR_LMS_DCOFF_Q,offQ);
  for (i=0;i<10;i++)
    trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
  
  for (meanI=meanQ=i=j=0;i<RXDCLENGTH;i++) {
    meanI+=calib_buff[j++];
    meanQ+=calib_buff[j++];
  }
  meanI/=RXDCLENGTH;
  meanQ/=RXDCLENGTH;
  //  printf("[BRF] RX DC: (%d,%d) => (%d,%d)\n",offI,offQ,meanI,meanQ);

  while (cnt++ < 12) {

    offInew=(offIold+offI)>>1;
    offQnew=(offQold+offQ)>>1;

    if (meanI*meanI < meanIold*meanIold) {
      meanIold = meanI;
      offIold = offI;
      printf("[BRF] *** RX DC: offI %d => %d\n",offIold,meanI);
    }
    if (meanQ*meanQ < meanQold*meanQold) {
      meanQold = meanQ;
      offQold = offQ;
      printf("[BRF] *** RX DC: offQ %d => %d\n",offQold,meanQ);
    }
    offI = offInew;
    offQ = offQnew;
    bladerf_set_correction(brf->dev,BLADERF_MODULE_RX,BLADERF_CORR_LMS_DCOFF_I,offI);
    bladerf_set_correction(brf->dev,BLADERF_MODULE_RX,BLADERF_CORR_LMS_DCOFF_Q,offQ);

    for (i=0;i<10;i++)
      trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
    
    for (meanI=meanQ=i=j=0;i<RXDCLENGTH;i++) {
      meanI+=calib_buff[j++];
      meanQ+=calib_buff[j++];
    }
    meanI/=RXDCLENGTH;
    meanQ/=RXDCLENGTH;
    printf("[BRF] RX DC: (%d,%d) => (%d,%d)\n",offI,offQ,meanI,meanQ);
  }

  printf("[BRF] RX DC: (%d,%d) => (%d,%d)\n",offIold,offQold,meanIold,meanQold);
  bladerf_set_correction(brf->dev,BLADERF_MODULE_RX,BLADERF_CORR_LMS_DCOFF_I,offIold);
  bladerf_set_correction(brf->dev,BLADERF_MODULE_RX,BLADERF_CORR_LMS_DCOFF_Q,offQold);

  // TX DC offset
  // PUT TX as f_RX + fs/4
  // loop back BLADERF_LB_RF_LNA1
  bladerf_set_frequency(brf->dev,BLADERF_MODULE_TX, (unsigned int) device->openair0_cfg->rx_freq[0] + (unsigned int) device->openair0_cfg->sample_rate/4);  
  bladerf_set_loopback (brf->dev,BLADERF_LB_RF_LNA1);

  offIold=2048;
  bladerf_set_correction(brf->dev,BLADERF_MODULE_TX,BLADERF_CORR_LMS_DCOFF_I,offIold);
  for (i=0;i<10;i++) {
    trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
425
    trx_brf_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
  }
  for (meanIold=meanQold=i=j=0;i<RXDCLENGTH;i++) {
    switch (i&3) {
    case 0:
      meanIold+=calib_buff[j++];
      break;
    case 1:
      meanQold+=calib_buff[j++];
      break;
    case 2:
      meanIold-=calib_buff[j++];
      break;
    case 3:
      meanQold-=calib_buff[j++];
      break;
    }
  }
  //  meanIold/=RXDCLENGTH;
  //  meanQold/=RXDCLENGTH;
  printf("[BRF] TX DC (offI): %d => (%d,%d)\n",offIold,meanIold,meanQold);

  offI=-2048;
  bladerf_set_correction(brf->dev,BLADERF_MODULE_TX,BLADERF_CORR_LMS_DCOFF_I,offI);
  for (i=0;i<10;i++) {
    trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
451
    trx_brf_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
  }
  for (meanI=meanQ=i=j=0;i<RXDCLENGTH;i++) {
    switch (i&3) {
    case 0:
      meanI+=calib_buff[j++];
      break;
    case 1:
      meanQ+=calib_buff[j++];
      break;
    case 2:
      meanI-=calib_buff[j++];
      break;
    case 3:
      meanQ-=calib_buff[j++];
      break;
    }
  }
  //  meanI/=RXDCLENGTH;
  //  meanQ/=RXDCLENGTH;
  printf("[BRF] TX DC (offI): %d => (%d,%d)\n",offI,meanI,meanQ);
  cnt = 0;
  while (cnt++ < 12) {

    offInew=(offIold+offI)>>1;
    if (meanI*meanI+meanQ*meanQ < meanIold*meanIold +meanQold*meanQold) {
      printf("[BRF] TX DC (offI): ([%d,%d]) => %d : %d\n",offIold,offI,offInew,meanI*meanI+meanQ*meanQ);
      meanIold = meanI;
      meanQold = meanQ;
      offIold = offI;
    }
    offI = offInew;
    bladerf_set_correction(brf->dev,BLADERF_MODULE_TX,BLADERF_CORR_LMS_DCOFF_I,offI);

