proto.h 80.7 KB
Newer Older
1
/*******************************************************************************
2
    OpenAirInterface
ghaddab's avatar
ghaddab committed
3
    Copyright(c) 1999 - 2014 Eurecom
4

ghaddab's avatar
ghaddab committed
5 6 7 8
    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
9 10


ghaddab's avatar
ghaddab committed
11 12 13 14
    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
15

ghaddab's avatar
ghaddab committed
16
    You should have received a copy of the GNU General Public License
17 18
    along with OpenAirInterface.The full GNU General Public License is
   included in this distribution in the file called "COPYING". If not,
ghaddab's avatar
ghaddab committed
19
   see <http://www.gnu.org/licenses/>.
20 21

  Contact Information
ghaddab's avatar
ghaddab committed
22 23
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
24
  OpenAirInterface Dev  : openair4g-devel@lists.eurecom.fr
25

ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
27

ghaddab's avatar
ghaddab committed
28
 *******************************************************************************/
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

/*! \file PHY/LTE_TRANSPORT/proto.h
 * \brief Function prototypes for PHY physical/transport channel processing and generation V8.6 2009-03
 * \author R. Knopp, F. Kaltenberger
 * \date 2011
 * \version 0.1
 * \company Eurecom
 * \email: knopp@eurecom.fr
 * \note
 * \warning
 */
#ifndef __LTE_TRANSPORT_PROTO__H__
#define __LTE_TRANSPORT_PROTO__H__
#include "PHY/defs.h"
#include <math.h>

// Functions below implement 36-211 and 36-212

/** @addtogroup _PHY_TRANSPORT_
 * @{
 */

51
/** \fn free_eNB_dlsch(LTE_eNB_DLSCH_t *dlsch,unsigned char N_RB_DL)
52 53 54 55 56 57 58
    \brief This function frees memory allocated for a particular DLSCH at eNB
    @param dlsch Pointer to DLSCH to be removed
*/
void free_eNB_dlsch(LTE_eNB_DLSCH_t *dlsch);

void clean_eNb_dlsch(LTE_eNB_DLSCH_t *dlsch, uint8_t abstraction_flag);

59
/** \fn new_eNB_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint32_t Nsoft,uint8_t abstraction_flag)
60 61 62 63
    \brief This function allocates structures for a particular DLSCH at eNB
    @returns Pointer to DLSCH to be removed
    @param Kmimo Kmimo factor from 36-212/36-213
    @param Mdlharq Maximum number of HARQ rounds (36-212/36-213)
64
    @param Nsoft Soft-LLR buffer size from UE-Category
65 66 67
    @params N_RB_DL total number of resource blocks (determine the operating BW)
    @param abstraction_flag Flag to indicate abstracted interface
*/
68
LTE_eNB_DLSCH_t *new_eNB_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint32_t Nsoft,uint8_t N_RB_DL, uint8_t abstraction_flag);
69 70 71 72 73 74 75

/** \fn free_ue_dlsch(LTE_UE_DLSCH_t *dlsch)
    \brief This function frees memory allocated for a particular DLSCH at UE
    @param dlsch Pointer to DLSCH to be removed
*/
void free_ue_dlsch(LTE_UE_DLSCH_t *dlsch);

76 77 78 79 80 81 82 83 84 85
/** \fn new_ue_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint32_t Nsoft,uint8_t abstraction_flag)
    \brief This function allocates structures for a particular DLSCH at eNB
    @returns Pointer to DLSCH to be removed
    @param Kmimo Kmimo factor from 36-212/36-213
    @param Mdlharq Maximum number of HARQ rounds (36-212/36-213)
    @param Nsoft Soft-LLR buffer size from UE-Category
    @params N_RB_DL total number of resource blocks (determine the operating BW)
    @param abstraction_flag Flag to indicate abstracted interface
*/
LTE_UE_DLSCH_t *new_ue_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint32_t Nsoft,uint8_t max_turbo_iterations,uint8_t N_RB_DL, uint8_t abstraction_flag);
86 87 88 89 90 91


void clean_eNb_ulsch(LTE_eNB_ULSCH_t *ulsch, uint8_t abstraction_flag);

void free_ue_ulsch(LTE_UE_ULSCH_t *ulsch);

92 93
LTE_eNB_ULSCH_t *new_eNB_ulsch(uint8_t Mdlharq,uint8_t max_turbo_iterations,uint8_t N_RB_UL, uint8_t abstraction_flag);

