vcd_signal_dumper.c 20.6 KB
Newer Older
1
/*******************************************************************************
nikaeinn's avatar
nikaeinn committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
    OpenAirInterface
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is
    included in this distribution in the file called "COPYING". If not,
    see <http://www.gnu.org/licenses/>.

  Contact Information
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
  OpenAirInterface Dev  : openair4g-devel@eurecom.fr

ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
nikaeinn's avatar
nikaeinn committed
27
28

*******************************************************************************/
29
30
31
32

/*! \file vcd_signal_dumper.c
 * \brief Dump functions calls and variables to VCD file. Use GTKWave to display this file.
 * \author S. Roux
nikaeinn's avatar
nikaeinn committed
33
34
 * \maintainer: navid nikaein
 * \date 2012 - 2104 
35
36
 * \version 0.1
 * \company Eurecom
nikaeinn's avatar
nikaeinn committed
37
 * \email: navid.nikaein@eurecom.fr
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
 * \note
 * \warning
 */

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#include <error.h>
#include <time.h>
#include <unistd.h>

54
#include "assertions.h"
55
#include "signals.h"
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

#include "vcd_signal_dumper.h"

#if defined(ENABLE_RTAI_CLOCK)
#include "rtai_lxrt.h"
#endif

#define VCDSIGNALDUMPER_VERSION_MAJOR 0
#define VCDSIGNALDUMPER_VERSION_MINOR 1

// Global variable. If the VCD option is set at execution time, output VCD trace. Otherwise this module has no effect.
int ouput_vcd = 0;

struct vcd_module_s {
    const char     *name;
    int             number_of_signals;
    const char    **signals_names;
    vcd_signal_type signal_type;
    int             signal_size;
} vcd_module_s;
 
const char* eurecomVariablesNames[] = {
knopp's avatar
   
knopp committed
78
79
    "frame_number_TX_eNB",
    "frame_number_RX_eNB",
80
81
82
83
84
85
    "frame_number_TX_UE",
    "frame_number_RX_UE",
    "slot_number_TX_UE",
    "slot_number_RX_UE",
    "subframe_number_TX_UE",
    "subframe_number_RX_UE",
86
    "daq_mbox",
87
88
    "rx_offset_mbox",
    "ue_rx_offset",
89
    "diff2",
knopp's avatar
   
knopp committed
90
91
    "hw_subframe",
    "hw_frame",
knopp's avatar
   
knopp committed
92
93
    "txcnt",
    "rxcnt",
knopp's avatar
   
knopp committed
94
95
    "trx_ts",
    "trx_tst",
96
97
98
    "itti_send_msg",
    "itti_poll_msg",
    "itti_recv_msg",
99
100
101
    "itti_alloc_msg",
    "mp_alloc",
    "mp_free",
102
103
104
};
 
const char* eurecomFunctionsNames[] = {
105
106
107
108
  /*  softmodem signals   */  
    "rt_sleep",
    "trx_read",
    "trx_write",
knopp's avatar
   
knopp committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    "eNB_thread_tx0",
    "eNB_thread_rx0",
    "eNB_thread_tx1",
    "eNB_thread_rx1",
    "eNB_thread_tx2",
    "eNB_thread_rx2",
    "eNB_thread_tx3",
    "eNB_thread_rx3",
    "eNB_thread_tx4",
    "eNB_thread_rx4",
    "eNB_thread_tx5",
    "eNB_thread_rx5",
    "eNB_thread_tx6",
    "eNB_thread_rx6",
    "eNB_thread_tx7",
    "eNB_thread_rx7",
    "eNB_thread_tx8",
    "eNB_thread_rx8",
    "eNB_thread_tx9",
    "eNB_thread_rx9",
129
130
    
