proto.h 71.8 KB
Newer Older
1
/*******************************************************************************
ghaddab's avatar
ghaddab committed
2 3
    OpenAirInterface 
    Copyright(c) 1999 - 2014 Eurecom
4

ghaddab's avatar
ghaddab committed
5 6 7 8
    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
9 10


ghaddab's avatar
ghaddab committed
11 12 13 14
    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
15

ghaddab's avatar
ghaddab committed
16 17 18 19
    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is 
   included in this distribution in the file called "COPYING". If not, 
   see <http://www.gnu.org/licenses/>.
20 21

  Contact Information
ghaddab's avatar
ghaddab committed
22 23 24 25
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
  OpenAirInterface Dev  : openair4g-devel@eurecom.fr
  
ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
27

ghaddab's avatar
ghaddab committed
28
 *******************************************************************************/
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

/*! \file PHY/LTE_TRANSPORT/proto.h
 * \brief Function prototypes for PHY physical/transport channel processing and generation V8.6 2009-03
 * \author R. Knopp, F. Kaltenberger
 * \date 2011
 * \version 0.1
 * \company Eurecom
 * \email: knopp@eurecom.fr
 * \note
 * \warning
 */
#ifndef __LTE_TRANSPORT_PROTO__H__
#define __LTE_TRANSPORT_PROTO__H__
#include "PHY/defs.h"
#include <math.h>

// Functions below implement 36-211 and 36-212

/** @addtogroup _PHY_TRANSPORT_
 * @{
 */

/** \fn free_eNB_dlsch(LTE_eNB_DLSCH_t *dlsch)
    \brief This function frees memory allocated for a particular DLSCH at eNB
    @param dlsch Pointer to DLSCH to be removed
*/
void free_eNB_dlsch(LTE_eNB_DLSCH_t *dlsch);

void clean_eNb_dlsch(LTE_eNB_DLSCH_t *dlsch, uint8_t abstraction_flag);

/** \fn new_eNB_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint8_t abstraction_flag)
    \brief This function allocates structures for a particular DLSCH at eNB
    @returns Pointer to DLSCH to be removed
    @param Kmimo Kmimo factor from 36-212/36-213
    @param Mdlharq Maximum number of HARQ rounds (36-212/36-213)
    @params N_RB_DL total number of resource blocks (determine the operating BW)
    @param abstraction_flag Flag to indicate abstracted interface
*/
LTE_eNB_DLSCH_t *new_eNB_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint8_t N_RB_DL, uint8_t abstraction_flag);

/** \fn free_ue_dlsch(LTE_UE_DLSCH_t *dlsch)
    \brief This function frees memory allocated for a particular DLSCH at UE
    @param dlsch Pointer to DLSCH to be removed
*/
void free_ue_dlsch(LTE_UE_DLSCH_t *dlsch);

LTE_UE_DLSCH_t *new_ue_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint8_t max_turbo_iterations,uint8_t N_RB_DL, uint8_t abstraction_flag);

void free_eNB_dlsch(LTE_eNB_DLSCH_t *dlsch);

LTE_eNB_ULSCH_t *new_eNB_ulsch(uint8_t Mdlharq,uint8_t max_turbo_iterations,uint8_t N_RB_UL, uint8_t abstraction_flag);

void clean_eNb_ulsch(LTE_eNB_ULSCH_t *ulsch, uint8_t abstraction_flag);

void free_ue_ulsch(LTE_UE_ULSCH_t *ulsch);

LTE_UE_ULSCH_t *new_ue_ulsch(uint8_t Mdlharq, unsigned char N_RB_UL, uint8_t abstraction_flag);



/** \fn dlsch_encoding(uint8_t *input_buffer,
    LTE_DL_FRAME_PARMS *frame_parms,
    uint8_t num_pdcch_symbols,
    LTE_eNB_DLSCH_t *dlsch,
    int frame,
    uint8_t subframe)
    \brief This function performs a subset of the bit-coding functions for LTE as described in 36-212, Release 8.Support is limited to turbo-coded channels (DLSCH/ULSCH). The implemented functions are:
    - CRC computation and addition
    - Code block segmentation and sub-block CRC addition
    - Channel coding (Turbo coding)
    - Rate matching (sub-block interleaving, bit collection, selection and transmission
    - Code block concatenation
    @param input_buffer Pointer to input buffer for sub-frame
    @param frame_parms Pointer to frame descriptor structure
    @param num_pdcch_symbols Number of PDCCH symbols in this subframe
    @param dlsch Pointer to dlsch to be encoded
    @param frame Frame number
    @param subframe Subframe number
    @param rm_stats Time statistics for rate-matching
    @param te_stats Time statistics for turbo-encoding
    @param i_stats Time statistics for interleaving
    @returns status
*/
112
int32_t dlsch_encoding(uint8_t *a,
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
		   LTE_DL_FRAME_PARMS *frame_parms,
		   uint8_t num_pdcch_symbols,
		   LTE_eNB_DLSCH_t *dlsch,
		   int frame,
		   uint8_t subframe,
		   time_stats_t *rm_stats,
		   time_stats_t *te_stats,
		   time_stats_t *i_stats);

void dlsch_encoding_emul(PHY_VARS_eNB *phy_vars_eNB,
			 uint8_t *DLSCH_pdu,
			 LTE_eNB_DLSCH_t *dlsch);


// Functions below implement 36-211

/** \fn allocate_REs_in_RB(mod_sym_t **txdataF,
    uint32_t *jj,
131
    uint32_t *jj2,
132 133
    uint16_t re_offset,
    uint32_t symbol_offset,
134 135
    LTE_DL_eNB_HARQ_t *dlsch0_harq,
    LTE_DL_eNB_HARQ_t *dlsch1_harq,
136
    uint8_t pilots,
137
    int16_t amp,
138 139 140 141 142 143 144 145 146
    int16_t *qam_table_s,
    uint32_t *re_allocated,
    uint8_t skip_dc,
    uint8_t skip_half,
    uint8_t use2ndpilots,
    LTE_DL_FRAME_PARMS *frame_parms);

    \brief Fills RB with data
    \param txdataF pointer to output data (frequency domain signal)
147 148
    \param jj index to output (from CW 1)
    \param jj index to output (from CW 2)
149 150
    \param re_offset index of the first RE of the RB
    \param symbol_offset index to the OFDM symbol
151 152
    \param dlsch0_harq Pointer to Transport block 0 HARQ structure
    \param dlsch0_harq Pointer to Transport block 1 HARQ structure
153 154
    \param pilots =1 if symbol_offset is an OFDM symbol that contains pilots, 0 otherwise
    \param amp Amplitude for symbols
155 156
    \param qam_table_s0 pointer to scaled QAM table for Transport Block 0 (by rho_a or rho_b)
    \param qam_table_s1 pointer to scaled QAM table for Transport Block 1 (by rho_a or rho_b)
157 158 159 160 161 162 163
    \param re_allocated pointer to allocation counter
    \param skip_dc offset for positive RBs
    \param skip_half indicate that first or second half of RB must be skipped for PBCH/PSS/SSS
    \param use2ndpilots Set to use the pilots from antenna port 1 for PDSCH
    \param frame_parms Frame parameter descriptor
*/

164 165
int32_t allocate_REs_in_RB(LTE_DL_FRAME_PARMS *frame_parms,
			   mod_sym_t **txdataF,
166
			   uint32_t *jj,
167
			   uint32_t *jj2,
168 169
			   uint16_t re_offset,
			   uint32_t symbol_offset,
170 171
			   LTE_DL_eNB_HARQ_t *dlsch0_harq,
			   LTE_DL_eNB_HARQ_t *dlsch1_harq,
172 173
			   uint8_t pilots,
			   int16_t amp,
174 175 176
			   uint8_t precoder_index,
			   int16_t *qam_table_s0,
			   int16_t *qam_table_s1,
177 178
			   uint32_t *re_allocated,
			   uint8_t skip_dc,
179 180
			   uint8_t skip_half);

181

182 183
/** \fn int32_t dlsch_modulation(mod_sym_t **txdataF,
    int16_t amp,
184 185 186 187 188 189 190 191 192 193 194
    uint32_t sub_frame_offset,
    LTE_DL_FRAME_PARMS *frame_parms,
    uint8_t num_pdcch_symbols,
    LTE_eNB_DLSCH_t *dlsch);

    \brief This function is the top-level routine for generation of the sub-frame signal (frequency-domain) for DLSCH.  
    @param txdataF Table of pointers for frequency-domain TX signals
    @param amp Amplitude of signal
    @param sub_frame_offset Offset of this subframe in units of subframes (usually 0)
    @param frame_parms Pointer to frame descriptor
    @param num_pdcch_symbols Number of PDCCH symbols in this subframe
195 196
    @param dlsch0 Pointer to Transport Block 0 DLSCH descriptor for this allocation
    @param dlsch1 Pointer to Transport Block 0 DLSCH descriptor for this allocation
197 198

