defs.h 9.47 KB
Newer Older
ghaddab's avatar
ghaddab committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*******************************************************************************
    OpenAirInterface 
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is 
   included in this distribution in the file called "COPYING". If not, 
   see <http://www.gnu.org/licenses/>.

  Contact Information
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
  OpenAirInterface Dev  : openair4g-devel@eurecom.fr
  
ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
ghaddab's avatar
ghaddab committed
27 28

 *******************************************************************************/
29 30 31 32 33 34 35 36
#ifndef __LTE_ESTIMATION_DEFS__H__
#define __LTE_ESTIMATION_DEFS__H__

#include "PHY/defs.h"
/*
#ifdef EMOS
#include "SCHED/phy_procedures_emos.h"
#endif
gauthier's avatar
gauthier committed
37
 */
38 39

/** @addtogroup _PHY_PARAMETER_ESTIMATION_BLOCKS_
gauthier's avatar
gauthier committed
40 41
 * @{
 */
42 43 44 45

/*!\brief Timing drift hysterisis in samples*/
#define SYNCH_HYST 1

46 47 48 49 50 51 52
/*!
\brief This function is used for time-frequency scanning prior to complete cell search.  It scans
over the entire LTE band for maximum correlation and keeps the 10 best scores and the correspoding frequency offset (5 kHz granularity) for each of the 3 PSS sequences.
\param ue Pointer to UE variables
\param band index of lte band
\param DL_freq Central RF Frequency in Hz 
*/
53 54 55
/*!
\brief This function allocates memory needed for the synchronization.
\param frame_parms LTE DL frame parameter structure
56

gauthier's avatar
gauthier committed
57
 */
58 59 60 61 62

int lte_sync_time_init(LTE_DL_FRAME_PARMS *frame_parms); //LTE_UE_COMMON *common_vars

/*! \fn void lte_sync_time_free()
\brief This function frees the memory allocated by lte_sync_time_init.
gauthier's avatar
gauthier committed
63
 */
64 65 66 67 68 69 70 71 72
void lte_sync_time_free(void);

/*! 
\brief This function performs the coarse timing synchronization.
The algorithm uses a time domain correlation with a downsampled version of the received signal. 
\param rxdata Received time domain data for all rx antennas
\param frame_parms LTE DL frame parameter structure
\param eNB_id return value with the eNb_id
\return sync_pos Position of the sync within the frame (downsampled) if successfull and -1 if there was an error or no peak was detected.
gauthier's avatar
gauthier committed
73
 */
74
int lte_sync_time(int **rxdata, 
gauthier's avatar
gauthier committed
75 76
    LTE_DL_FRAME_PARMS *frame_parms,
    int *eNB_id);
77

78 79 80 81 82 83 84 85 86 87
/*! 
\brief This function performs the coarse frequency and PSS synchronization.
The algorithm uses a frequency-domain correlation.  It scans over 20 MHz/10ms signal chunks using each of the 3 PSS finding the most likely (strongest) carriers and their frequency offset (+-2.5 kHz).
\param ue Pointer to UE data structure
\param band index of band in scan_info structure, used to store statistics
\param DL_freq center frequency of band being scanned, used when storing statistics
*/
void lte_sync_timefreq(PHY_VARS_UE *ue,int band,unsigned int DL_freq);


88 89 90 91 92 93 94 95 96
/*! 
\brief This function performs detection of the PRACH (=SRS) at the eNb to estimate the timing advance
The algorithm uses a time domain correlation with a downsampled version of the received signal. 
\param rxdata Received time domain data for all rx antennas
\param frame_parms LTE DL frame parameter structure
\param length Length for correlation
\param peak_val pointer to value of returned peak 
\param sync_corr_eNb pointer to correlation buffer
\return sync_pos Position of the sync within the frame (downsampled) if successfull and -1 if there was an error or no peak was detected.
gauthier's avatar
gauthier committed
97 98 99 100 101 102
 */
int lte_sync_time_eNB(int32_t **rxdata,
    LTE_DL_FRAME_PARMS *frame_parms,
    uint32_t length,
    uint32_t *peak_val,
    uint32_t *sync_corr_eNb);
103 104

int lte_sync_time_eNB_emul(PHY_VARS_eNB *phy_vars_eNb,
gauthier's avatar
gauthier committed
105 106
    uint8_t sect_id,
    int32_t *sync_val);
107 108 109 110 111 112 113 114 115 116 117 118