    for (i=0;i<10;i++) {
      trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
487
      trx_brf_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
    }
    for (meanI=meanQ=i=j=0;i<RXDCLENGTH;i++) {
      switch (i&3) {
      case 0:
	meanI+=calib_buff[j++];
	break;
      case 1:
	meanQ+=calib_buff[j++];
	break;
      case 2:
	meanI-=calib_buff[j++];
	break;
      case 3:
	meanQ-=calib_buff[j++];
	break;
      }
    }
    //    meanI/=RXDCLENGTH;
    //   meanQ/=RXDCLENGTH;
    //    printf("[BRF] TX DC (offI): %d => (%d,%d)\n",offI,meanI,meanQ);
  }

  bladerf_set_correction(brf->dev,BLADERF_MODULE_TX,BLADERF_CORR_LMS_DCOFF_I,offIold);

  offQold=2048;
  bladerf_set_correction(brf->dev,BLADERF_MODULE_TX,BLADERF_CORR_LMS_DCOFF_Q,offQold);
  for (i=0;i<10;i++) {
    trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
516
    trx_brf_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
  }
  // project on fs/4
  for (meanIold=meanQold=i=j=0;i<RXDCLENGTH;i++) {
    switch (i&3) {
    case 0:
      meanIold+=calib_buff[j++];
      break;
    case 1:
      meanQold+=calib_buff[j++];
      break;
    case 2:
      meanIold-=calib_buff[j++];
      break;
    case 3:
      meanQold-=calib_buff[j++];
      break;
    }
  }
  //  meanIold/=RXDCLENGTH;
  //  meanQold/=RXDCLENGTH;
  printf("[BRF] TX DC (offQ): %d => (%d,%d)\n",offQold,meanIold,meanQold);

  offQ=-2048;
  bladerf_set_correction(brf->dev,BLADERF_MODULE_TX,BLADERF_CORR_LMS_DCOFF_Q,offQ);
  for (i=0;i<10;i++) {
    trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
543
    trx_brf_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
  }
  for (meanI=meanQ=i=j=0;i<RXDCLENGTH;i++) {
    switch (i&3) {
    case 0:
      meanI+=calib_buff[j++];
      break;
    case 1:
      meanQ+=calib_buff[j++];
      break;
    case 2:
      meanI-=calib_buff[j++];
      break;
    case 3:
      meanQ-=calib_buff[j++];
      break;
    }
  }
  //  meanI/=RXDCLENGTH;
  //  meanQ/=RXDCLENGTH;
  printf("[BRF] TX DC (offQ): %d => (%d,%d)\n",offQ,meanI,meanQ);

  cnt=0;
  while (cnt++ < 12) {

    offQnew=(offQold+offQ)>>1;
    if (meanI*meanI+meanQ*meanQ < meanIold*meanIold +meanQold*meanQold) {
      printf("[BRF] TX DC (offQ): ([%d,%d]) => %d : %d\n",offQold,offQ,offQnew,meanI*meanI+meanQ*meanQ);

      meanIold = meanI;
      meanQold = meanQ;
      offQold = offQ;
    }
    offQ = offQnew;
    bladerf_set_correction(brf->dev,BLADERF_MODULE_TX,BLADERF_CORR_LMS_DCOFF_Q,offQ);

    for (i=0;i<10;i++) {
      trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
581
      trx_brf_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
    }
    for (meanI=meanQ=i=j=0;i<RXDCLENGTH;i++) {
      switch (i&3) {
      case 0:
	meanI+=calib_buff[j++];
	break;
      case 1:
	meanQ+=calib_buff[j++];
	break;
      case 2:
	meanI-=calib_buff[j++];
	break;
      case 3:
	meanQ-=calib_buff[j++];
	break;
      }
    }
    //    meanI/=RXDCLENGTH;
    //   meanQ/=RXDCLENGTH;
    //    printf("[BRF] TX DC (offQ): %d => (%d,%d)\n",offQ,meanI,meanQ);
  }

  printf("[BRF] TX DC: (%d,%d) => (%d,%d)\n",offIold,offQold,meanIold,meanQold);

  bladerf_set_correction(brf->dev,BLADERF_MODULE_TX,BLADERF_CORR_LMS_DCOFF_Q,offQold);

  // TX IQ imbalance
  for (loop=0;loop<2;loop++) {
    offphaseold=4096;
    bladerf_set_correction(brf->dev,BLADERF_MODULE_TX,BLADERF_CORR_FPGA_PHASE,offphaseold);
    for (i=0;i<10;i++) {
      trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
614
      trx_brf_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
    }
    // project on fs/8 (Image of TX signal in +ve frequencies)
    for (meanIold=meanQold=i=j=0;i<RXDCLENGTH;i++) {
      meanIold+= (calib_buff[j]*cos_fsover8[i&7] - calib_buff[j+1]*cos_fsover8[(i+2)&7])>>11;
      meanQold+= (calib_buff[j]*cos_fsover8[(i+2)&7] + calib_buff[j+1]*cos_fsover8[i&7])>>11;
      j+=2;
    }
    