    /* PHY signals  */
131
    "ue_synch",
knopp's avatar
   
knopp committed
132
133
134
135
    "ue_slot_fep",
    "ue_rrc_measurements",
    "ue_gain_control",
    "ue_adjust_synch",
136
137
138
139
140
141
142
143
144
    "lte_ue_measurement_procedures",
    "lte_ue_pdcch_procedures",
    "lte_ue_pbch_procedures",
    "phy_procedures_eNb_tx",
    "phy_procedures_eNb_rx",
    "phy_procedures_ue_tx",
    "phy_procedures_ue_rx",
    "phy_procedures_eNB_lte",
    "phy_procedures_UE_lte",
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    "pdsch_thread",
    "dlsch_thread0",
    "dlsch_thread1",
    "dlsch_thread2",
    "dlsch_thread3",
    "dlsch_thread4",
    "dlsch_thread5",
    "dlsch_thread6",
    "dlsch_thread7",
    "dlsch_decoding0",
    "dlsch_decoding1",
    "dlsch_decoding2",
    "dlsch_decoding3",
    "dlsch_decoding4",
    "dlsch_decoding5",
    "dlsch_decoding6",
    "dlsch_decoding7",
    "rx_pdcch",
163
    "dci_decoding",  
knopp's avatar
   
knopp committed
164
    "rx_phich",  
165
166
167
168
    "phy_ue_config_sib2", 
    "macxface_phy_config_sib1_eNB",
    "macxface_phy_config_sib2_eNB",
    "macxface_phy_config_dedicated_eNB",
169
170
    "phy_ue_compute_prach",
    "phy_enb_ulsch_decoding",
knopp's avatar
knopp committed
171
172
173
174
    "phy_enb_sfgen",
    "phy_enb_prach_rx",
    "phy_enb_pdcch_tx",
    "phy_enb_rs_tx",
175
    "phy_ue_generate_prach",
176
177
    "phy_ue_ulsch_modulation",
    "phy_ue_ulsch_encoding",
knopp's avatar
knopp committed
178
    "phy_ue_ulsch_scrambling",
179
180
    "phy_eNB_dlsch_modulation",
    "phy_eNB_dlsch_encoding",
knopp's avatar
   
knopp committed
181
    "phy_eNB_dlsch_scrambling",
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
   
    /* MAC  signals  */
    "macxface_macphy_init",
    "macxface_macphy_exit",
    "macxface_eNB_dlsch_ulsch_scheduler",
    "macxface_fill_rar",
    "macxface_terminate_ra_proc",
    "macxface_initiate_ra_proc",
    "macxface_cancel_ra_proc",
    "macxface_get_dci_sdu",
    "macxface_get_dlsch_sdu",
    "macxface_rx_sdu",
    "macxface_mrbch_phy_sync_failure",
    "macxface_SR_indication",
    "mac_dlsch_preprocessor",
    "mac_schedule_dlsch",
    "mac_fill_dlsch_dci",
    "macxface_out_of_sync_ind",
    "macxface_ue_decode_si",
    "macxface_ue_decode_ccch",
    "macxface_ue_decode_bcch",
    "macxface_ue_send_sdu",
    "macxface_ue_get_sdu",
    "macxface_ue_get_rach",
    "macxface_ue_process_rar",
    "macxface_ue_scheduler",
    "macxface_ue_get_sr",
    
    "ue_send_mch_sdu",
thomasl's avatar
thomasl committed
211
    "ue_synch",
212
213
214
215
216
217
218

    /*RLC signals   */
    "rlc_data_req",
    // "rlc_data_ind", // this calls "pdcp_data_ind",
    "mac_rlc_status_ind",
    "mac_rlc_data_req",
    "mac_rlc_data_ind",
gauthier's avatar
   
gauthier committed
219
220
221
222
    "rlc_um_try_reassembly",
    "rlc_um_check_timer_dar_time_out",
    "rlc_um_receive_process_dar",

223
224
225
226
    /* PDCP signals   */
    "pdcp_run",
    "pdcp_data_req",
    "pdcp_data_ind",
Cedric Roux's avatar
Cedric Roux committed
227
228
    "pdcp_apply_security",
    "pdcp_validate_security",
229
230
231
232
    /* RRC signals  */
    "rrc_mac_config_req",
    "rrc_ue_decode_sib1",
    "rrc_ue_decode_si",
gauthier's avatar
   
gauthier committed
233
234
    /* GTPV1U signals */
    "gtpv1u_enb_task",
gauthier's avatar
gauthier committed
235
236
    "gtpv1u_process_udp_req",
    "gtpv1u_process_tunnel_data_req",
gauthier's avatar
   
gauthier committed
237
238
    /* UDP signals */
    "udp_enb_task",
239
240
241
    /* MISC signals  */
    "emu_transport",
    "log_record",
winckel's avatar
winckel committed
242
    "itti_enqueue_message",
243
    "itti_dump_enqueue_message",
244
    "itti_dump_enqueue_message_malloc",
245
    "itti_relay_thread",
246
247
248
249
    "test"
};