/*!
\brief This function performs channel estimation including frequency and temporal interpolation
\param phy_vars_ue Pointer to UE PHY variables
\param eNB_id Index of target eNB
\param eNB_offset Offset for interfering eNB (in terms cell ID mod 3)
\param Ns slot number (0..19)
\param p antenna port 
\param l symbol within slot
\param symbol symbol within frame
*/
int lte_dl_channel_estimation(PHY_VARS_UE *phy_vars_ue,
gauthier's avatar
gauthier committed
119 120 121 122 123 124
    module_id_t eNB_id,
    uint8_t eNB_offset,
    uint8_t Ns,
    uint8_t p,
    uint8_t l,
    uint8_t symbol);
125 126 127


int lte_dl_msbfn_channel_estimation(PHY_VARS_UE *phy_vars_ue,
gauthier's avatar
gauthier committed
128 129 130 131 132
    module_id_t eNB_id,
    uint8_t eNB_offset,
    int subframe,
    unsigned char l,
    unsigned char symbol);
133

134
int lte_dl_mbsfn_channel_estimation(PHY_VARS_UE *phy_vars_ue,
gauthier's avatar
gauthier committed
135 136 137 138
    module_id_t eNB_id,
    uint8_t eNB_offset,
    int subframe,
    unsigned char l);
139 140 141 142 143 144 145 146 147 148 149

/*
#ifdef EMOS
int lte_dl_channel_estimation_emos(int dl_ch_estimates_emos[NB_ANTENNAS_RX*NB_ANTENNAS_TX][N_RB_DL_EMOS*N_PILOTS_PER_RB*N_SLOTS_EMOS],
				   int **rxdataF,
				   LTE_DL_FRAME_PARMS *frame_parms,
				   unsigned char Ns,
				   unsigned char p,
				   unsigned char l,
				   unsigned char sector);
#endif
gauthier's avatar
gauthier committed
150
 */
151 152 153 154 155 156 157 158

/*!
\brief Frequency offset estimation for LTE
We estimate the frequency offset by calculating the phase difference between channel estimates for symbols carrying pilots (l==0 or l==3/4). We take a moving average of the phase difference.
\param dl_ch_estimates pointer to structure that holds channel estimates (one slot)
\param frame_parms pointer to LTE frame parameters
\param l symbol within slot
\param freq_offset pointer to the returned frequency offset
gauthier's avatar
gauthier committed
159
 */
160
int lte_est_freq_offset(int **dl_ch_estimates,
gauthier's avatar
gauthier committed
161 162 163
    LTE_DL_FRAME_PARMS *frame_parms,
    int l,
    int* freq_offset);
164 165

int lte_mbsfn_est_freq_offset(int **dl_ch_estimates,
gauthier's avatar
gauthier committed
166 167 168
    LTE_DL_FRAME_PARMS *frame_parms,
    int l,
    int* freq_offset);
169 170 171 172 173 174 175 176

/*! \brief Tracking of timing for LTE
This function computes the time domain channel response, finds the peak and adjusts the timing in pci_interface.offset accordingly.
\param frame_parms LTE DL frame parameter structure
\param phy_vars_ue Pointer to UE PHY data structure
\param eNb_id 
\param clear If clear==1 moving average filter is reset
\param coef Coefficient of the moving average filter (Q1.15)
gauthier's avatar
gauthier committed
177
 */
178 179

void lte_adjust_synch(LTE_DL_FRAME_PARMS *frame_parms,
gauthier's avatar
gauthier committed
180 181 182 183
    PHY_VARS_UE *phy_vars_ue,
    module_id_t eNb_id,
    unsigned char clear,
    short coef);
184 185 186

//! \brief this function fills the PHY_VARS_UE->PHY_measurement structure
void lte_ue_measurements(PHY_VARS_UE *phy_vars_ue,
gauthier's avatar
gauthier committed
187 188 189
    unsigned int subframe_offset,
    unsigned char N0_symbol,
    unsigned char abstraction_flag);
190 191 192