94 95
LTE_UE_ULSCH_t *new_ue_ulsch(uint8_t Mdlharq, unsigned char N_RB_UL, uint8_t abstraction_flag);

96
uint8_t ul_subframe2pdcch_alloc_subframe(LTE_DL_FRAME_PARMS *frame_parms,uint8_t n);
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121


/** \fn dlsch_encoding(uint8_t *input_buffer,
    LTE_DL_FRAME_PARMS *frame_parms,
    uint8_t num_pdcch_symbols,
    LTE_eNB_DLSCH_t *dlsch,
    int frame,
    uint8_t subframe)
    \brief This function performs a subset of the bit-coding functions for LTE as described in 36-212, Release 8.Support is limited to turbo-coded channels (DLSCH/ULSCH). The implemented functions are:
    - CRC computation and addition
    - Code block segmentation and sub-block CRC addition
    - Channel coding (Turbo coding)
    - Rate matching (sub-block interleaving, bit collection, selection and transmission
    - Code block concatenation
    @param input_buffer Pointer to input buffer for sub-frame
    @param frame_parms Pointer to frame descriptor structure
    @param num_pdcch_symbols Number of PDCCH symbols in this subframe
    @param dlsch Pointer to dlsch to be encoded
    @param frame Frame number
    @param subframe Subframe number
    @param rm_stats Time statistics for rate-matching
    @param te_stats Time statistics for turbo-encoding
    @param i_stats Time statistics for interleaving
    @returns status
*/
gauthier's avatar
gauthier committed
122
int32_t dlsch_encoding(uint8_t *a,
123 124 125 126 127 128 129 130
                       LTE_DL_FRAME_PARMS *frame_parms,
                       uint8_t num_pdcch_symbols,
                       LTE_eNB_DLSCH_t *dlsch,
                       int frame,
                       uint8_t subframe,
                       time_stats_t *rm_stats,
                       time_stats_t *te_stats,
                       time_stats_t *i_stats);
131 132

void dlsch_encoding_emul(PHY_VARS_eNB *phy_vars_eNB,
133 134
                         uint8_t *DLSCH_pdu,
                         LTE_eNB_DLSCH_t *dlsch);
135 136 137 138 139 140


// Functions below implement 36-211

/** \fn allocate_REs_in_RB(mod_sym_t **txdataF,
    uint32_t *jj,
141
    uint32_t *jj2,
142 143
    uint16_t re_offset,
    uint32_t symbol_offset,
144 145
    LTE_DL_eNB_HARQ_t *dlsch0_harq,
    LTE_DL_eNB_HARQ_t *dlsch1_harq,
146
    uint8_t pilots,
gauthier's avatar
gauthier committed
147
    int16_t amp,
148 149 150 151 152 153 154 155 156
    int16_t *qam_table_s,
    uint32_t *re_allocated,
    uint8_t skip_dc,
    uint8_t skip_half,
    uint8_t use2ndpilots,
    LTE_DL_FRAME_PARMS *frame_parms);

    \brief Fills RB with data
    \param txdataF pointer to output data (frequency domain signal)
157 158
    \param jj index to output (from CW 1)
    \param jj index to output (from CW 2)
159 160
    \param re_offset index of the first RE of the RB
    \param symbol_offset index to the OFDM symbol
161 162
    \param dlsch0_harq Pointer to Transport block 0 HARQ structure
    \param dlsch0_harq Pointer to Transport block 1 HARQ structure
163 164
    \param pilots =1 if symbol_offset is an OFDM symbol that contains pilots, 0 otherwise
    \param amp Amplitude for symbols
165 166
    \param qam_table_s0 pointer to scaled QAM table for Transport Block 0 (by rho_a or rho_b)
    \param qam_table_s1 pointer to scaled QAM table for Transport Block 1 (by rho_a or rho_b)
167 168 169 170 171 172 173
    \param re_allocated pointer to allocation counter
    \param skip_dc offset for positive RBs
    \param skip_half indicate that first or second half of RB must be skipped for PBCH/PSS/SSS
    \param use2ndpilots Set to use the pilots from antenna port 1 for PDSCH
    \param frame_parms Frame parameter descriptor
*/

174
int32_t allocate_REs_in_RB(LTE_DL_FRAME_PARMS *frame_parms,
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
                           mod_sym_t **txdataF,
                           uint32_t *jj,
                           uint32_t *jj2,
                           uint16_t re_offset,
                           uint32_t symbol_offset,
                           LTE_DL_eNB_HARQ_t *dlsch0_harq,
                           LTE_DL_eNB_HARQ_t *dlsch1_harq,
                           uint8_t pilots,
                           int16_t amp,
                           uint8_t precoder_index,
                           int16_t *qam_table_s0,
                           int16_t *qam_table_s1,
                           uint32_t *re_allocated,
                           uint8_t skip_dc,
                           uint8_t skip_half);
190