struct vcd_module_s vcd_modules[VCD_SIGNAL_DUMPER_MODULE_END] = {
winckel's avatar
winckel committed
250
    { "variables", VCD_SIGNAL_DUMPER_VARIABLES_END, eurecomVariablesNames, VCD_WIRE, 64 },
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    { "functions", VCD_SIGNAL_DUMPER_FUNCTIONS_END, eurecomFunctionsNames, VCD_WIRE, 1 },
//    { "ue_procedures_functions", VCD_SIGNAL_DUMPER_UE_PROCEDURES_FUNCTIONS_END, eurecomUEFunctionsNames, VCD_WIRE, 1 },
};

FILE *vcd_fd = NULL;
static inline unsigned long long int vcd_get_time(void);

#if defined(ENABLE_USE_CPU_EXECUTION_TIME)
struct timespec     g_time_start;
#elif defined(ENABLE_RTAI_CLOCK)
RTIME start;
#endif


#if defined(ENABLE_VCD_FIFO)

267
268
# define VCD_POLL_DELAY         (500)           // Poll delay in micro-seconds
# define VCD_MAX_WAIT_DELAY     (200 * 1000)    // Maximum data ready wait delay in micro-seconds
269
# define VCD_FIFO_NB_ELEMENTS   (1 << 24)       // Must be a power of 2
270
# define VCD_FIFO_MASK          (VCD_FIFO_NB_ELEMENTS - 1)
271

272
typedef struct vcd_queue_user_data_s {
273
274
    uint32_t log_id;
    vcd_signal_dumper_modules module;
275
276
    union data_u {
        struct function_s {
277
278
279
            vcd_signal_dump_functions function_name;
            vcd_signal_dump_in_out    in_out;
        } function;
280
        struct variable_s {
281
282
283
284
285
286
287
288
            vcd_signal_dump_variables variable_name;
            unsigned long value;
        } variable;
    } data;

    long long unsigned int time;
} vcd_queue_user_data_t;

289
290
291
292
293
294
295
296
297
typedef struct vcd_fifo_s {
    vcd_queue_user_data_t user_data[VCD_FIFO_NB_ELEMENTS];

    volatile uint32_t write_index;
    volatile uint32_t read_index;
} vcd_fifo_t;

vcd_fifo_t vcd_fifo;

298
pthread_t vcd_dumper_thread;
299
#endif
300

winckel's avatar
winckel committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
#define BYTE_SIZE   8
#define NIBBLE_SIZE 4
static void uint64_to_binary(uint64_t value, char *binary)
{
    static const char * const nibbles_start[] =
            {
                 "",    "1",   "10",   "11",
              "100",  "101",  "110",  "111",
             "1000", "1001", "1010", "1011",
             "1100", "1101", "1110", "1111",
            };
    static const char * const nibbles[] =
            {
             "0000", "0001", "0010", "0011",
             "0100", "0101", "0110", "0111",
             "1000", "1001", "1010", "1011",
             "1100", "1101", "1110", "1111",
            };
    int nibble;
    int nibble_value;
    int nibble_size;
    int zero = 1;

    for (nibble = 0; nibble < (sizeof (uint64_t) * (BYTE_SIZE / NIBBLE_SIZE)); nibble++)
    {
        nibble_value = value >> ((sizeof (uint64_t) * BYTE_SIZE) - NIBBLE_SIZE);

        if (zero)
        {
            if (nibble_value > 0)
            {
                zero = 0;
                nibble_size = strlen(nibbles_start[nibble_value]);
                memcpy (binary, nibbles_start[nibble_value], nibble_size);
                binary += nibble_size;
            }
        }
        else
        {
            memcpy (binary, nibbles[nibble_value], NIBBLE_SIZE);
            binary += NIBBLE_SIZE;
        }
        value <<= NIBBLE_SIZE;
    }
    /* Add a '0' if the value was null */
    if (zero)
    {
        binary[0] = '0';
        binary ++;
    }
    /* Add a null value at the end of the string */
    binary[0] = '\0';
}

355
#if defined(ENABLE_VCD_FIFO)
356
357
358
359
360
361
362
363
364
365
inline static uint32_t vcd_get_write_index(void)
{
    uint32_t write_index;
    uint32_t read_index;