*/ 
199
int32_t dlsch_modulation(mod_sym_t **txdataF,
200 201 202 203 204 205
			 int16_t amp,
			 uint32_t sub_frame_offset,
			 LTE_DL_FRAME_PARMS *frame_parms,
			 uint8_t num_pdcch_symbols,
			 LTE_eNB_DLSCH_t *dlsch0,
			 LTE_eNB_DLSCH_t *dlsch1);
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
/*
  \brief This function is the top-level routine for generation of the sub-frame signal (frequency-domain) for MCH.  
  @param txdataF Table of pointers for frequency-domain TX signals
  @param amp Amplitude of signal
  @param subframe_offset Offset of this subframe in units of subframes (usually 0)
  @param frame_parms Pointer to frame descriptor
  @param dlsch Pointer to DLSCH descriptor for this allocation
*/
int mch_modulation(mod_sym_t **txdataF,
		   int16_t amp,
		   uint32_t subframe_offset,
		   LTE_DL_FRAME_PARMS *frame_parms,
		   LTE_eNB_DLSCH_t *dlsch);

/** \brief Top-level generation function for eNB TX of MBSFN
    @param phy_vars_eNB Pointer to eNB variables
    @param subframe Subframe for PMCH
    @param a Pointer to transport block
224 225
    @param abstraction_flag 

226
*/
227
void generate_mch(PHY_VARS_eNB *phy_vars_eNB,int subframe,uint8_t *a,int abstraction_flag);
228 229 230 231

/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
    @param phy_vars_eNB Pointer to eNB variables
    @param mcs MCS for MBSFN
232 233 234 235
    @param ndi new data indicator
    @param rdvix
    @param abstraction_flag 

236
*/
237
void fill_eNB_dlsch_MCH(PHY_VARS_eNB *phy_vars_eNB,int mcs,int ndi,int rvidx,int abstraction_flag);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
    @param phy_vars_ue Pointer to UE variables
    @param mcs MCS for MBSFN
    @param eNB_id index of eNB in ue variables
*/
void fill_UE_dlsch_MCH(PHY_VARS_UE *phy_vars_ue,int mcs,int ndi,int rvidx,int eNB_id);

/** \brief Receiver processing for MBSFN, symbols can be done separately for time/CPU-scheduling purposes
    @param phy_vars_ue Pointer to UE variables
    @param eNB_id index of eNB in ue variables
    @param subframe Subframe index of PMCH
    @param symbol Symbol index on which to act
*/
int rx_pmch(PHY_VARS_UE *phy_vars_ue,
	    unsigned char eNB_id,
	    uint8_t subframe,
	    unsigned char symbol);

/** \brief Dump OCTAVE/MATLAB files for PMCH debugging
    @param phy_vars_ue Pointer to UE variables
    @param eNB_id index of eNB in ue variables
    @param coded_bits_per_codeword G from 36.211
    @param subframe Index of subframe
    @returns 0 on success
*/
void dump_mch(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint16_t coded_bits_per_codeword,int subframe);


/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
    for N subframes.
    @param phy_vars_eNB Pointer to eNB variables
    @param txdataF Table of pointers for frequency-domain TX signals
    @param amp Amplitude of signal
    @param N Number of sub-frames to generate
*/
void generate_pilots(PHY_VARS_eNB *phy_vars_eNB,
		     mod_sym_t **txdataF,
276
		     int16_t amp,
277 278 279 280 281 282 283 284 285 286
		     uint16_t N);

/**
   \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals) for one slot only
   @param phy_vars_eNB Pointer to eNB variables
   @param txdataF Table of pointers for frequency-domain TX signals
   @param amp Amplitude of signal
   @param slot index (0..19)
   @param first_pilot_only (0 no)
*/
287
int32_t generate_pilots_slot(PHY_VARS_eNB *phy_vars_eNB,
288
			 mod_sym_t **txdataF,
289
			 int16_t amp,
290 291 292
			 uint16_t slot,
			 int first_pilot_only);
			 
293
int32_t generate_mbsfn_pilot(PHY_VARS_eNB *phy_vars_eNB,
294
			 mod_sym_t **txdataF,
295
			 int16_t amp,
296 297
			 uint16_t subframe);

298 299
int32_t generate_pss(mod_sym_t **txdataF,
		 int16_t amp,
300 301 302 303
		 LTE_DL_FRAME_PARMS *frame_parms,
		 uint16_t l,
		 uint16_t Ns);

304
int32_t generate_pss_emul(PHY_VARS_eNB *phy_vars_eNB,uint8_t sect_id);
305

306
int32_t generate_sss(mod_sym_t **txdataF,
307 308 309 310 311
		 short amp,
		 LTE_DL_FRAME_PARMS *frame_parms,
		 unsigned short symbol,
		 unsigned short slot_offset);

312
int32_t generate_pbch(LTE_eNB_PBCH *eNB_pbch,
313
		  mod_sym_t **txdataF,
314
		  int32_t amp,
315 316 317 318
		  LTE_DL_FRAME_PARMS *frame_parms,
		  uint8_t *pbch_pdu,
		  uint8_t frame_mod4);

319
int32_t generate_pbch_emul(PHY_VARS_eNB *phy_vars_eNB,uint8_t *pbch_pdu);
320 321 322 323 324 325 326

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/QPSK reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
327 328 329 330 331
void qpsk_qpsk(int16_t *stream0_in,
	       int16_t *stream1_in,
	       int16_t *stream0_out,
	       int16_t *rho01,
	       int32_t length);
332 333 334 335 336 337 338 339 340 341 342 343

/** \brief This function perform LLR computation for dual-stream (QPSK/QPSK) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr*/
344 345 346 347 348
int32_t dlsch_qpsk_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
			int32_t **rxdataF_comp,
			int32_t **rxdataF_comp_i,
			int32_t **rho_i,
			int16_t *dlsch_llr,
349 350 351 352
			uint8_t symbol,
			uint8_t first_symbol_flag,
			uint16_t nb_rb,
			uint16_t pbch_pss_sss_adj,
353
			int16_t **llr128p);
354 355 356 357 358 359 360 361

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/16QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
362 363
void qpsk_qam16(int16_t *stream0_in,
                int16_t *stream1_in,
364
                short *ch_mag_i,
365 366 367
                int16_t *stream0_out,
                int16_t *rho01,
                int32_t length);
368 369 370 371 372 373 374 375 376 377 378 379

/** \brief This function perform LLR computation for dual-stream (QPSK/16QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr*/
380 381 382
int32_t dlsch_qpsk_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
			 int32_t **rxdataF_comp,
			 int32_t **rxdataF_comp_i,
383
			 int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
384 385
			 int32_t **rho_i,
			 int16_t *dlsch_llr,
386 387 388 389
			 uint8_t symbol,
			 uint8_t first_symbol_flag,
			 uint16_t nb_rb,
			 uint16_t pbch_pss_sss_adj,
390
			 int16_t **llr128p);
391 392 393 394 395 396 397 398

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
399 400
void qpsk_qam64(int16_t *stream0_in,
                int16_t *stream1_in,
401
                short *ch_mag_i,
402 403 404
                int16_t *stream0_out,
                int16_t *rho01,
                int32_t length);
405 406 407 408 409 410 411 412 413 414 415 416

/** \brief This function perform LLR computation for dual-stream (QPSK/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr*/
417 418 419
int32_t dlsch_qpsk_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
			 int32_t **rxdataF_comp,
			 int32_t **rxdataF_comp_i,
420
			 int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
421 422
			 int32_t **rho_i,
			 int16_t *dlsch_llr,
423 424 425 426
			 uint8_t symbol,
			 uint8_t first_symbol_flag,
			 uint16_t nb_rb,
			 uint16_t pbch_pss_sss_adj,
427
			 int16_t **llr128p);
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683


/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/QPSK reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam16_qpsk(short *stream0_in,
                short *stream1_in,
                short *ch_mag,
                short *stream0_out,
                short *rho01,
                int length); 
/** \brief This function perform LLR computation for dual-stream (16QAM/QPSK) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
                         int **rxdataF_comp,
                         int **rxdataF_comp_i,
                         int **dl_ch_mag,   //|h_0|^2*(2/sqrt{10})
                         int **rho_i,
                         short *dlsch_llr,
                         unsigned char symbol,
                         unsigned char first_symbol_flag,
                         unsigned short nb_rb,
                         uint16_t pbch_pss_sss_adjust,
                         short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/16QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam16_qam16(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (16QAM/16QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,   //|h_0|^2*(2/sqrt{10})
                          int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam16_qam64(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (16QAM/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,   //|h_0|^2*(2/sqrt{10})
                          int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam64_qpsk(short *stream0_in,
                short *stream1_in,
                short *ch_mag,
                short *stream0_out,
                short *rho01,
                int length);