    meanIold/=RXDCLENGTH;
    meanQold/=RXDCLENGTH;
    printf("[BRF] TX IQ (offphase): %d => (%d,%d)\n",offphaseold,meanIold,meanQold);
    
    offphase=-4096;
    bladerf_set_correction(brf->dev,BLADERF_MODULE_TX,BLADERF_CORR_FPGA_PHASE,offphase);
    for (i=0;i<10;i++) {
      trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
631
      trx_brf_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
    }
    // project on fs/8 (Image of TX signal in +ve frequencies)
    for (meanI=meanQ=i=j=0;i<RXDCLENGTH;i++) {
      meanI+= (calib_buff[j]*cos_fsover8[i&7] - calib_buff[j+1]*cos_fsover8[(i+2)&7])>>11;
      meanQ+= (calib_buff[j]*cos_fsover8[(i+2)&7] + calib_buff[j+1]*cos_fsover8[i&7])>>11;
      j+=2;
    }
    
    meanI/=RXDCLENGTH;
    meanQ/=RXDCLENGTH;
    printf("[BRF] TX IQ (offphase): %d => (%d,%d)\n",offphase,meanI,meanQ);
    
    cnt=0;
    while (cnt++ < 13) {
      
      offphasenew=(offphaseold+offphase)>>1;
      printf("[BRF] TX IQ (offphase): ([%d,%d]) => %d : %d\n",offphaseold,offphase,offphasenew,meanI*meanI+meanQ*meanQ);
      if (meanI*meanI+meanQ*meanQ < meanIold*meanIold +meanQold*meanQold) {

	
	meanIold = meanI;
	meanQold = meanQ;
	offphaseold = offphase;
      }
      offphase = offphasenew;
      bladerf_set_correction(brf->dev,BLADERF_MODULE_TX,BLADERF_CORR_FPGA_PHASE,offphase);
      
      for (i=0;i<10;i++) {
	trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
661
	trx_brf_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
      }
      // project on fs/8 (Image of TX signal in +ve frequencies)
      for (meanI=meanQ=i=j=0;i<RXDCLENGTH;i++) {
	meanI+= (calib_buff[j]*cos_fsover8[i&7] - calib_buff[j+1]*cos_fsover8[(i+2)&7])>>11;
	meanQ+= (calib_buff[j]*cos_fsover8[(i+2)&7] + calib_buff[j+1]*cos_fsover8[i&7])>>11;
	j+=2;
      }
      meanI/=RXDCLENGTH;
      meanQ/=RXDCLENGTH;
      
      //    printf("[BRF] TX DC (offQ): %d => (%d,%d)\n",offQ,meanI,meanQ);
    }
    
    printf("[BRF] TX IQ offphase: %d => (%d,%d)\n",offphaseold,meanIold,meanQold);
    
    bladerf_set_correction(brf->dev,BLADERF_MODULE_TX,BLADERF_CORR_FPGA_PHASE,offphaseold);
    
    offgainold=4096;
    bladerf_set_correction(brf->dev,BLADERF_MODULE_TX,BLADERF_CORR_FPGA_GAIN,offgainold);
    for (i=0;i<10;i++) {
      trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
683
      trx_brf_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
    }
    // project on fs/8 (Image of TX signal in +ve frequencies)
    for (meanIold=meanQold=i=j=0;i<RXDCLENGTH;i++) {
      meanIold+= (calib_buff[j]*cos_fsover8[i&7] - calib_buff[j+1]*cos_fsover8[(i+2)&7])>>11;
      meanQold+= (calib_buff[j]*cos_fsover8[(i+2)&7] + calib_buff[j+1]*cos_fsover8[i&7])>>11;
      j+=2;
    }
    
    meanIold/=RXDCLENGTH;
    meanQold/=RXDCLENGTH;
    printf("[BRF] TX IQ (offgain): %d => (%d,%d)\n",offgainold,meanIold,meanQold);
    
    offgain=-4096;
    bladerf_set_correction(brf->dev,BLADERF_MODULE_TX,BLADERF_CORR_FPGA_GAIN,offgain);
    for (i=0;i<10;i++) {
      trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
700
      trx_brf_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
    }
    // project on fs/8 (Image of TX signal in +ve frequencies)
    for (meanI=meanQ=i=j=0;i<RXDCLENGTH;i++) {
      meanI+= (calib_buff[j]*cos_fsover8[i&7] - calib_buff[j+1]*cos_fsover8[(i+2)&7])>>11;
      meanQ+= (calib_buff[j]*cos_fsover8[(i+2)&7] + calib_buff[j+1]*cos_fsover8[i&7])>>11;
      j+=2;
    }
    
    meanI/=RXDCLENGTH;
    meanQ/=RXDCLENGTH;
    printf("[BRF] TX IQ (offgain): %d => (%d,%d)\n",offgain,meanI,meanQ);
    