    /* Get current write index and increment it (atomic operation) */
    write_index = __sync_fetch_and_add(&vcd_fifo.write_index, 1);
    /* Wrap index */
    write_index &= VCD_FIFO_MASK;

366
367
    /* Check FIFO overflow (increase VCD_FIFO_NB_ELEMENTS if this assert is triggered) */
    DevCheck((read_index = vcd_fifo.read_index, ((write_index + 1) & VCD_FIFO_MASK) != read_index), write_index, read_index, VCD_FIFO_NB_ELEMENTS);
368
369
370
371

    return write_index;
}

372
373
374
void *vcd_dumper_thread_rt(void *args)
{
    vcd_queue_user_data_t *data;
winckel's avatar
winckel committed
375
    char binary_string[(sizeof (uint64_t) * BYTE_SIZE) + 1];
376
    struct sched_param sched_param;
377
    uint32_t data_ready_wait;
winckel's avatar
winckel committed
378

379
380
381
382
# if defined(ENABLE_ITTI)
    signal_mask();
# endif

383
384
385
    sched_param.sched_priority = sched_get_priority_min(SCHED_FIFO) + 1;
    sched_setscheduler(0, SCHED_FIFO, &sched_param);

386
    while(1) {
387
        if (vcd_fifo.read_index == (vcd_fifo.write_index & VCD_FIFO_MASK)) {
388
            /* No element -> sleep a while */
389
            usleep(VCD_POLL_DELAY);
390
        } else {
391
392
393
394
            data = &vcd_fifo.user_data[vcd_fifo.read_index];
            data_ready_wait = 0;
            while (data->module == VCD_SIGNAL_DUMPER_MODULE_FREE)
            {
395
                /* Check wait delay (increase VCD_MAX_WAIT_DELAY if this assert is triggered and that no thread is locked) */
396
397
398
399
400
401
                DevCheck(data_ready_wait < VCD_MAX_WAIT_DELAY, data_ready_wait, VCD_MAX_WAIT_DELAY, 0);

                /* data is not yet ready, wait for it to be completed */
                data_ready_wait += VCD_POLL_DELAY;
                usleep(VCD_POLL_DELAY);
            }
402
403
404
405
406
407
408
409
            switch (data->module) {
                case VCD_SIGNAL_DUMPER_MODULE_VARIABLES:
                    if (vcd_fd != NULL)
                    {
                        int variable_name;
                        variable_name = (int)data->data.variable.variable_name;
                        fprintf(vcd_fd, "#%llu\n", data->time);
                        /* Set variable to value */
winckel's avatar
winckel committed
410
411
                        uint64_to_binary(data->data.variable.value, binary_string);
                        fprintf(vcd_fd, "b%s %s_w\n", binary_string,
412
413
414
                                eurecomVariablesNames[variable_name]);
                    }
                    break;
415

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
                case VCD_SIGNAL_DUMPER_MODULE_FUNCTIONS:
                    if (vcd_fd != NULL)
                    {
                        int function_name;

                        function_name = (int)data->data.function.function_name;
                        fprintf(vcd_fd, "#%llu\n", data->time);

                        /* Check if we are entering or leaving the function ( 0 = leaving, 1 = entering) */
                        if (data->data.function.in_out == VCD_FUNCTION_IN)
                            /* Set event to 1 */
                            fprintf(vcd_fd, "1%s_w\n", eurecomFunctionsNames[function_name]);
                        else
                            fprintf(vcd_fd, "0%s_w\n", eurecomFunctionsNames[function_name]);
                        fflush(vcd_fd);
                    }
                    break;
433

434
                default:
435
                    DevParam(data->module, 0, 0);
436
437
                    break;
            }
438
439
            data->module = VCD_SIGNAL_DUMPER_MODULE_FREE;
            vcd_fifo.read_index = (vcd_fifo.read_index + 1) & VCD_FIFO_MASK;
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
        }
    }
    return NULL;
}
#endif

void vcd_signal_dumper_init(char *filename)
{
    if (ouput_vcd) {
      //        char filename[] = "/tmp/openair_vcd_dump.vcd";

        if ((vcd_fd = fopen(filename, "w+")) == NULL)
        {
            perror("vcd_signal_dumper_init: cannot open file");
            return;
        }