/** \brief This function perform LLR computation for dual-stream (64QAM/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
                         int **rxdataF_comp,
                         int **rxdataF_comp_i,
                         int **dl_ch_mag,
                         int **rho_i,
                         short *dlsch_llr,
                         unsigned char symbol,
                         unsigned char first_symbol_flag,
                         unsigned short nb_rb,
                         uint16_t pbch_pss_sss_adjust,
                         short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/16QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam64_qam16(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (64QAM/16QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,
                          int **dl_ch_mag_i,
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam64_qam64(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (64QAM/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,
                          int **dl_ch_mag_i,
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);


/** \brief This function generates log-likelihood ratios (decoder input) for single-stream QPSK received waveforms.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag 
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr
*/
684 685 686
int32_t dlsch_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
		   int32_t **rxdataF_comp,
		   int16_t *dlsch_llr,
687 688 689 690
		   uint8_t symbol,
		   uint8_t first_symbol_flag,
		   uint16_t nb_rb,
		   uint16_t pbch_pss_sss_adj,
691
		   int16_t **llr128p);
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

/**
   \brief This function generates log-likelihood ratios (decoder input) for single-stream 16QAM received waveforms
   @param frame_parms Frame descriptor structure
   @param rxdataF_comp Compensated channel output
   @param dlsch_llr llr output
   @param dl_ch_mag Squared-magnitude of channel in each resource element position corresponding to allocation and weighted for mid-point in 16QAM constellation
   @param symbol OFDM symbol index in sub-frame
   @param first_symbol_flag
   @param nb_rb number of RBs for this allocation
   @param pbch_pss_sss_adjust  Adjustment factor in RE for PBCH/PSS/SSS allocations
   @param llr128p pointer to pointer to symbol in dlsch_llr
*/

void dlsch_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
707 708 709
		     int32_t **rxdataF_comp,
		     int16_t *dlsch_llr,
		     int32_t **dl_ch_mag,
710 711 712 713
		     uint8_t symbol,
		     uint8_t first_symbol_flag,
		     uint16_t nb_rb,
		     uint16_t pbch_pss_sss_adjust,
714
		     int16_t **llr128p);
715 716 717 718 719 720 721 722 723 724 725 726 727 728

/**
   \brief This function generates log-likelihood ratios (decoder input) for single-stream 16QAM received waveforms
   @param frame_parms Frame descriptor structure
   @param rxdataF_comp Compensated channel output
   @param dlsch_llr llr output
   @param dl_ch_mag Squared-magnitude of channel in each resource element position corresponding to allocation, weighted by first mid-point of 64-QAM constellation
   @param dl_ch_magb Squared-magnitude of channel in each resource element position corresponding to allocation, weighted by second mid-point of 64-QAM constellation
   @param symbol OFDM symbol index in sub-frame
   @param first_symbol_flag
   @param nb_rb number of RBs for this allocation
   @param pbch_pss_sss_adjust PBCH/PSS/SSS RE adjustment (in REs)
*/
void dlsch_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
729 730 731 732
		     int32_t **rxdataF_comp,
		     int16_t *dlsch_llr,
		     int32_t **dl_ch_mag,
		     int32_t **dl_ch_magb,
733 734 735 736 737 738 739
		     uint8_t symbol,
		     uint8_t first_symbol_flag,
		     uint16_t nb_rb,
		     uint16_t pbch_pss_sss_adjust,
		     short **llr_save);

/** \fn dlsch_siso(LTE_DL_FRAME_PARMS *frame_parms,
740 741
    int32_t **rxdataF_comp,
    int32_t **rxdataF_comp_i,
742 743 744 745 746 747 748 749 750 751 752
    uint8_t l,
    uint16_t nb_rb)
    \brief This function does the first stage of llr computation for SISO, by just extracting the pilots, PBCH and primary/secondary synchronization sequences.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param l symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
*/

void dlsch_siso(LTE_DL_FRAME_PARMS *frame_parms,
753 754
		int32_t **rxdataF_comp,
		int32_t **rxdataF_comp_i,
755 756 757 758
		uint8_t l,
		uint16_t nb_rb);

/** \fn dlsch_alamouti(LTE_DL_FRAME_PARMS *frame_parms,
759 760 761
    int32_t **rxdataF_comp,
    int32_t **dl_ch_mag,
    int32_t **dl_ch_magb,
762 763 764 765 766 767 768 769 770 771 772
    uint8_t symbol,
    uint16_t nb_rb)
    \brief This function does Alamouti combining on RX and prepares LLR inputs by skipping pilots, PBCH and primary/secondary synchronization signals.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param symbol Symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
*/
void dlsch_alamouti(LTE_DL_FRAME_PARMS *frame_parms,
773 774 775
		    int32_t **rxdataF_comp,
		    int32_t **dl_ch_mag,
		    int32_t **dl_ch_magb,
776 777 778 779
		    uint8_t symbol,
		    uint16_t nb_rb);

/** \fn dlsch_antcyc(LTE_DL_FRAME_PARMS *frame_parms,
780 781 782
    int32_t **rxdataF_comp,
    int32_t **dl_ch_mag,
    int32_t **dl_ch_magb,
783 784 785 786 787 788 789 790 791 792 793
    uint8_t symbol,
    uint16_t nb_rb)
    \brief This function does antenna selection (based on antenna cycling pattern) on RX and prepares LLR inputs by skipping pilots, PBCH and primary/secondary synchronization signals.  Note that this is not LTE, it is just included for comparison purposes.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param symbol Symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
*/
void dlsch_antcyc(LTE_DL_FRAME_PARMS *frame_parms,
794 795 796
		  int32_t **rxdataF_comp,
		  int32_t **dl_ch_mag,
		  int32_t **dl_ch_magb,
797 798 799 800
		  uint8_t symbol,
		  uint16_t nb_rb);

/** \fn dlsch_detection_mrc(LTE_DL_FRAME_PARMS *frame_parms,
801 802 803 804 805 806
    int32_t **rxdataF_comp,
    int32_t **rxdataF_comp_i,
    int32_t **rho,
    int32_t **rho_i,
    int32_t **dl_ch_mag,
    int32_t **dl_ch_magb,
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
    uint8_t symbol,
    uint16_t nb_rb,
    uint8_t dual_stream_UE)

    \brief This function does maximal-ratio combining for dual-antenna receivers.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho Cross correlation between spatial channels
    @param rho_i Cross correlation between signal and inteference channels
    @param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param symbol Symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
    @param dual_stream_UE Flag to indicate dual-stream detection
*/
void dlsch_detection_mrc(LTE_DL_FRAME_PARMS *frame_parms,
824 825 826 827 828 829 830 831
			 int32_t **rxdataF_comp,
			 int32_t **rxdataF_comp_i,
			 int32_t **rho,
			 int32_t **rho_i,
			 int32_t **dl_ch_mag,
			 int32_t **dl_ch_magb,
			 int32_t **dl_ch_mag_i,
			 int32_t **dl_ch_magb_i,
832 833 834 835
			 uint8_t symbol,
			 uint16_t nb_rb,
			 uint8_t dual_stream_UE);

836 837 838 839
/** \fn dlsch_extract_rbs_single(int32_t **rxdataF,
    int32_t **dl_ch_estimates,
    int32_t **rxdataF_ext,
    int32_t **dl_ch_estimates_ext,
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
    uint16_t pmi,
    uint8_t *pmi_ext,
    uint32_t *rb_alloc,
    uint8_t symbol,
    uint8_t subframe,
    LTE_DL_FRAME_PARMS *frame_parms)
    \brief This function extracts the received resource blocks, both channel estimates and data symbols,
    for the current allocation and for single antenna eNB transmission.
    @param rxdataF Raw FFT output of received signal
    @param dl_ch_estimates Channel estimates of current slot
    @param rxdataF_ext FFT output for RBs in this allocation
    @param dl_ch_estimates_ext Channel estimates for RBs in this allocation
    @param pmi subband Precoding matrix indicator
    @param pmi_ext Extracted PMI for chosen RBs
    @param rb_alloc RB allocation vector
    @param symbol Symbol to extract
    @param subframe Subframe number
857
    @param high_speed_flag
858 859
    @param frame_parms Pointer to frame descriptor
*/
860 861 862 863
uint16_t dlsch_extract_rbs_single(int32_t **rxdataF,
				  int32_t **dl_ch_estimates,
				  int32_t **rxdataF_ext,
				  int32_t **dl_ch_estimates_ext,
864 865 866 867 868
				  uint16_t pmi,
				  uint8_t *pmi_ext,
				  uint32_t *rb_alloc,
				  uint8_t symbol,
				  uint8_t subframe,
869
				  uint32_t high_speed_flag,
870 871
				  LTE_DL_FRAME_PARMS *frame_parms);