    cnt=0;
    while (cnt++ < 13) {
      
      offgainnew=(offgainold+offgain)>>1;
      if (meanI*meanI+meanQ*meanQ < meanIold*meanIold +meanQold*meanQold) {
	printf("[BRF] TX IQ (offgain): ([%d,%d]) => %d : %d\n",offgainold,offgain,offgainnew,meanI*meanI+meanQ*meanQ);
	
	meanIold = meanI;
	meanQold = meanQ;
	offgainold = offgain;
      }
      offgain = offgainnew;
      bladerf_set_correction(brf->dev,BLADERF_MODULE_TX,BLADERF_CORR_FPGA_GAIN,offgain);
      
      for (i=0;i<10;i++) {
	trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
729
	trx_brf_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
      }
      // project on fs/8 (Image of TX signal in +ve frequencies)
      for (meanI=meanQ=i=j=0;i<RXDCLENGTH;i++) {
	meanI+= (calib_buff[j]*cos_fsover8[i&7] - calib_buff[j+1]*cos_fsover8[(i+2)&7])>>11;
	meanQ+= (calib_buff[j]*cos_fsover8[(i+2)&7] + calib_buff[j+1]*cos_fsover8[i&7])>>11;
	j+=2;
      }
      meanI/=RXDCLENGTH;
      meanQ/=RXDCLENGTH;
      
      //    printf("[BRF] TX DC (offQ): %d => (%d,%d)\n",offQ,meanI,meanQ);
    }
    
    printf("[BRF] TX IQ offgain: %d => (%d,%d)\n",offgainold,meanIold,meanQold);
    
    bladerf_set_correction(brf->dev,BLADERF_MODULE_TX,BLADERF_CORR_FPGA_GAIN,offgainold);
  }

  // RX IQ imbalance
  for (loop=0;loop<2;loop++) {
    offphaseold=4096;
    bladerf_set_correction(brf->dev,BLADERF_MODULE_RX,BLADERF_CORR_FPGA_PHASE,offphaseold);
    for (i=0;i<10;i++) {
      trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
754
      trx_brf_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
    }
    // project on -3fs/8 (Image of TX signal in -ve frequencies)
    for (meanIold=meanQold=i=j=0;i<RXDCLENGTH;i++) {
      meanIold+= (calib_buff[j]*cos_3fsover8[i&7] - calib_buff[j+1]*cos_3fsover8[(i+2)&7])>>11;
      meanQold+= (calib_buff[j]*cos_3fsover8[(i+2)&7] + calib_buff[j+1]*cos_3fsover8[i&7])>>11;
      j+=2;
    }
    
    meanIold/=RXDCLENGTH;
    meanQold/=RXDCLENGTH;
    printf("[BRF] RX IQ (offphase): %d => (%d,%d)\n",offphaseold,meanIold,meanQold);
    
    offphase=-4096;
    bladerf_set_correction(brf->dev,BLADERF_MODULE_RX,BLADERF_CORR_FPGA_PHASE,offphase);
    for (i=0;i<10;i++) {
      trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
771
      trx_brf_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
    }
    // project on -3fs/8 (Image of TX signal in -ve frequencies)
    for (meanI=meanQ=i=j=0;i<RXDCLENGTH;i++) {
      meanI+= (calib_buff[j]*cos_3fsover8[i&7] - calib_buff[j+1]*cos_3fsover8[(i+2)&7])>>11;
      meanQ+= (calib_buff[j]*cos_3fsover8[(i+2)&7] + calib_buff[j+1]*cos_3fsover8[i&7])>>11;
      j+=2;
    }
    
    meanI/=RXDCLENGTH;
    meanQ/=RXDCLENGTH;
    printf("[BRF] RX IQ (offphase): %d => (%d,%d)\n",offphase,meanI,meanQ);
    
    cnt=0;
    while (cnt++ < 13) {
      
      offphasenew=(offphaseold+offphase)>>1;
      printf("[BRF] RX IQ (offphase): ([%d,%d]) => %d : %d\n",offphaseold,offphase,offphasenew,meanI*meanI+meanQ*meanQ);
      if (meanI*meanI+meanQ*meanQ < meanIold*meanIold +meanQold*meanQold) {

	
	meanIold = meanI;
	meanQold = meanQ;
	offphaseold = offphase;
      }
      offphase = offphasenew;
      bladerf_set_correction(brf->dev,BLADERF_MODULE_RX,BLADERF_CORR_FPGA_PHASE,offphase);
      
      for (i=0;i<10;i++) {
	trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
801
	trx_brf_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
      }
      // project on -3fs/8 (Image of TX signal in -ve frequencies)
      for (meanI=meanQ=i=j=0;i<RXDCLENGTH;i++) {
	meanI+= (calib_buff[j]*cos_3fsover8[i&7] - calib_buff[j+1]*cos_3fsover8[(i+2)&7])>>11;
	meanQ+= (calib_buff[j]*cos_3fsover8[(i+2)&7] + calib_buff[j+1]*cos_3fsover8[i&7])>>11;
	j+=2;
      }
      meanI/=RXDCLENGTH;
      meanQ/=RXDCLENGTH;
      