#if defined(ENABLE_USE_CPU_EXECUTION_TIME)
        clock_gettime(CLOCK_MONOTONIC, &g_time_start);
#elif defined(ENABLE_RTAI_CLOCK)
        start=rt_get_time_ns();
#endif

        vcd_signal_dumper_create_header();

#if defined(ENABLE_VCD_FIFO)
466
467
        vcd_fifo.write_index = 0;
        vcd_fifo.read_index = 0;
468

469
        fprintf(stderr, "[VCD] Creating dumper thread\n");
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581

        if (pthread_create(&vcd_dumper_thread, NULL, vcd_dumper_thread_rt, NULL) < 0)
        {
            fprintf(stderr, "vcd_signal_dumper_init: Failed to create thread: %s\n",
                    strerror(errno));
            ouput_vcd = 0;
            return;
        }
#endif
    }
}

void vcd_signal_dumper_close(void)
{
    if (ouput_vcd) {
#if defined(ENABLE_VCD_FIFO)
        
#else
        if (vcd_fd != NULL)
        {
            fclose(vcd_fd);
            vcd_fd = NULL;
        }
#endif
    }
}

static inline void vcd_signal_dumper_print_time_since_start(void)
{
    if (vcd_fd != NULL)
    {
#if defined(ENABLE_USE_CPU_EXECUTION_TIME)
        struct timespec time;
        long long unsigned int nanosecondsSinceStart;
        long long unsigned int secondsSinceStart;

        clock_gettime(CLOCK_MONOTONIC, &time);

        /* Get current execution time in nanoseconds */
        nanosecondsSinceStart = (long long unsigned int)((time.tv_nsec - g_time_start.tv_nsec));
        secondsSinceStart     = (long long unsigned int)time.tv_sec - (long long unsigned int)g_time_start.tv_sec;
        /* Write time in nanoseconds */
        fprintf(vcd_fd, "#%llu\n", nanosecondsSinceStart + (secondsSinceStart * 1000000000UL));
#elif defined(ENABLE_RTAI_CLOCK)
        /* Write time in nanoseconds */
        fprintf(vcd_fd, "#%llu\n",rt_get_time_ns()-start);
#endif
    }
}

static inline unsigned long long int vcd_get_time(void)
{
#if defined(ENABLE_USE_CPU_EXECUTION_TIME)
    struct timespec time;

    clock_gettime(CLOCK_MONOTONIC, &time);

    return (long long unsigned int)((time.tv_nsec - g_time_start.tv_nsec)) +
    ((long long unsigned int)time.tv_sec - (long long unsigned int)g_time_start.tv_sec) * 1000000000UL;
#elif defined(ENABLE_RTAI_CLOCK)
    return rt_get_time_ns() - start;
#endif
}

void vcd_signal_dumper_create_header(void)
{
    if (ouput_vcd) {
        struct tm *pDate;
        time_t intps;

        intps = time(NULL);
        pDate = localtime(&intps);

        if (vcd_fd != NULL)
        {
            int i, j;
            fprintf(vcd_fd, "$date\n\t%s$end\n", asctime(pDate));
            // Display version
            fprintf(vcd_fd, "$version\n\tVCD plugin ver%d.%d\n$end\n", VCDSIGNALDUMPER_VERSION_MAJOR, VCDSIGNALDUMPER_VERSION_MINOR);
            // Init timescale, here = 1ns
            fprintf(vcd_fd, "$timescale 1 ns $end\n");

            /* Initialize each module definition */
            for(i = 0; i < VCD_SIGNAL_DUMPER_MODULE_END; i++) {
                struct vcd_module_s *module;
                module = &vcd_modules[i];
                fprintf(vcd_fd, "$scope module %s $end\n", module->name);
                /* Declare each signal as defined in array */
                for (j = 0; j < module->number_of_signals; j++) {
                    const char *signal_name;
                    signal_name = module->signals_names[j];
                    if (VCD_WIRE == module->signal_type) {
                        fprintf(vcd_fd, "$var wire %d %s_w %s $end\n", module->signal_size, signal_name, signal_name);
                    } else  if (VCD_REAL == module->signal_type) {
                        fprintf(vcd_fd, "$var real %d %s_r %s $end\n", module->signal_size, signal_name, signal_name);
                    } else {
                        // Handle error here
                    }
                }
                fprintf(vcd_fd, "$upscope $end\n");
            }