872 873 874 875
/** \fn dlsch_extract_rbs_dual(int32_t **rxdataF,
    int32_t **dl_ch_estimates,
    int32_t **rxdataF_ext,
    int32_t **dl_ch_estimates_ext,
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
    uint16_t pmi,
    uint8_t *pmi_ext,
    uint32_t *rb_alloc,
    uint8_t symbol,
    LTE_DL_FRAME_PARMS *frame_parms)
    \brief This function extracts the received resource blocks, both channel estimates and data symbols,
    for the current allocation and for dual antenna eNB transmission.
    @param rxdataF Raw FFT output of received signal
    @param dl_ch_estimates Channel estimates of current slot
    @param rxdataF_ext FFT output for RBs in this allocation
    @param dl_ch_estimates_ext Channel estimates for RBs in this allocation
    @param pmi subband Precoding matrix indicator
    @param pmi_ext Extracted PMI for chosen RBs
    @param rb_alloc RB allocation vector
    @param symbol Symbol to extract
    @param subframe Subframe index
892
    @param high_speed_flag
893 894
    @param frame_parms Pointer to frame descriptor
*/
895 896 897 898
uint16_t dlsch_extract_rbs_dual(int32_t **rxdataF,
				int32_t **dl_ch_estimates,
				int32_t **rxdataF_ext,
				int32_t **dl_ch_estimates_ext,
899 900 901 902 903
				uint16_t pmi,
				uint8_t *pmi_ext,
				uint32_t *rb_alloc,
				uint8_t symbol,
				uint8_t subframe,
904
				uint32_t high_speed_flag,
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
				LTE_DL_FRAME_PARMS *frame_parms);

/** \brief This function performs channel compensation (matched filtering) on the received RBs for this allocation.  In addition, it computes the squared-magnitude of the channel with weightings for 16QAM/64QAM detection as well as dual-stream detection (cross-correlation)
    @param rxdataF_ext Frequency-domain received signal in RBs to be demodulated
    @param dl_ch_estimates_ext Frequency-domain channel estimates in RBs to be demodulated
    @param dl_ch_mag First Channel magnitudes (16QAM/64QAM)
    @param dl_ch_magb Second weighted Channel magnitudes (64QAM)
    @param rxdataF_comp Compensated received waveform 
    @param rho Cross-correlation between two spatial channels on each RX antenna
    @param frame_parms Pointer to frame descriptor
    @param symbol Symbol on which to operate
    @param first_symbol_flag set to 1 on first DLSCH symbol
    @param mod_order Modulation order of allocation
    @param nb_rb Number of RBs in allocation
    @param output_shift Rescaling for compensated output (should be energy-normalizing)
    @param phy_measurements Pointer to UE PHY measurements
*/
922 923 924 925 926 927
void dlsch_channel_compensation(int32_t **rxdataF_ext,
				int32_t **dl_ch_estimates_ext,
				int32_t **dl_ch_mag,
				int32_t **dl_ch_magb,
				int32_t **rxdataF_comp,
				int32_t **rho,
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
				LTE_DL_FRAME_PARMS *frame_parms,
				uint8_t symbol,
				uint8_t first_symbol_flag,
				uint8_t mod_order,
				uint16_t nb_rb,
				uint8_t output_shift,
				PHY_MEASUREMENTS *phy_measurements);

void dlsch_dual_stream_correlation(LTE_DL_FRAME_PARMS *frame_parms,
                                   unsigned char symbol,
                                   unsigned short nb_rb,
                                   int **dl_ch_estimates_ext,
                                   int **dl_ch_estimates_ext_i,
                                   int **dl_ch_rho_ext,
                                   unsigned char output_shift);

944
void dlsch_channel_compensation_TM56(int **rxdataF_ext,
945 946 947 948 949 950 951 952 953 954 955 956 957 958
				     int **dl_ch_estimates_ext,
				     int **dl_ch_mag,
				     int **dl_ch_magb,
				     int **rxdataF_comp,
				     unsigned char *pmi_ext,
				     LTE_DL_FRAME_PARMS *frame_parms,
				     PHY_MEASUREMENTS *phy_measurements,
				     int eNB_id,
				     unsigned char symbol,
				     unsigned char mod_order,
				     unsigned short nb_rb,
				     unsigned char output_shift,
				     unsigned char dl_power_off);

959 960 961 962 963 964 965
void dlsch_channel_compensation_TM3(LTE_DL_FRAME_PARMS *frame_parms,
				    LTE_UE_PDSCH *lte_ue_pdsch_vars,
				    PHY_MEASUREMENTS *phy_measurements,
				    int eNB_id,
				    unsigned char symbol,
				    unsigned char mod_order0,
				    unsigned char mod_order1,
knopp's avatar
knopp committed
966
				    int round,
967 968 969 970
				    unsigned short nb_rb,
				    unsigned char output_shift);


971 972 973 974 975 976 977
/** \brief This function computes the average channel level over all allocated RBs and antennas (TX/RX) in order to compute output shift for compensated signal
    @param dl_ch_estimates_ext Channel estimates in allocated RBs
    @param frame_parms Pointer to frame descriptor
    @param avg Pointer to average signal strength
    @param pilots_flag Flag to indicate pilots in symbol
    @param nb_rb Number of allocated RBs
*/
978
void dlsch_channel_level(int32_t **dl_ch_estimates_ext,
979
			 LTE_DL_FRAME_PARMS *frame_parms,
980
			 int32_t *avg,
981 982 983
			 uint8_t pilots_flag,
			 uint16_t nb_rb);

984 985 986 987 988 989 990
void dlsch_channel_level_TM3(int **dl_ch_estimates_ext,
			     LTE_DL_FRAME_PARMS *frame_parms,
			     int *avg,
			     uint8_t symbol,
			     unsigned short nb_rb);

void dlsch_channel_level_TM56(int32_t **dl_ch_estimates_ext,
991 992
                              LTE_DL_FRAME_PARMS *frame_parms,
                              unsigned char *pmi_ext,
993
                              int32_t *avg,
994 995 996
                              uint8_t symbol_mod,
                              uint16_t nb_rb);

997
void dlsch_scale_channel(int32_t **dl_ch_estimates_ext,
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
                         LTE_DL_FRAME_PARMS *frame_parms,
                         LTE_UE_DLSCH_t **dlsch_ue,
                         uint8_t symbol_mod,
                         uint16_t nb_rb);

/** \brief This is the top-level entry point for DLSCH decoding in UE.  It should be replicated on several
    threads (on multi-core machines) corresponding to different HARQ processes. The routine first 
    computes the segmentation information, followed by rate dematching and sub-block deinterleaving the of the
    received LLRs computed by dlsch_demodulation for each transport block segment. It then calls the
    turbo-decoding algorithm for each segment and stops after either after unsuccesful decoding of at least
    one segment or correct decoding of all segments.  Only the segment CRCs are check for the moment, the
    overall CRC is ignored.  Finally transport block reassembly is performed.
    @param phy_vars_ue Pointer to ue variables
    @param dlsch_llr Pointer to LLR values computed by dlsch_demodulation
    @param lte_frame_parms Pointer to frame descriptor
    @param dlsch Pointer to DLSCH descriptor
    @param subframe Subframe number
    @param num_pdcch_symbols Number of PDCCH symbols
    @param is_crnti indicates if PDSCH belongs to a CRNTI (necessary for parallelizing decoding threads)
    @param llr8_flag If 1, indicate that the 8-bit turbo decoder should be used
    @returns 0 on success, 1 on unsuccessful decoding
*/
uint32_t dlsch_decoding(PHY_VARS_UE *phy_vars_ue,
1021
			int16_t *dlsch_llr,
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
			LTE_DL_FRAME_PARMS *lte_frame_parms,
			LTE_UE_DLSCH_t *dlsch,
			LTE_DL_UE_HARQ_t *harq_process,
			uint8_t subframe,
			uint8_t harq_pid,
			uint8_t is_crnti,
			uint8_t llr8_flag);

uint32_t dlsch_decoding_emul(PHY_VARS_UE *phy_vars_ue,
			     uint8_t subframe,
			     uint8_t dlsch_id,
			     uint8_t eNB_id);