      //    printf("[BRF] TX DC (offQ): %d => (%d,%d)\n",offQ,meanI,meanQ);
    }
    
    printf("[BRF] RX IQ offphase: %d => (%d,%d)\n",offphaseold,meanIold,meanQold);
    
    bladerf_set_correction(brf->dev,BLADERF_MODULE_RX,BLADERF_CORR_FPGA_PHASE,offphaseold);
    
    offgainold=4096;
    bladerf_set_correction(brf->dev,BLADERF_MODULE_RX,BLADERF_CORR_FPGA_GAIN,offgainold);
    for (i=0;i<10;i++) {
      trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
823
      trx_brf_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0,0);
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
    }
    // project on -3fs/8 (Image of TX signal in +ve frequencies)
    for (meanIold=meanQold=i=j=0;i<RXDCLENGTH;i++) {
      meanIold+= (calib_buff[j]*cos_3fsover8[i&7] - calib_buff[j+1]*cos_3fsover8[(i+2)&7])>>11;
      meanQold+= (calib_buff[j]*cos_3fsover8[(i+2)&7] + calib_buff[j+1]*cos_3fsover8[i&7])>>11;
      j+=2;
    }
    
    meanIold/=RXDCLENGTH;
    meanQold/=RXDCLENGTH;
    printf("[BRF] RX IQ (offgain): %d => (%d,%d)\n",offgainold,meanIold,meanQold);
    
    offgain=-4096;
    bladerf_set_correction(brf->dev,BLADERF_MODULE_RX,BLADERF_CORR_FPGA_GAIN,offgain);
    for (i=0;i<10;i++) {
      trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
840
      trx_brf_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
    }
    // project on 3fs/8 (Image of TX signal in -ve frequencies)
    for (meanI=meanQ=i=j=0;i<RXDCLENGTH;i++) {
      meanI+= (calib_buff[j]*cos_3fsover8[i&7] - calib_buff[j+1]*cos_3fsover8[(i+2)&7])>>11;
      meanQ+= (calib_buff[j]*cos_3fsover8[(i+2)&7] + calib_buff[j+1]*cos_3fsover8[i&7])>>11;
      j+=2;
    }
    
    meanI/=RXDCLENGTH;
    meanQ/=RXDCLENGTH;
    printf("[BRF] RX IQ (offgain): %d => (%d,%d)\n",offgain,meanI,meanQ);
    
    cnt=0;
    while (cnt++ < 13) {
      
      offgainnew=(offgainold+offgain)>>1;
      if (meanI*meanI+meanQ*meanQ < meanIold*meanIold +meanQold*meanQold) {
	printf("[BRF] RX IQ (offgain): ([%d,%d]) => %d : %d\n",offgainold,offgain,offgainnew,meanI*meanI+meanQ*meanQ);
	
	meanIold = meanI;
	meanQold = meanQ;
	offgainold = offgain;
      }
      offgain = offgainnew;
      bladerf_set_correction(brf->dev,BLADERF_MODULE_RX,BLADERF_CORR_FPGA_GAIN,offgain);
      
      for (i=0;i<10;i++) {
	trx_brf_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
869
	trx_brf_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
      }
      // project on -3fs/8 (Image of TX signal in -ve frequencies)
      for (meanI=meanQ=i=j=0;i<RXDCLENGTH;i++) {
	meanI+= (calib_buff[j]*cos_3fsover8[i&7] - calib_buff[j+1]*cos_3fsover8[(i+2)&7])>>11;
	meanQ+= (calib_buff[j]*cos_3fsover8[(i+2)&7] + calib_buff[j+1]*cos_3fsover8[i&7])>>11;
	j+=2;
      }
      meanI/=RXDCLENGTH;
      meanQ/=RXDCLENGTH;
      
      //    printf("[BRF] TX DC (offQ): %d => (%d,%d)\n",offQ,meanI,meanQ);
    }
    
    printf("[BRF] RX IQ offgain: %d => (%d,%d)\n",offgainold,meanIold,meanQold);
    
    bladerf_set_correction(brf->dev,BLADERF_MODULE_RX,BLADERF_CORR_FPGA_GAIN,offgainold);
  }

  bladerf_set_frequency(brf->dev,BLADERF_MODULE_TX, (unsigned int) device->openair0_cfg->tx_freq[0]);  
  bladerf_set_loopback(brf->dev,BLADERF_LB_NONE);
  bladerf_set_gain(brf->dev, BLADERF_MODULE_RX, (unsigned int) device->openair0_cfg->rx_gain[0]-device->openair0_cfg[0].rx_gain_offset[0]);
  bladerf_set_gain(brf->dev, BLADERF_MODULE_TX, (unsigned int) device->openair0_cfg->tx_gain[0]);
  //  write_output("blade_rf_test.m","rxs",calib_buff,RXDCLENGTH,1,1);
}