//! \brief This function performance RSRP/RSCP measurements
void ue_rrc_measurements(PHY_VARS_UE *phy_vars_ue,
gauthier's avatar
gauthier committed
193 194 195 196
    uint8_t slot,
    uint8_t abstraction_flag);

void lte_ue_measurements_emul(PHY_VARS_UE *phy_vars_ue,uint8_t last_slot,uint8_t eNB_id);
197 198 199 200 201

/*! \brief Function to return the path-loss based on the UE cell-specific reference signal strength and transmission power of eNB
@param Mod_id Module ID for UE
@param eNB_index Index of eNB on which to act
@returns Path loss in dB
gauthier's avatar
gauthier committed
202
 */
knopp's avatar
 
knopp committed
203
int16_t get_PL(module_id_t Mod_id,uint8_t CC_id,uint8_t eNB_index);
204 205
uint32_t get_RSRP(module_id_t Mod_id,uint8_t CC_id,uint8_t eNB_index);
uint32_t get_RSRQ(module_id_t Mod_id,uint8_t CC_id,uint8_t eNB_index);
knopp's avatar
 
knopp committed
206
uint8_t get_n_adj_cells(module_id_t Mod_id,uint8_t CC_id);
207 208
uint32_t get_rx_total_gain_dB(module_id_t Mod_id,uint8_t CC_id);
uint32_t get_RSSI(module_id_t Mod_id,uint8_t CC_id);
knopp's avatar
 
knopp committed
209 210
int8_t set_RSRP_filtered(module_id_t Mod_id,uint8_t CC_id,uint8_t eNB_index,float rsrp);
int8_t set_RSRQ_filtered(module_id_t Mod_id,uint8_t CC_id,uint8_t eNB_index,float rstq);
211 212 213

//! Automatic gain control
void phy_adjust_gain (PHY_VARS_UE *phy_vars_ue,
gauthier's avatar
gauthier committed
214
    unsigned char eNB_id);
215 216

int lte_ul_channel_estimation(PHY_VARS_eNB *phy_vars_eNB,
gauthier's avatar
gauthier committed
217 218 219 220 221 222
    module_id_t eNB_id,
    module_id_t UE_id,
    uint8_t subframe,
    uint8_t l,
    uint8_t Ns,
    uint8_t cooperation_flag);
223

gauthier's avatar
gauthier committed
224 225 226
int16_t lte_ul_freq_offset_estimation(LTE_DL_FRAME_PARMS *frame_parms,
                                  int32_t *ul_ch_estimates,
                                  uint16_t nb_rb);
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

int lte_srs_channel_estimation(LTE_DL_FRAME_PARMS *frame_parms,
			       LTE_eNB_COMMON *eNb_common_vars,
			       LTE_eNB_SRS *eNb_srs_vars,
			       SOUNDINGRS_UL_CONFIG_DEDICATED *soundingrs_ul_config_dedicated,
			       unsigned char sub_frame_number,
			       unsigned char eNb_id);

int lte_est_timing_advance(LTE_DL_FRAME_PARMS *frame_parms,
			   LTE_eNB_SRS *lte_eNb_srs,
			   unsigned int *eNb_id,
			   unsigned char clear,
			   unsigned char number_of_cards,
			   short coef);

gauthier's avatar
gauthier committed
242
int lte_est_timing_advance_pusch(PHY_VARS_eNB* phy_vars_eNB,module_id_t UE_id,uint8_t subframe);
243 244

void lte_eNB_I0_measurements(PHY_VARS_eNB *phy_vars_eNb,
gauthier's avatar
gauthier committed
245 246
    module_id_t eNB_id,
    unsigned char clear);
247 248

void lte_eNB_I0_measurements_emul(PHY_VARS_eNB *phy_vars_eNb,
gauthier's avatar
gauthier committed
249
				  uint8_t sect_id);
250 251 252


void lte_eNB_srs_measurements(PHY_VARS_eNB *phy_vars_eNb,
gauthier's avatar
gauthier committed
253 254 255
    module_id_t eNB_id,
    module_id_t UE_id,
    unsigned char init_averaging);
256 257 258 259 260 261 262 263 264 265 266 267 268


void freq_equalization(LTE_DL_FRAME_PARMS *frame_parms,
		       int **rxdataF_comp,
		       int **ul_ch_mag,
		       int **ul_ch_mag_b,
		       unsigned char symbol,
		       unsigned short Msc_RS,
		       unsigned char Qm);


/** @} */ 
#endif