/** \brief This function is the top-level entry point to PDSCH demodulation, after frequency-domain transformation and channel estimation.  It performs
    - RB extraction (signal and channel estimates)
    - channel compensation (matched filtering)
    - RE extraction (pilot, PBCH, synch. signals)
    - antenna combining (MRC, Alamouti, cycling)
    - LLR computation
    @param phy_vars_ue Pointer to PHY variables
    @param type Type of PDSCH (SI_PDSCH,RA_PDSCH,PDSCH,PMCH)
    @param eNB_id eNb index (Nid1) 0,1,2
    @param eNB_id_i Interfering eNB index (Nid1) 0,1,2, or 3 in case of MU-MIMO IC receiver
    @param subframe Subframe number
    @param symbol Symbol on which to act (within sub-frame)
    @param first_symbol_flag set to 1 on first DLSCH symbol
    @param dual_stream_UE Flag to indicate dual-stream interference cancellation
    @param i_mod Modulation order of the interfering stream
*/
1051
int32_t rx_pdsch(PHY_VARS_UE *phy_vars_ue,
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	     PDSCH_t type,
	     uint8_t eNB_id,
	     uint8_t eNB_id_i,
	     uint8_t subframe,
	     uint8_t symbol,
	     uint8_t first_symbol_flag,
	     uint8_t dual_stream_UE,
	     uint8_t i_mod,
	     uint8_t harq_pid);

1062
int32_t rx_pdcch(LTE_UE_COMMON *lte_ue_common_vars,
1063 1064 1065 1066 1067 1068 1069
		 LTE_UE_PDCCH **lte_ue_pdcch_vars,
		 LTE_DL_FRAME_PARMS *frame_parms,
		 uint8_t subframe,
		 uint8_t eNB_id,
		 MIMO_mode_t mimo_mode,
		 uint32_t high_speed_flag,
		 uint8_t is_secondary_ue);
1070 1071 1072 1073 1074 1075 1076 1077
/*! \brief Performs detection of SSS to find cell ID and other framing parameters (FDD/TDD, normal/extended prefix)
  @param phy_vars_ue Pointer to UE variables
  @param tot_metric Pointer to variable containing maximum metric under framing hypothesis (to be compared to other hypotheses
  @param flip_max Pointer to variable indicating if start of frame is in second have of RX buffer (i.e. PSS/SSS is flipped)
  @param phase_max Pointer to variable (0 ... 6) containing rought phase offset between PSS and SSS (can be used for carrier
  frequency adjustment. 0 means -pi/3, 6 means pi/3.
  @returns 0 on success
*/
1078
int rx_sss(PHY_VARS_UE *phy_vars_ue,int32_t *tot_metric,uint8_t *flip_max,uint8_t *phase_max);
1079 1080 1081 1082 1083 1084 1085 1086 1087

/*! \brief receiver for the PBCH
  \returns number of tx antennas or -1 if error
*/
uint16_t rx_pbch(LTE_UE_COMMON *lte_ue_common_vars,
		 LTE_UE_PBCH *lte_ue_pbch_vars,
		 LTE_DL_FRAME_PARMS *frame_parms,
		 uint8_t eNB_id,
		 MIMO_mode_t mimo_mode,
1088
		 uint32_t high_speed_flag,
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		 uint8_t frame_mod4);

uint16_t rx_pbch_emul(PHY_VARS_UE *phy_vars_ue,
		      uint8_t eNB_id,
		      uint8_t pbch_phase);

/*! \brief PBCH scrambling. Applies 36.211 PBCH scrambling procedure.
  \param frame_parms Pointer to frame descriptor
  \param coded_data Output of the coding and rate matching
  \param length Length of the sequence*/ 
void pbch_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
		     uint8_t* coded_data,
		     uint32_t length);

/*! \brief PBCH unscrambling
  This is similar to pbch_scrabling with the difference that inputs are signed s16s (llr values) and instead of flipping bits we change signs.
  \param frame_parms Pointer to frame descriptor
  \param llr Output of the demodulator
  \param length Length of the sequence
  \param frame_mod4 Frame number modulo 4*/ 
void pbch_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
1110
		       int8_t* llr,
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
		       uint32_t length,
		       uint8_t frame_mod4);

/*! \brief DCI Encoding. This routine codes an arbitrary DCI PDU after appending the 8-bit 3GPP CRC.  It then applied sub-block interleaving and rate matching.
  \param a Pointer to DCI PDU (coded in bytes)
  \param A Length of DCI PDU in bits
  \param E Length of DCI PDU in coded bits
  \param e Pointer to sequence
  \param rnti RNTI for CRC scrambling*/ 
void dci_encoding(uint8_t *a,
		  uint8_t A,
		  uint16_t E,
		  uint8_t *e,
		  uint16_t rnti);

/*! \brief Top-level DCI entry point. This routine codes an set of DCI PDUs and performs PDCCH modulation, interleaving and mapping.
  \param num_ue_spec_dci  Number of UE specific DCI pdus to encode
  \param num_common_dci Number of Common DCI pdus to encode
  \param dci_alloc Allocation vectors for each DCI pdu
  \param n_rnti n_RNTI (see )
  \param amp Amplitude of QPSK symbols
  \param frame_parms Pointer to DL Frame parameter structure
  \param txdataF Pointer to tx signal buffers
  \param sub_frame_offset subframe offset in frame
  @returns Number of PDCCH symbols
*/ 
uint8_t generate_dci_top(uint8_t num_ue_spec_dci,
			 uint8_t num_common_dci,
			 DCI_ALLOC_t *dci_alloc, 
			 uint32_t n_rnti,
1141
			 int16_t amp,
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
			 LTE_DL_FRAME_PARMS *frame_parms,
			 mod_sym_t **txdataF,
			 uint32_t sub_frame_offset);

uint8_t generate_dci_top_emul(PHY_VARS_eNB *phy_vars_eNB,
			      uint8_t num_ue_spec_dci,
			      uint8_t num_common_dci,
			      DCI_ALLOC_t *dci_alloc,
			      uint8_t subframe); 


void generate_64qam_table(void);
void generate_16qam_table(void);

uint16_t extract_crc(uint8_t *dci,uint8_t DCI_LENGTH);

/*! \brief LLR from two streams. This function takes two streams (qpsk modulated) and calculates the LLR, considering one stream as interference.
  \param stream0_in pointer to first stream0
  \param stream1_in pointer to first stream1
  \param stream0_out pointer to output stream
  \param rho01 pointer to correlation matrix
  \param length*/ 
1164 1165 1166 1167 1168 1169
void qpsk_qpsk_TM3456(short *stream0_in,
		      short *stream1_in,
		      short *stream0_out,
		      short *rho01,
		      int length
		      );
1170 1171 1172 1173 1174 1175 1176 1177 1178

/** \brief Attempt decoding of a particular DCI with given length and format.
    @param DCI_LENGTH length of DCI in bits
    @param DCI_FMT Format of DCI
    @param e e-sequence (soft bits)
    @param decoded_output Output of Viterbi decoder
*/
void dci_decoding(uint8_t DCI_LENGTH,
		  uint8_t DCI_FMT,
1179
		  int8_t *e,
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
		  uint8_t *decoded_output);

/** \brief Do 36.213 DCI decoding procedure by searching different RNTI options and aggregation levels.  Currently does
    not employ the complexity reducing procedure based on RNTI.
    @param phy_vars_ue UE variables
    @param dci_alloc Pointer to DCI_ALLOC_t array to store results for DLSCH/ULSCH programming
    @param do_common If 1 perform search in common search-space else ue-specific search-space 
    @param eNB_id eNB Index on which to act
    @param subframe Index of subframe
    @returns bitmap of occupied CCE positions (i.e. those detected)
*/
uint16_t dci_decoding_procedure(PHY_VARS_UE *phy_vars_ue,
				DCI_ALLOC_t *dci_alloc,
				int do_common,
1194
				int16_t eNB_id,
1195 1196 1197 1198 1199 1200 1201 1202
				uint8_t subframe);


uint16_t dci_decoding_procedure_emul(LTE_UE_PDCCH **lte_ue_pdcch_vars,
				     uint8_t num_ue_spec_dci,
				     uint8_t num_common_dci,
				     DCI_ALLOC_t *dci_alloc_tx,
				     DCI_ALLOC_t *dci_alloc_rx,
1203
				     int16_t eNB_id);
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224

/** \brief Compute Q (modulation order) based on I_MCS PDSCH.  Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS */
uint8_t get_Qm(uint8_t I_MCS);

/** \brief Compute Q (modulation order) based on I_MCS for PUSCH.  Implements table 8.6.1-1 from 36.213.
    @param I_MCS */
uint8_t get_Qm_ul(uint8_t I_MCS);

/** \brief Compute I_TBS (transport-block size) based on I_MCS for PDSCH.  Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS */
uint8_t get_I_TBS(uint8_t I_MCS);

/** \brief Compute I_TBS (transport-block size) based on I_MCS for PUSCH.  Implements table 8.6.1-1 from 36.213.
    @param I_MCS */
unsigned char get_I_TBS_UL(unsigned char I_MCS);