895
896
897
/*! \brief Initialize Openair BLADERF target. It returns 0 if OK 
 * \param device the hardware to use
 * \param openair0_cfg RF frontend parameters set by application
898
 * \returns 0 on success
899
 */
Rohit Gupta's avatar
Rohit Gupta committed
900
int device_init(openair0_device *device, openair0_config_t *openair0_cfg) {
901
  int status;
902
903
  brf_state_t *brf = (brf_state_t*)malloc(sizeof(brf_state_t));
  memset(brf, 0, sizeof(brf_state_t));
904
  /* device specific */
905
906
  //openair0_cfg->txlaunch_wait = 1;//manage when TX processing is triggered
  //openair0_cfg->txlaunch_wait_slotcount = 1; //manage when TX processing is triggered
907
908
  openair0_cfg->iq_txshift = 0;// shift
  openair0_cfg->iq_rxrescale = 15;//rescale iqs
909
  
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
  // init required params
  switch ((int)openair0_cfg->sample_rate) {
  case 30720000:
    openair0_cfg->samples_per_packet    = 2048;
    openair0_cfg->tx_sample_advance     = 0;
    break;
  case 15360000:
    openair0_cfg->samples_per_packet    = 2048;
    openair0_cfg->tx_sample_advance     = 0;
    break;
  case 7680000:
    openair0_cfg->samples_per_packet    = 1024;
    openair0_cfg->tx_sample_advance     = 0;
    break;
  case 1920000:
    openair0_cfg->samples_per_packet    = 256;
    openair0_cfg->tx_sample_advance     = 50;
    break;
  default:
    printf("Error: unknown sampling rate %f\n",openair0_cfg->sample_rate);
    exit(-1);
    break;
  }
933
934
  openair0_cfg->iq_txshift= 0;
  openair0_cfg->iq_rxrescale = 15; /*not sure*/
935
  openair0_cfg->rx_gain_calib_table = calib_table_fx4;
936

nikaeinn's avatar
nikaeinn committed
937
938
939
  //  The number of buffers to use in the underlying data stream
  brf->num_buffers   = 128;
  // the size of the underlying stream buffers, in samples
940
  brf->buffer_size   = (unsigned int) openair0_cfg->samples_per_packet;//*sizeof(int32_t); // buffer size = 4096 for sample_len of 1024
nikaeinn's avatar
nikaeinn committed
941
942
943
  brf->num_transfers = 16;
  brf->rx_timeout_ms = 0;  
  brf->tx_timeout_ms = 0;
944
  brf->sample_rate=(unsigned int)openair0_cfg->sample_rate;
945

nikaeinn's avatar
nikaeinn committed
946
947
948
949
950
951
  memset(&brf->meta_rx, 0, sizeof(brf->meta_rx));
  memset(&brf->meta_tx, 0, sizeof(brf->meta_tx));

  printf("\n[BRF] sampling_rate %d, num_buffers %d,  buffer_size %d, num transfer %d, timeout_ms (rx %d, tx %d)\n", 
	 brf->sample_rate, brf->num_buffers, brf->buffer_size,brf->num_transfers, brf->rx_timeout_ms, brf->tx_timeout_ms);
  
952
  if ((status=bladerf_open(&brf->dev, "")) != 0 ) {
953
954
955
    fprintf(stderr,"Failed to open brf device: %s\n",bladerf_strerror(status));
    brf_error(status);
  }
956
957
958
959
960
961
962
963
964
  printf("[BRF] init dev %p\n", brf->dev);
  switch(bladerf_device_speed(brf->dev)){
  case BLADERF_DEVICE_SPEED_SUPER:
    printf("[BRF] Device operates at max speed\n");
    break;
  default:
    printf("[BRF] Device does not operates at max speed, change the USB port\n");
    brf_error(BLADERF_ERR_UNSUPPORTED);
  }
nikaeinn's avatar
nikaeinn committed
965
  // RX  
966
967
  // Example of CLI output: RX Frequency: 2539999999Hz
  
968
  if ((status=bladerf_set_frequency(brf->dev, BLADERF_MODULE_RX, (unsigned int) openair0_cfg->rx_freq[0])) != 0){
969
970
    fprintf(stderr,"Failed to set RX frequency: %s\n",bladerf_strerror(status));
    brf_error(status);
971
  } else 
972
    printf("[BRF] set RX frequency to %u\n",(unsigned int)openair0_cfg->rx_freq[0]);
973
  
974
975


nikaeinn's avatar
nikaeinn committed
976
  unsigned int actual_value=0;
977
  if ((status=bladerf_set_sample_rate(brf->dev, BLADERF_MODULE_RX, (unsigned int) openair0_cfg->sample_rate, &actual_value)) != 0){
978
979
    fprintf(stderr,"Failed to set RX sample rate: %s\n", bladerf_strerror(status));
    brf_error(status);
nikaeinn's avatar
nikaeinn committed
980
  }else  
981
    printf("[BRF] set RX sample rate to %u, %u\n", (unsigned int) openair0_cfg->sample_rate, actual_value);
982
 
nikaeinn's avatar
nikaeinn committed
983

984
  if ((status=bladerf_set_bandwidth(brf->dev, BLADERF_MODULE_RX, (unsigned int) openair0_cfg->rx_bw*2, &actual_value)) != 0){
985
986
    fprintf(stderr,"Failed to set RX bandwidth: %s\n", bladerf_strerror(status));
    brf_error(status);
987
  }else 
988
    printf("[BRF] set RX bandwidth to %u, %u\n",(unsigned int)openair0_cfg->rx_bw*2, actual_value);
989
 