191

gauthier's avatar
gauthier committed
192 193
/** \fn int32_t dlsch_modulation(mod_sym_t **txdataF,
    int16_t amp,
194 195 196 197 198
    uint32_t sub_frame_offset,
    LTE_DL_FRAME_PARMS *frame_parms,
    uint8_t num_pdcch_symbols,
    LTE_eNB_DLSCH_t *dlsch);

199
    \brief This function is the top-level routine for generation of the sub-frame signal (frequency-domain) for DLSCH.
200 201 202 203 204
    @param txdataF Table of pointers for frequency-domain TX signals
    @param amp Amplitude of signal
    @param sub_frame_offset Offset of this subframe in units of subframes (usually 0)
    @param frame_parms Pointer to frame descriptor
    @param num_pdcch_symbols Number of PDCCH symbols in this subframe
205 206
    @param dlsch0 Pointer to Transport Block 0 DLSCH descriptor for this allocation
    @param dlsch1 Pointer to Transport Block 0 DLSCH descriptor for this allocation
207

208
*/
gauthier's avatar
gauthier committed
209
int32_t dlsch_modulation(mod_sym_t **txdataF,
210 211 212 213 214 215
                         int16_t amp,
                         uint32_t sub_frame_offset,
                         LTE_DL_FRAME_PARMS *frame_parms,
                         uint8_t num_pdcch_symbols,
                         LTE_eNB_DLSCH_t *dlsch0,
                         LTE_eNB_DLSCH_t *dlsch1);
216
/*
217
  \brief This function is the top-level routine for generation of the sub-frame signal (frequency-domain) for MCH.
218 219 220 221 222 223 224
  @param txdataF Table of pointers for frequency-domain TX signals
  @param amp Amplitude of signal
  @param subframe_offset Offset of this subframe in units of subframes (usually 0)
  @param frame_parms Pointer to frame descriptor
  @param dlsch Pointer to DLSCH descriptor for this allocation
*/
int mch_modulation(mod_sym_t **txdataF,
225 226 227 228
                   int16_t amp,
                   uint32_t subframe_offset,
                   LTE_DL_FRAME_PARMS *frame_parms,
                   LTE_eNB_DLSCH_t *dlsch);
229 230 231 232 233

/** \brief Top-level generation function for eNB TX of MBSFN
    @param phy_vars_eNB Pointer to eNB variables
    @param subframe Subframe for PMCH
    @param a Pointer to transport block
234
    @param abstraction_flag
235

236
*/
237
void generate_mch(PHY_VARS_eNB *phy_vars_eNB,int subframe,uint8_t *a,int abstraction_flag);
238 239 240 241

/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
    @param phy_vars_eNB Pointer to eNB variables
    @param mcs MCS for MBSFN
242 243
    @param ndi new data indicator
    @param rdvix
244
    @param abstraction_flag
245

246
*/
247
void fill_eNB_dlsch_MCH(PHY_VARS_eNB *phy_vars_eNB,int mcs,int ndi,int rvidx,int abstraction_flag);
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
    @param phy_vars_ue Pointer to UE variables
    @param mcs MCS for MBSFN
    @param eNB_id index of eNB in ue variables
*/
void fill_UE_dlsch_MCH(PHY_VARS_UE *phy_vars_ue,int mcs,int ndi,int rvidx,int eNB_id);

/** \brief Receiver processing for MBSFN, symbols can be done separately for time/CPU-scheduling purposes
    @param phy_vars_ue Pointer to UE variables
    @param eNB_id index of eNB in ue variables
    @param subframe Subframe index of PMCH
    @param symbol Symbol index on which to act
*/
int rx_pmch(PHY_VARS_UE *phy_vars_ue,
263 264 265
            unsigned char eNB_id,
            uint8_t subframe,
            unsigned char symbol);
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

/** \brief Dump OCTAVE/MATLAB files for PMCH debugging
    @param phy_vars_ue Pointer to UE variables
    @param eNB_id index of eNB in ue variables
    @param coded_bits_per_codeword G from 36.211
    @param subframe Index of subframe
    @returns 0 on success
*/
void dump_mch(PHY_VARS_UE *phy_vars_ue,uint8_t eNB_id,uint16_t coded_bits_per_codeword,int subframe);