/** \brief Compute Q (modulation order) based on downlink I_MCS. Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS
    @param nb_rb
    @return Transport block size */
1225
uint32_t get_TBS_DL(uint8_t mcs, uint16_t nb_rb);
1226 1227 1228 1229 1230

/** \brief Compute Q (modulation order) based on uplink I_MCS. Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS
    @param nb_rb
    @return Transport block size */
1231
uint32_t get_TBS_UL(uint8_t mcs, uint16_t nb_rb);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

/* \brief Return bit-map of resource allocation for a given DCI rballoc (RIV format) and vrb type
   @param vrb_type VRB type (0=localized,1=distributed)
   @param rb_alloc_dci rballoc field from DCI
*/
uint32_t get_rballoc(uint8_t vrb_type,uint16_t rb_alloc_dci);

/* \brief Return bit-map of resource allocation for a given DCI rballoc (RIV format) and vrb type
   @returns Transmission mode (1-7)
*/
1242
uint8_t get_transmission_mode(module_id_t Mod_id, uint8_t CC_id, rnti_t rnti);
1243

1244

1245 1246 1247 1248 1249 1250 1251
/* \brief 
   @param ra_header Header of resource allocation (0,1) (See sections 7.1.6.1/7.1.6.2 of 36.213 Rel8.6)
   @param rb_alloc Bitmap allocation from DCI (format 1,2) 
   @returns number of physical resource blocks
*/
uint32_t conv_nprb(uint8_t ra_header,uint32_t rb_alloc,int N_RB_DL);

1252
int get_G(LTE_DL_FRAME_PARMS *frame_parms,uint16_t nb_rb,uint32_t *rb_alloc,uint8_t mod_order,uint8_t Nl,uint8_t num_pdcch_symbols,int frame,uint8_t subframe);
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

int adjust_G(LTE_DL_FRAME_PARMS *frame_parms,uint32_t *rb_alloc,uint8_t mod_order,uint8_t subframe);
int adjust_G2(LTE_DL_FRAME_PARMS *frame_parms,uint32_t *rb_alloc,uint8_t mod_order,uint8_t subframe,uint8_t symbol);


#ifndef modOrder
#define modOrder(I_MCS,I_TBS) ((I_MCS-I_TBS)*2+2) // Find modulation order from I_TBS and I_MCS
#endif

/** \fn uint8_t I_TBS2I_MCS(uint8_t I_TBS);
    \brief This function maps I_tbs to I_mcs according to Table 7.1.7.1-1 in 3GPP TS 36.213 V8.6.0. Where there is two supported modulation orders for the same I_TBS then either high or low modulation is chosen by changing the equality of the two first comparisons in the if-else statement.
    \param I_TBS Index of Transport Block Size
    \return I_MCS given I_TBS
*/
uint8_t I_TBS2I_MCS(uint8_t I_TBS);

/** \fn uint8_t SE2I_TBS(float SE,
    uint8_t N_PRB,
    uint8_t symbPerRB);
    \brief This function maps a requested throughput in number of bits to I_tbs. The throughput is calculated as a function of modulation order, RB allocation and number of symbols per RB. The mapping orginates in the "Transport block size table" (Table 7.1.7.2.1-1 in 3GPP TS 36.213 V8.6.0)
    \param SE Spectral Efficiency (before casting to integer, multiply by 1024, remember to divide result by 1024!)
    \param N_PRB Number of PhysicalResourceBlocks allocated \sa lte_frame_parms->N_RB_DL
    \param symbPerRB Number of symbols per resource block allocated to this channel
    \return I_TBS given an SE and an N_PRB
*/
uint8_t SE2I_TBS(float SE,
		 uint8_t N_PRB,
		 uint8_t symbPerRB);
/** \brief This function generates the sounding reference symbol (SRS) for the uplink according to 36.211 v8.6.0. If IFFT_FPGA is defined, the SRS is quantized to a QPSK sequence.
    @param frame_parms LTE DL Frame Parameters
    @param soundingrs_ul_config_dedicated Dynamic configuration from RRC during Connection Establishment
    @param txdataF pointer to the frequency domain TX signal
    @returns 0 on success*/
int generate_srs_rx(LTE_DL_FRAME_PARMS *frame_parms,
		    SOUNDINGRS_UL_CONFIG_DEDICATED *soundingrs_ul_config_dedicated,		    
		    int *txdataF);

1290
int32_t generate_srs_tx_emul(PHY_VARS_UE *phy_vars_ue,
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
			 uint8_t subframe);

/*!
  \brief This function is similar to generate_srs_tx but generates a conjugate sequence for channel estimation. If IFFT_FPGA is defined, the SRS is quantized to a QPSK sequence.
  @param phy_vars_ue Pointer to PHY_VARS structure
  @param eNB_id Index of destination eNB for this SRS
  @param amp Linear amplitude of SRS
  @param subframe Index of subframe on which to act
  @returns 0 on success, -1 on error with message
*/

1302
int32_t generate_srs_tx(PHY_VARS_UE *phy_vars_ue,
1303
		    uint8_t eNB_id,
1304
		    int16_t amp,
1305 1306 1307 1308 1309 1310
		    uint32_t subframe);

/*!
  \brief This function generates the downlink reference signal for the PUSCH according to 36.211 v8.6.0. The DRS occuies the RS defined by rb_alloc and the symbols 2 and 8 for extended CP and 3 and 10 for normal CP.
*/

1311
int32_t generate_drs_pusch(PHY_VARS_UE *phy_vars_ue,
1312
		       uint8_t eNB_id,
1313
		       int16_t amp,
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
		       uint32_t subframe,
		       uint32_t first_rb,
		       uint32_t nb_rb,
		       uint8_t ant);

/*!
  \brief This function initializes the Group Hopping, Sequence Hopping and nPRS sequences for PUCCH/PUSCH according to 36.211 v8.6.0. It should be called after configuration of UE (reception of SIB2/3) and initial configuration of eNB (or after reconfiguration of cell-specific parameters).
  @param frame_parms Pointer to a LTE_DL_FRAME_PARMS structure (eNB or UE)*/
void init_ul_hopping(LTE_DL_FRAME_PARMS *frame_parms);

1324
int32_t compareints (const void * a, const void * b);
1325 1326 1327


void ulsch_modulation(mod_sym_t **txdataF,
1328 1329
		      int16_t amp,
		      frame_t frame,
1330 1331 1332 1333 1334
		      uint32_t subframe,
		      LTE_DL_FRAME_PARMS *frame_parms,
		      LTE_UE_ULSCH_t *ulsch);


1335 1336
void ulsch_extract_rbs_single(int32_t **rxdataF,
			      int32_t **rxdataF_ext,
1337 1338 1339 1340 1341 1342
			      uint32_t first_rb,
			      uint32_t nb_rb,
			      uint8_t l,
			      uint8_t Ns,
			      LTE_DL_FRAME_PARMS *frame_parms);

1343
uint8_t subframe2harq_pid(LTE_DL_FRAME_PARMS *frame_parms,frame_t frame,uint8_t subframe);
1344 1345 1346 1347
uint8_t subframe2harq_pid_eNBrx(LTE_DL_FRAME_PARMS *frame_parms,uint8_t subframe);

int generate_ue_dlsch_params_from_dci(uint8_t subframe,
                                      void *dci_pdu,
1348
                                      rnti_t rnti,
1349 1350 1351 1352 1353 1354 1355 1356
                                      DCI_format_t dci_format,
                                      LTE_UE_DLSCH_t **dlsch,
                                      LTE_DL_FRAME_PARMS *frame_parms,
                                      PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
                                      uint16_t si_rnti,
                                      uint16_t ra_rnti,
                                      uint16_t p_rnti);

1357
int32_t generate_eNB_dlsch_params_from_dci(uint8_t subframe,
1358
				       void *dci_pdu,
1359
				       rnti_t rnti,
1360 1361 1362 1363 1364 1365 1366 1367 1368
				       DCI_format_t dci_format,
				       LTE_eNB_DLSCH_t **dlsch_eNB,
				       LTE_DL_FRAME_PARMS *frame_parms,
				       PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
				       uint16_t si_rnti,
				       uint16_t ra_rnti,
				       uint16_t p_rnti,
				       uint16_t DL_pmi_single);

1369 1370
int32_t generate_eNB_ulsch_params_from_rar(uint8_t *rar_pdu,
				       frame_t frame,
1371 1372 1373 1374 1375
				       uint8_t subframe,
				       LTE_eNB_ULSCH_t *ulsch,
				       LTE_DL_FRAME_PARMS *frame_parms);

int generate_ue_ulsch_params_from_dci(void *dci_pdu,
1376
                                      rnti_t rnti,
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
				      uint8_t subframe,
				      DCI_format_t dci_format,
				      PHY_VARS_UE *phy_vars_ue,
				      uint16_t si_rnti,
				      uint16_t ra_rnti,
				      uint16_t p_rnti,
				      uint16_t cba_rnti,
				      uint8_t eNB_id,
				      uint8_t use_srs);