990
991
  set_rx_gain_offset(&openair0_cfg[0],0);
  if ((status=bladerf_set_gain(brf->dev, BLADERF_MODULE_RX, (int) openair0_cfg->rx_gain[0]-openair0_cfg[0].rx_gain_offset[0])) != 0) {
992
993
    fprintf(stderr,"Failed to set RX gain: %s\n",bladerf_strerror(status));
    brf_error(status);
994
  } else 
995
    printf("[BRF] set RX gain to %d (%d)\n",(int)(openair0_cfg->rx_gain[0]-openair0_cfg[0].rx_gain_offset[0]),(int)openair0_cfg[0].rx_gain_offset[0]);
996
997

  // TX
nikaeinn's avatar
nikaeinn committed
998
  
999
  if ((status=bladerf_set_frequency(brf->dev, BLADERF_MODULE_TX, (unsigned int) openair0_cfg->tx_freq[0])) != 0){
1000
1001
    fprintf(stderr,"Failed to set TX frequency: %s\n",bladerf_strerror(status));
    brf_error(status);
1002
  }else 
1003
    printf("[BRF] set TX Frequency to %u\n", (unsigned int) openair0_cfg->tx_freq[0]);
1004

1005
  if ((status=bladerf_set_sample_rate(brf->dev, BLADERF_MODULE_TX, (unsigned int) openair0_cfg->sample_rate, NULL)) != 0){
1006
1007
    fprintf(stderr,"Failed to set TX sample rate: %s\n", bladerf_strerror(status));
    brf_error(status);
1008
  }else 
1009
    printf("[BRF] set TX sampling rate to %u \n", (unsigned int) openair0_cfg->sample_rate);
1010

1011
  if ((status=bladerf_set_bandwidth(brf->dev, BLADERF_MODULE_TX,(unsigned int)openair0_cfg->tx_bw*2, NULL)) != 0){
nikaeinn's avatar
nikaeinn committed
1012
    fprintf(stderr, "Failed to set TX bandwidth: %s\n", bladerf_strerror(status));
1013
    brf_error(status);
1014
  }else 
1015
    printf("[BRF] set TX bandwidth to %u \n", (unsigned int) openair0_cfg->tx_bw*2);
1016

1017
  if ((status=bladerf_set_gain(brf->dev, BLADERF_MODULE_TX, (int) openair0_cfg->tx_gain[0])) != 0) {
1018
1019
    fprintf(stderr,"Failed to set TX gain: %s\n",bladerf_strerror(status));
    brf_error(status);
1020
  }else 
1021
    printf("[BRF] set the TX gain to %d\n", (int)openair0_cfg->tx_gain[0]);
nikaeinn's avatar
nikaeinn committed
1022
  
1023

nikaeinn's avatar
nikaeinn committed
1024
 /* Configure the device's TX module for use with the sync interface.
1025
   * SC16 Q11 samples *with* metadata are used. */
navid's avatar
navid committed
1026
  if ((status=bladerf_sync_config(brf->dev, BLADERF_MODULE_TX,BLADERF_FORMAT_SC16_Q11_META,brf->num_buffers,brf->buffer_size,brf->num_transfers,brf->tx_timeout_ms)) != 0 ) {
1027
1028
    fprintf(stderr,"Failed to configure TX sync interface: %s\n", bladerf_strerror(status));
     brf_error(status);
1029
  }else 
nikaeinn's avatar
nikaeinn committed
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
    printf("[BRF] configured TX  sync interface \n");

/* Configure the device's RX module for use with the sync interface.
   * SC16 Q11 samples *with* metadata are used. */
  if ((status=bladerf_sync_config(brf->dev, BLADERF_MODULE_RX, BLADERF_FORMAT_SC16_Q11_META,brf->num_buffers,brf->buffer_size,brf->num_transfers,brf->rx_timeout_ms)) != 0 ) {
    fprintf(stderr,"Failed to configure RX sync interface: %s\n", bladerf_strerror(status));
    brf_error(status);
  }else 
    printf("[BRF] configured Rx sync interface \n");

1040
1041
1042

   /* We must always enable the TX module after calling bladerf_sync_config(), and 
    * before  attempting to TX samples via  bladerf_sync_tx(). */
1043
  if ((status=bladerf_enable_module(brf->dev, BLADERF_MODULE_TX, true)) != 0) {
1044
1045
    fprintf(stderr,"Failed to enable TX module: %s\n", bladerf_strerror(status));
    brf_error(status);
1046
  } else 
navid's avatar
navid committed
1047
    printf("[BRF] TX module enabled \n");
nikaeinn's avatar
nikaeinn committed
1048
 
nikaeinn's avatar
nikaeinn committed
1049
1050
1051
1052
1053
1054
1055
1056
1057
 /* We must always enable the RX module after calling bladerf_sync_config(), and 
    * before  attempting to RX samples via  bladerf_sync_rx(). */
  if ((status=bladerf_enable_module(brf->dev, BLADERF_MODULE_RX, true)) != 0) {
    fprintf(stderr,"Failed to enable RX module: %s\n", bladerf_strerror(status));
    brf_error(status);
  }else 
    printf("[BRF] RX module enabled \n");