            /* Init variables and functions to 0 */
            fprintf(vcd_fd, "$dumpvars\n");
            for(i = 0; i < VCD_SIGNAL_DUMPER_MODULE_END; i++) {
                struct vcd_module_s *module;
                module = &vcd_modules[i];
                /* Declare each signal as defined in array */
                for (j = 0; j < module->number_of_signals; j++) {
                    const char *signal_name;
                    signal_name = module->signals_names[j];
                    if (VCD_WIRE == module->signal_type) {
winckel's avatar
winckel committed
582
583
584
585
586
587
                        if (module->signal_size > 1) {
                            fprintf(vcd_fd, "b0 %s_w $end\n", signal_name);
                        }
                        else {
                            fprintf(vcd_fd, "0%s_w $end\n", signal_name);
                        }
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
                    } else  if (VCD_REAL == module->signal_type) {
                        fprintf(vcd_fd, "r0 %s_r $end\n", signal_name);
                    } else {
                        // Handle error here
                    }
                }
            }
            fprintf(vcd_fd, "$end\n");
            fprintf(vcd_fd, "$enddefinitions $end\n\n");
            //fflush(vcd_fd);
        }
    }
}

void vcd_signal_dumper_dump_variable_by_name(vcd_signal_dump_variables variable_name,
                                             unsigned long             value)
{
winckel's avatar
winckel committed
605
606
607
    DevCheck((0 <= variable_name) && (variable_name < VCD_SIGNAL_DUMPER_VARIABLES_END),
             variable_name, VCD_SIGNAL_DUMPER_VARIABLES_END, 0);

608
609
    if (ouput_vcd) {
#if defined(ENABLE_VCD_FIFO)
610
        uint32_t write_index = vcd_get_write_index();
611

612
613
614
615
        vcd_fifo.user_data[write_index].time = vcd_get_time();
        vcd_fifo.user_data[write_index].data.variable.variable_name = variable_name;
        vcd_fifo.user_data[write_index].data.variable.value = value;
        vcd_fifo.user_data[write_index].module = VCD_SIGNAL_DUMPER_MODULE_VARIABLES; // Set when all other fields are set to validate the user_data
616
#else
winckel's avatar
winckel committed
617
618
        char binary_string[(sizeof (uint64_t) * BYTE_SIZE) + 1];

619
620
621
622
623
        if (vcd_fd != NULL)
        {
            vcd_signal_dumper_print_time_since_start();

            /* Set variable to value */
winckel's avatar
winckel committed
624
625
            uint64_to_binary(value, binary_string);
            fprintf(vcd_fd, "b%s %s_w\n", binary_string, eurecomVariablesNames[variable_name]);
626
627
628
629
630
631
632
633
634
            //fflush(vcd_fd);
        }
#endif
    }
}

void vcd_signal_dumper_dump_function_by_name(vcd_signal_dump_functions  function_name,
                                             vcd_signal_dump_in_out     in_out)
{
winckel's avatar
winckel committed
635
636
637
    DevCheck((0 <= function_name) && (function_name < VCD_SIGNAL_DUMPER_FUNCTIONS_END),
             function_name, VCD_SIGNAL_DUMPER_FUNCTIONS_END, 0);

638
639
    if (ouput_vcd) {
#if defined(ENABLE_VCD_FIFO)
640
        uint32_t write_index = vcd_get_write_index();
641

642
643
644
645
        vcd_fifo.user_data[write_index].time = vcd_get_time();
        vcd_fifo.user_data[write_index].data.function.function_name = function_name;
        vcd_fifo.user_data[write_index].data.function.in_out = in_out;
        vcd_fifo.user_data[write_index].module = VCD_SIGNAL_DUMPER_MODULE_FUNCTIONS; // Set when all other fields are set to validate the user_data
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
#else
        if (vcd_fd != NULL)
        {
            vcd_signal_dumper_print_time_since_start();

            /* Check if we are entering or leaving the function ( 0 = leaving, 1 = entering) */
            if (in_out == VCD_FUNCTION_IN)
                /* Set event to 1 */
                fprintf(vcd_fd, "1%s_w\n", eurecomFunctionsNames[function_name]);
            else
                fprintf(vcd_fd, "0%s_w\n", eurecomFunctionsNames[function_name]);
            //fflush(vcd_fd);
        }
#endif
    }
}