1387
int32_t generate_ue_ulsch_params_from_rar(PHY_VARS_UE *phy_vars_ue,
1388 1389 1390 1391
				      uint8_t eNB_id);
double sinr_eff_cqi_calc(PHY_VARS_UE *phy_vars_ue,
			 uint8_t eNB_id);
int generate_eNB_ulsch_params_from_dci(void *dci_pdu,
1392
				       rnti_t rnti,
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
				       uint8_t subframe,
				       DCI_format_t dci_format,
				       uint8_t UE_id,
				       PHY_VARS_eNB *PHY_vars_eNB,
				       uint16_t si_rnti,
				       uint16_t ra_rnti,
				       uint16_t p_rnti,
	 				   uint16_t cba_rnti,
				       uint8_t use_srs);

#ifdef USER_MODE
void dump_ulsch(PHY_VARS_eNB *phy_vars_eNb,uint8_t subframe, uint8_t UE_id);

void dump_dlsch(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint8_t subframe,uint8_t harq_pid);
void dump_dlsch_SI(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint8_t subframe);
void dump_dlsch_ra(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint8_t subframe);

knopp's avatar
knopp committed
1410
void dump_dlsch2(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint16_t coded_bits_per_codeword,int round);
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
#endif

int dump_dci(LTE_DL_FRAME_PARMS *frame_parms, DCI_ALLOC_t *dci);

int dump_ue_stats(PHY_VARS_UE *phy_vars_ue, char* buffer, int length, runmode_t mode, int input_level_dBm);
int dump_eNB_stats(PHY_VARS_eNB *phy_vars_eNB, char* buffer, int length);



void generate_pcfich_reg_mapping(LTE_DL_FRAME_PARMS *frame_parms);

void pcfich_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
		       uint8_t subframe,
		       uint8_t *b,
		       uint8_t *bt);

void pcfich_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
			 uint8_t subframe,
1429
			 int16_t *d);
1430 1431

void generate_pcfich(uint8_t num_pdcch_symbols,
1432
		     int16_t amp,
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
		     LTE_DL_FRAME_PARMS *frame_parms,
		     mod_sym_t **txdataF,
		     uint8_t subframe);

uint8_t rx_pcfich(LTE_DL_FRAME_PARMS *frame_parms,
		  uint8_t subframe,
		  LTE_UE_PDCCH *lte_ue_pdcch_vars,
		  MIMO_mode_t mimo_mode);

void generate_phich_reg_mapping(LTE_DL_FRAME_PARMS *frame_parms);


void init_transport_channels(uint8_t);

void generate_RIV_tables(void);

/*!
  \brief This function performs the initial cell search procedure - PSS detection, SSS detection and PBCH detection.  At the 
  end, the basic frame parameters are known (Frame configuration - TDD/FDD and cyclic prefix length, 
  N_RB_DL, PHICH_CONFIG and Nid_cell) and the UE can begin decoding PDCCH and DLSCH SI to retrieve the rest.  Once these
  parameters are know, the routine calls some basic initialization routines (cell-specific reference signals, etc.)
  @param phy_vars_ue Pointer to UE variables
*/
int initial_sync(PHY_VARS_UE *phy_vars_ue, runmode_t mode);

void rx_ulsch(PHY_VARS_eNB *phy_vars_eNB,
	      uint32_t subframe,
	      uint8_t eNB_id,  // this is the effective sector id
	      uint8_t UE_id,
	      LTE_eNB_ULSCH_t **ulsch,
	      uint8_t cooperation_flag);

void rx_ulsch_emul(PHY_VARS_eNB *phy_vars_eNB,
		   uint8_t subframe,
		   uint8_t sect_id,
		   uint8_t UE_index);

/*!
  \brief Encoding of PUSCH/ACK/RI/ACK from 36-212.
  @param a Pointer to ulsch SDU
  @param frame_parms Pointer to Frame parameters
  @param ulsch Pointer to ulsch descriptor
  @param harq_pid HARQ process ID
  @param tmode Transmission mode (1-7)
  @param control_only_flag Generate PUSCH with control information only
  @param Nbundled Parameter for ACK/NAK bundling (36.213 Section 7.3)
*/
uint32_t ulsch_encoding(uint8_t *a,
			PHY_VARS_UE *phy_vars_ue,
			uint8_t harq_pid,
			uint8_t eNB_id,
			uint8_t tmode,
			uint8_t control_only_flag,
			uint8_t Nbundled);

/*!
  \brief Encoding of PUSCH/ACK/RI/ACK from 36-212 for emulation
  @param ulsch_buffer Pointer to ulsch SDU
  @param phy_vars_ue Pointer to UE top-level descriptor
  @param eNB_id ID of eNB receiving this PUSCH
  @param harq_pid HARQ process ID
  @param control_only_flag Generate PUSCH with control information only
*/
1496
int32_t ulsch_encoding_emul(uint8_t *ulsch_buffer,
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
			PHY_VARS_UE *phy_vars_ue,
			uint8_t eNB_id,
			uint8_t harq_pid,
			uint8_t control_only_flag);

/*!
  \brief Decoding of PUSCH/ACK/RI/ACK from 36-212.
  @param phy_vars_eNB Pointer to eNB top-level descriptor
  @param UE_id ID of UE transmitting this PUSCH
  @param subframe Index of subframe for PUSCH
  @param control_only_flag Receive PUSCH with control information only
  @param Nbundled Nbundled parameter for ACK/NAK scrambling from 36-212/36-213
  @param llr8_flag If 1, indicate that the 8-bit turbo decoder should be used
  @returns 0 on success
*/
unsigned int  ulsch_decoding(PHY_VARS_eNB *phy_vars_eNB,
			     uint8_t UE_id,
			     uint8_t subframe,
			     uint8_t control_only_flag,
			     uint8_t Nbundled,
			     uint8_t llr8_flag);

uint32_t ulsch_decoding_emul(PHY_VARS_eNB *phy_vars_eNB,
			     uint8_t subframe,
			     uint8_t UE_index,
				 uint16_t *crnti);

void generate_phich_top(PHY_VARS_eNB *phy_vars_eNB,
			uint8_t subframe,
1526
			int16_t amp,
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
			uint8_t sect_id,
			uint8_t abstraction_flag);

/* \brief  This routine demodulates the PHICH and updates PUSCH/ULSCH parameters.
   @param phy_vars_ue Pointer to UE variables
   @param subframe Subframe of received PDCCH/PHICH
   @param eNB_id Index of eNB
*/

void rx_phich(PHY_VARS_UE *phy_vars_ue,
	      uint8_t subframe,
	      uint8_t eNB_id);


/** \brief  This routine provides the relationship between a PHICH TXOp and its corresponding PUSCH subframe (Table 8.3.-1 from 36.213).
    @param frame_parms Pointer to DL frame configuration parameters
    @param subframe Subframe of received/transmitted PHICH
    @returns subframe of PUSCH transmission
*/
uint8_t phich_subframe2_pusch_subframe(LTE_DL_FRAME_PARMS *frame_parms,uint8_t subframe);

/** \brief  This routine provides the relationship between a PHICH TXOp and its corresponding PUSCH frame (Table 8.3.-1 from 36.213).
    @param frame_parms Pointer to DL frame configuration parameters
    @param frame Frame of received/transmitted PHICH
    @param subframe Subframe of received/transmitted PHICH
    @returns frame of PUSCH transmission
*/
1554
uint8_t phich_frame2_pusch_frame(LTE_DL_FRAME_PARMS *frame_parms,frame_t frame,uint8_t subframe);;
1555

1556
void print_CQI(void *o,UCI_format_t uci_format,uint8_t eNB_id,int N_RB_DL);
1557

1558
void extract_CQI(void *o,UCI_format_t uci_format,LTE_eNB_UE_stats *stats,uint8_t N_RB_DL, uint16_t * crnti, uint8_t * access_mode);
1559

1560
void fill_CQI(LTE_UE_ULSCH_t *ulsch,PHY_MEASUREMENTS *meas,uint8_t eNB_id, uint8_t harq_pid,int N_RB_DL, rnti_t rnti, uint8_t trans_mode,double sinr_eff);
1561 1562
void reset_cba_uci(void *o);

1563 1564
uint16_t quantize_subband_pmi(PHY_MEASUREMENTS *meas,uint8_t eNB_id,int nb_subbands);
uint16_t quantize_subband_pmi2(PHY_MEASUREMENTS *meas,uint8_t eNB_id,uint8_t a_id,int nb_subbands);
1565