  // calibrate 
1058
    
nikaeinn's avatar
nikaeinn committed
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
 if ((status=bladerf_calibrate_dc(brf->dev, BLADERF_MODULE_TX)) != 0) {
    fprintf(stderr,"Failed to calibrate TX DC: %s\n", bladerf_strerror(status));
    brf_error(status);
  } else 
    printf("[BRF] TX module calibrated DC \n");
 
  if ((status=bladerf_calibrate_dc(brf->dev, BLADERF_MODULE_RX)) != 0) {
    fprintf(stderr,"Failed to calibrate RX DC: %s\n", bladerf_strerror(status));
    brf_error(status);
  }else 
    printf("[BRF] RX module calibrated DC \n");
1070
  
1071
  bladerf_log_set_verbosity(get_brf_log_level(openair0_cfg->log_level));
1072
1073
1074
  
  printf("BLADERF: Initializing openair0_device\n");
  device->Mod_id         = num_devices++;
1075
  device->type             = BLADERF_DEV; 
1076
1077
1078
1079
  device->trx_start_func = trx_brf_start;
  device->trx_end_func   = trx_brf_end;
  device->trx_read_func  = trx_brf_read;
  device->trx_write_func = trx_brf_write;
1080
1081
1082
1083
1084
  device->trx_get_stats_func   = trx_brf_get_stats;
  device->trx_reset_stats_func = trx_brf_reset_stats;
  device->trx_stop_func        = trx_brf_stop;
  device->trx_set_freq_func    = trx_brf_set_freq;
  device->trx_set_gains_func   = trx_brf_set_gains;
1085
  device->openair0_cfg = openair0_cfg;
1086
  device->priv = (void *)brf;
1087
1088
1089
1090

  calibrate_rf(device);

  //  memcpy((void*)&device->openair0_cfg,(void*)&openair0_cfg[0],sizeof(openair0_config_t));
1091
1092

  return 0;
1093
1094
}

1095
1096
/*! \brief bladeRF error report 
 * \param status 
1097
 * \returns 0 on success
1098
 */
1099
int brf_error(int status) {
1100
  
navid's avatar
navid committed
1101
  //exit(-1);
1102
  return status; // or status error code
1103
1104
}

1105

1106
1107
/*! \brief Open BladeRF from serial port
 * \param serial name of serial port on which to open BladeRF device
1108
 * \returns bladerf device structure
1109
 */
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
struct bladerf * open_bladerf_from_serial(const char *serial) {

  int status;
  struct bladerf *dev;
  struct bladerf_devinfo info;
  /* Initialize all fields to "don't care" wildcard values.
   *
   * Immediately passing this to bladerf_open_with_devinfo() would cause
   * libbladeRF to open any device on any available backend. */
  bladerf_init_devinfo(&info);
  /* Specify the desired device's serial number, while leaving all other
   * fields in the info structure wildcard values */
  strncpy(info.serial, serial, BLADERF_SERIAL_LENGTH - 1);
  info.serial[BLADERF_SERIAL_LENGTH - 1] = '\0';
  status = bladerf_open_with_devinfo(&dev, &info);
  
  if (status == BLADERF_ERR_NODEV) {
    printf("No devices available with serial=%s\n", serial);
    return NULL;
  } else if (status != 0) {
    fprintf(stderr, "Failed to open device with serial=%s (%s)\n", serial, bladerf_strerror(status));
    return NULL;
  } else {
    return dev;
  }
}
1136
1137
1138

/*! \brief Get BladeRF log level
 * \param log_level log level
1139
 * \returns log level of BLADERF device
1140
 */
1141
1142
1143
int get_brf_log_level(int log_level){

  int level=BLADERF_LOG_LEVEL_INFO;
nikaeinn's avatar
nikaeinn committed
1144
  return  BLADERF_LOG_LEVEL_DEBUG; // BLADERF_LOG_LEVEL_VERBOSE;// BLADERF_LOG_LEVEL_DEBUG; //
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
  switch(log_level) {
  case LOG_DEBUG:
    level=BLADERF_LOG_LEVEL_DEBUG;
    break;
  case LOG_INFO:
    level= BLADERF_LOG_LEVEL_INFO;
    break;
  case LOG_WARNING:
    level=BLADERF_LOG_LEVEL_WARNING;
    break;
  case LOG_ERR:
    level=BLADERF_LOG_LEVEL_ERROR;
    break;
  case LOG_CRIT:
    level=BLADERF_LOG_LEVEL_CRITICAL;
    break;
  case LOG_EMERG:
    level = BLADERF_LOG_LEVEL_SILENT;
    break;
  default:
    break;
  }
  return level;
}
1169
/*@}*/