/** \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals)
    for N subframes.
    @param phy_vars_eNB Pointer to eNB variables
    @param txdataF Table of pointers for frequency-domain TX signals
    @param amp Amplitude of signal
    @param N Number of sub-frames to generate
*/
void generate_pilots(PHY_VARS_eNB *phy_vars_eNB,
285 286 287
                     mod_sym_t **txdataF,
                     int16_t amp,
                     uint16_t N);
288 289 290 291 292 293 294 295 296

/**
   \brief This function generates the frequency-domain pilots (cell-specific downlink reference signals) for one slot only
   @param phy_vars_eNB Pointer to eNB variables
   @param txdataF Table of pointers for frequency-domain TX signals
   @param amp Amplitude of signal
   @param slot index (0..19)
   @param first_pilot_only (0 no)
*/
gauthier's avatar
gauthier committed
297
int32_t generate_pilots_slot(PHY_VARS_eNB *phy_vars_eNB,
298 299 300 301 302
                             mod_sym_t **txdataF,
                             int16_t amp,
                             uint16_t slot,
                             int first_pilot_only);

gauthier's avatar
gauthier committed
303
int32_t generate_mbsfn_pilot(PHY_VARS_eNB *phy_vars_eNB,
304 305 306
                             mod_sym_t **txdataF,
                             int16_t amp,
                             uint16_t subframe);
307

gauthier's avatar
gauthier committed
308
int32_t generate_pss(mod_sym_t **txdataF,
309 310 311 312
                     int16_t amp,
                     LTE_DL_FRAME_PARMS *frame_parms,
                     uint16_t l,
                     uint16_t Ns);
313

gauthier's avatar
gauthier committed
314
int32_t generate_pss_emul(PHY_VARS_eNB *phy_vars_eNB,uint8_t sect_id);
315

gauthier's avatar
gauthier committed
316
int32_t generate_sss(mod_sym_t **txdataF,
317 318 319 320
                     short amp,
                     LTE_DL_FRAME_PARMS *frame_parms,
                     unsigned short symbol,
                     unsigned short slot_offset);
321

gauthier's avatar
gauthier committed
322
int32_t generate_pbch(LTE_eNB_PBCH *eNB_pbch,
323 324 325 326 327
                      mod_sym_t **txdataF,
                      int32_t amp,
                      LTE_DL_FRAME_PARMS *frame_parms,
                      uint8_t *pbch_pdu,
                      uint8_t frame_mod4);
328

gauthier's avatar
gauthier committed
329
int32_t generate_pbch_emul(PHY_VARS_eNB *phy_vars_eNB,uint8_t *pbch_pdu);
330 331 332 333 334 335 336

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/QPSK reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
gauthier's avatar
gauthier committed
337
void qpsk_qpsk(int16_t *stream0_in,
338 339 340 341
               int16_t *stream1_in,
               int16_t *stream0_out,
               int16_t *rho01,
               int32_t length);
342 343 344 345 346 347 348 349 350 351 352 353

/** \brief This function perform LLR computation for dual-stream (QPSK/QPSK) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr*/
gauthier's avatar
gauthier committed
354
int32_t dlsch_qpsk_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
355 356 357 358 359 360 361 362 363
                            int32_t **rxdataF_comp,
                            int32_t **rxdataF_comp_i,
                            int32_t **rho_i,
                            int16_t *dlsch_llr,
                            uint8_t symbol,
                            uint8_t first_symbol_flag,
                            uint16_t nb_rb,
                            uint16_t pbch_pss_sss_adj,
                            int16_t **llr128p);
364 365 366 367 368 369 370 371

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/16QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
gauthier's avatar
gauthier committed
372 373
void qpsk_qam16(int16_t *stream0_in,
                int16_t *stream1_in,
374
                short *ch_mag_i,
gauthier's avatar
gauthier committed
375 376 377
                int16_t *stream0_out,
                int16_t *rho01,
                int32_t length);
378 379 380 381 382 383 384 385 386 387 388 389

/** \brief This function perform LLR computation for dual-stream (QPSK/16QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr*/
gauthier's avatar
gauthier committed
390
int32_t dlsch_qpsk_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
391 392 393 394 395 396 397 398 399 400
                             int32_t **rxdataF_comp,
                             int32_t **rxdataF_comp_i,
                             int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
                             int32_t **rho_i,
                             int16_t *dlsch_llr,
                             uint8_t symbol,
                             uint8_t first_symbol_flag,
                             uint16_t nb_rb,
                             uint16_t pbch_pss_sss_adj,
                             int16_t **llr128p);
401 402 403 404 405 406 407 408