1566
uint64_t pmi2hex_2Ar1(uint32_t pmi);
1567

1568
uint64_t pmi2hex_2Ar2(uint32_t pmi);
1569

1570
uint64_t cqi2hex(uint32_t cqi);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582

uint16_t computeRIV(uint16_t N_RB_DL,uint16_t RBstart,uint16_t Lcrbs);

uint32_t pmi_extend(LTE_DL_FRAME_PARMS *frame_parms,uint8_t wideband_pmi);


uint16_t get_nCCE(uint8_t num_pdcch_symbols,LTE_DL_FRAME_PARMS *frame_parms,uint8_t mi);

uint16_t get_nquad(uint8_t num_pdcch_symbols,LTE_DL_FRAME_PARMS *frame_parms,uint8_t mi);

uint8_t get_mi(LTE_DL_FRAME_PARMS *frame,uint8_t subframe);

1583
uint16_t get_nCCE_max(uint8_t Mod_id,uint8_t CC_id);
1584 1585 1586 1587 1588 1589 1590

uint8_t get_num_pdcch_symbols(uint8_t num_dci,DCI_ALLOC_t *dci_alloc,LTE_DL_FRAME_PARMS *frame_parms,uint8_t subframe);

void pdcch_interleaving(LTE_DL_FRAME_PARMS *frame_parms,mod_sym_t **z, mod_sym_t **wbar,uint8_t n_symbols_pdcch,uint8_t mi);

void pdcch_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
			uint8_t subframe,
1591
			int8_t* llr,
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
			uint32_t length);

void pdcch_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
		      uint8_t subframe,
		      uint8_t *e,
		      uint32_t length);

void dlsch_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
		      int mbsfn_flag,
		      LTE_eNB_DLSCH_t *dlsch,
		      int G,
		      uint8_t q,
		      uint8_t Ns);

void dlsch_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
			int mbsfn_flag,
			LTE_UE_DLSCH_t *dlsch,
			int G,
1610
			int16_t* llr,
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
			uint8_t q,
			uint8_t Ns);

void init_ncs_cell(LTE_DL_FRAME_PARMS *frame_parms,uint8_t ncs_cell[20][7]);

void generate_pucch(mod_sym_t **txdataF,
		    LTE_DL_FRAME_PARMS *frame_parms,
		    uint8_t ncs_cell[20][7],
		    PUCCH_FMT_t fmt,
		    PUCCH_CONFIG_DEDICATED *pucch_config_dedicated,
		    uint16_t n1_pucch,
		    uint16_t n2_pucch,
		    uint8_t shortened_format,
		    uint8_t *payload,
1625
		    int16_t amp,
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
		    uint8_t subframe);

void generate_pucch_emul(PHY_VARS_UE *phy_vars_ue,
			 PUCCH_FMT_t format,
			 uint8_t ncs1,
			 uint8_t *pucch_ack_payload,
			 uint8_t sr,
			 uint8_t subframe);


1636
int32_t rx_pucch(PHY_VARS_eNB *phy_vars_eNB,
1637 1638 1639 1640 1641 1642 1643 1644 1645
	     PUCCH_FMT_t fmt,
	     uint8_t UE_id,
	     uint16_t n1_pucch,
	     uint16_t n2_pucch,
	     uint8_t shortened_format,
	     uint8_t *payload,
	     uint8_t subframe,
	     uint8_t pucch1_thres);

1646
int32_t rx_pucch_emul(PHY_VARS_eNB *phy_vars_eNB,
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
		  uint8_t UE_index,
		  PUCCH_FMT_t fmt,
		  uint8_t n1_pucch_sel,
		  uint8_t *payload,
		  uint8_t subframe);


/*!
  \brief Check for PRACH TXop in subframe
  @param frame_parms Pointer to LTE_DL_FRAME_PARMS
  @param frame frame index to check
  @param subframe subframe index to check
  @returns 0 on success
*/
1661
int is_prach_subframe(LTE_DL_FRAME_PARMS *frame_parms,frame_t frame, uint8_t subframe);
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672

/*!
  \brief Generate PRACH waveform
  @param phy_vars_ue Pointer to ue top-level descriptor
  @param eNB_id Index of destination eNB
  @param subframe subframe index to operate on
  @param index of preamble (0-63)
  @param Nf System frame number
  @returns 0 on success
  
*/
1673
int32_t generate_prach(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint8_t subframe,uint16_t Nf);
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

/*!
  \brief Process PRACH waveform
  @param phy_vars_eNB Pointer to eNB top-level descriptor
  @param subframe subframe index to operate on
  @param preamble_energy_list List of energies for each candidate preamble
  @param preamble_delay_list List of delays for each candidate preamble
  @param Nf System frame number
  @param tdd_mapindex Index of PRACH resource in Table 5.7.1-4 (TDD)
  @returns 0 on success
  
*/
void rx_prach(PHY_VARS_eNB *phy_vars_eNB,uint8_t subframe,uint16_t *preamble_energy_list, uint16_t *preamble_delay_list, uint16_t Nf, uint8_t tdd_mapindex);

/*!
  \brief Helper for MAC, returns number of available PRACH in TDD for a particular configuration index
  @param frame_parms Pointer to LTE_DL_FRAME_PARMS structure
  @returns 0-5 depending on number of available prach
*/
uint8_t get_num_prach_tdd(LTE_DL_FRAME_PARMS *frame_parms);

/*!
  \brief Return the PRACH format as a function of the Configuration Index and Frame type.
  @param prach_ConfigIndex PRACH Configuration Index
  @param frame_type 0-FDD, 1-TDD
  @returns 0-1 accordingly
*/
uint8_t get_prach_fmt(uint8_t prach_ConfigIndex,lte_frame_type_t frame_type);

/*!
  \brief Helper for MAC, returns frequency index of PRACH resource in TDD for a particular configuration index
  @param frame_parms Pointer to LTE_DL_FRAME_PARMS structure
  @returns 0-5 depending on number of available prach
*/
uint8_t get_fid_prach_tdd(LTE_DL_FRAME_PARMS *frame_parms,uint8_t tdd_map_index);

/*!
  \brief Comp ute DFT of PRACH ZC sequences.  Used for generation of prach in UE and reception of PRACH in eNB.
  @param prach_config_common Pointer to prachConfigCommon structure
  @param Xu DFT output 
*/
void compute_prach_seq(PRACH_CONFIG_COMMON *prach_config_common,
		       lte_frame_type_t frame_type,
		       uint32_t X_u[64][839]);

void init_prach_tables(int N_ZC);

/*!
  \brief Return the status of MBSFN in this frame/subframe
  @param frame Frame index
  @param subframe Subframe index
  @param frame_parms Pointer to frame parameters
  @returns 1 if subframe is for MBSFN
*/
1728
int is_pmch_subframe(frame_t frame, int subframe, LTE_DL_FRAME_PARMS *frame_parms);
1729
 
1730
uint8_t is_not_pilot(uint8_t pilots, uint8_t re, uint8_t nushift, uint8_t use2ndpilots);
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741

uint32_t dlsch_decoding_abstraction(double *dlsch_MIPB,
				    LTE_DL_FRAME_PARMS *lte_frame_parms,
				    LTE_UE_DLSCH_t *dlsch,
				    uint8_t subframe,
				    uint8_t num_pdcch_symbols);

// DL power control functions
double get_pa_dB(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated);

double computeRhoA_eNB(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,  
1742 1743
                       LTE_eNB_DLSCH_t *dlsch_eNB,
		       int dl_power_off);
1744 1745 1746 1747

double computeRhoB_eNB(PDSCH_CONFIG_DEDICATED  *pdsch_config_dedicated,
                       PDSCH_CONFIG_COMMON *pdsch_config_common,
                       uint8_t n_antenna_port,
1748
                       LTE_eNB_DLSCH_t *dlsch_eNB,int dl_power_off);
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766

double computeRhoA_UE(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,  
                      LTE_UE_DLSCH_t *dlsch_ue,
                      uint8_t dl_power_off);

double computeRhoB_UE(PDSCH_CONFIG_DEDICATED  *pdsch_config_dedicated,
                      PDSCH_CONFIG_COMMON *pdsch_config_common,
                      uint8_t n_antenna_port,
                      LTE_UE_DLSCH_t *dlsch_ue,
                      uint8_t dl_power_off);

/*void compute_sqrt_RhoAoRhoB(PDSCH_CONFIG_DEDICATED  *pdsch_config_dedicated,
  PDSCH_CONFIG_COMMON *pdsch_config_common,
  uint8_t n_antenna_port,
  LTE_UE_DLSCH_t *dlsch_ue);
*/
/**@}*/
#endif