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
gauthier's avatar
gauthier committed
409 410
void qpsk_qam64(int16_t *stream0_in,
                int16_t *stream1_in,
411
                short *ch_mag_i,
gauthier's avatar
gauthier committed
412 413 414
                int16_t *stream0_out,
                int16_t *rho01,
                int32_t length);
415 416 417 418 419 420 421 422 423 424 425 426

/** \brief This function perform LLR computation for dual-stream (QPSK/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr*/
gauthier's avatar
gauthier committed
427
int32_t dlsch_qpsk_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
428 429 430 431 432 433 434 435 436 437
                             int32_t **rxdataF_comp,
                             int32_t **rxdataF_comp_i,
                             int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
                             int32_t **rho_i,
                             int16_t *dlsch_llr,
                             uint8_t symbol,
                             uint8_t first_symbol_flag,
                             uint16_t nb_rb,
                             uint16_t pbch_pss_sss_adj,
                             int16_t **llr128p);
438 439 440 441 442 443 444 445 446 447 448 449 450 451


/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/QPSK reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam16_qpsk(short *stream0_in,
                short *stream1_in,
                short *ch_mag,
                short *stream0_out,
                short *rho01,
452
                int length);
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
/** \brief This function perform LLR computation for dual-stream (16QAM/QPSK) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
                         int **rxdataF_comp,
                         int **rxdataF_comp_i,
                         int **dl_ch_mag,   //|h_0|^2*(2/sqrt{10})
                         int **rho_i,
                         short *dlsch_llr,
                         unsigned char symbol,
                         unsigned char first_symbol_flag,
                         unsigned short nb_rb,
                         uint16_t pbch_pss_sss_adjust,
                         short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/16QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam16_qam16(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (16QAM/16QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,   //|h_0|^2*(2/sqrt{10})
                          int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam16_qam64(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (16QAM/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_16qam_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,   //|h_0|^2*(2/sqrt{10})
                          int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam64_qpsk(short *stream0_in,
                short *stream1_in,
                short *ch_mag,
                short *stream0_out,
                short *rho01,
                int length);

/** \brief This function perform LLR computation for dual-stream (64QAM/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
                         int **rxdataF_comp,
                         int **rxdataF_comp_i,
                         int **dl_ch_mag,
                         int **rho_i,
                         short *dlsch_llr,
                         unsigned char symbol,
                         unsigned char first_symbol_flag,
                         unsigned short nb_rb,
                         uint16_t pbch_pss_sss_adjust,
                         short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/16QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam64_qam16(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (64QAM/16QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,
                          int **dl_ch_mag_i,
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);

/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/64QAM reception.
    @param stream0_in Input from channel compensated (MR combined) stream 0
    @param stream1_in Input from channel compensated (MR combined) stream 1
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param stream0_out Output from LLR unit for stream0
    @param rho01 Cross-correlation between channels (MR combined)
    @param length in complex channel outputs*/
void qam64_qam64(short *stream0_in,
                 short *stream1_in,
                 short *ch_mag,
                 short *ch_mag_i,
                 short *stream0_out,
                 short *rho01,
                 int length);

/** \brief This function perform LLR computation for dual-stream (64QAM/64QAM) transmission.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param ch_mag   Input from scaled channel magnitude square of h0'*g0
    @param ch_mag_i Input from scaled channel magnitude square of h0'*g1
    @param rho_i Correlation between channel of signal and inteference
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
    @param first_symbol_flag flag to indicate this is the first symbol of the dlsch
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr16p pointer to pointer to symbol in dlsch_llr*/
int dlsch_64qam_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
                          int **rxdataF_comp,
                          int **rxdataF_comp_i,
                          int **dl_ch_mag,
                          int **dl_ch_mag_i,
                          int **rho_i,
                          short *dlsch_llr,
                          unsigned char symbol,
                          unsigned char first_symbol_flag,
                          unsigned short nb_rb,
                          uint16_t pbch_pss_sss_adjust,
                          short **llr16p);


/** \brief This function generates log-likelihood ratios (decoder input) for single-stream QPSK received waveforms.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param dlsch_llr llr output
    @param symbol OFDM symbol index in sub-frame
689
    @param first_symbol_flag
690 691 692 693
    @param nb_rb number of RBs for this allocation
    @param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
    @param llr128p pointer to pointer to symbol in dlsch_llr
*/
gauthier's avatar
gauthier committed
694
int32_t dlsch_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
695 696 697 698 699 700 701
                       int32_t **rxdataF_comp,
                       int16_t *dlsch_llr,
                       uint8_t symbol,
                       uint8_t first_symbol_flag,
                       uint16_t nb_rb,
                       uint16_t pbch_pss_sss_adj,
                       int16_t **llr128p);
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716

/**
   \brief This function generates log-likelihood ratios (decoder input) for single-stream 16QAM received waveforms
   @param frame_parms Frame descriptor structure
   @param rxdataF_comp Compensated channel output
   @param dlsch_llr llr output
   @param dl_ch_mag Squared-magnitude of channel in each resource element position corresponding to allocation and weighted for mid-point in 16QAM constellation
   @param symbol OFDM symbol index in sub-frame
   @param first_symbol_flag
   @param nb_rb number of RBs for this allocation
   @param pbch_pss_sss_adjust  Adjustment factor in RE for PBCH/PSS/SSS allocations
   @param llr128p pointer to pointer to symbol in dlsch_llr
*/

void dlsch_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
717 718 719 720 721 722 723 724
                     int32_t **rxdataF_comp,
                     int16_t *dlsch_llr,
                     int32_t **dl_ch_mag,
                     uint8_t symbol,
                     uint8_t first_symbol_flag,
                     uint16_t nb_rb,
                     uint16_t pbch_pss_sss_adjust,
                     int16_t **llr128p);
725 726 727 728 729 730 731 732 733 734 735 736 737 738

/**
   \brief This function generates log-likelihood ratios (decoder input) for single-stream 16QAM received waveforms
   @param frame_parms Frame descriptor structure
   @param rxdataF_comp Compensated channel output
   @param dlsch_llr llr output
   @param dl_ch_mag Squared-magnitude of channel in each resource element position corresponding to allocation, weighted by first mid-point of 64-QAM constellation
   @param dl_ch_magb Squared-magnitude of channel in each resource element position corresponding to allocation, weighted by second mid-point of 64-QAM constellation
   @param symbol OFDM symbol index in sub-frame
   @param first_symbol_flag
   @param nb_rb number of RBs for this allocation
   @param pbch_pss_sss_adjust PBCH/PSS/SSS RE adjustment (in REs)
*/
void dlsch_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
739 740 741 742 743 744 745 746 747
                     int32_t **rxdataF_comp,
                     int16_t *dlsch_llr,
                     int32_t **dl_ch_mag,
                     int32_t **dl_ch_magb,
                     uint8_t symbol,
                     uint8_t first_symbol_flag,
                     uint16_t nb_rb,
                     uint16_t pbch_pss_sss_adjust,
                     short **llr_save);
748 749

/** \fn dlsch_siso(LTE_DL_FRAME_PARMS *frame_parms,
gauthier's avatar
gauthier committed
750 751
    int32_t **rxdataF_comp,
    int32_t **rxdataF_comp_i,
752 753 754 755 756 757 758 759 760 761 762
    uint8_t l,
    uint16_t nb_rb)
    \brief This function does the first stage of llr computation for SISO, by just extracting the pilots, PBCH and primary/secondary synchronization sequences.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param l symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
*/

void dlsch_siso(LTE_DL_FRAME_PARMS *frame_parms,
763 764 765 766
                int32_t **rxdataF_comp,
                int32_t **rxdataF_comp_i,
                uint8_t l,
                uint16_t nb_rb);
767 768

/** \fn dlsch_alamouti(LTE_DL_FRAME_PARMS *frame_parms,
gauthier's avatar
gauthier committed
769 770 771
    int32_t **rxdataF_comp,
    int32_t **dl_ch_mag,
    int32_t **dl_ch_magb,
772 773 774 775 776 777 778 779 780 781 782
    uint8_t symbol,
    uint16_t nb_rb)
    \brief This function does Alamouti combining on RX and prepares LLR inputs by skipping pilots, PBCH and primary/secondary synchronization signals.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param symbol Symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
*/
void dlsch_alamouti(LTE_DL_FRAME_PARMS *frame_parms,
783 784 785 786 787
                    int32_t **rxdataF_comp,
                    int32_t **dl_ch_mag,
                    int32_t **dl_ch_magb,
                    uint8_t symbol,
                    uint16_t nb_rb);
788 789

/** \fn dlsch_antcyc(LTE_DL_FRAME_PARMS *frame_parms,
gauthier's avatar
gauthier committed
790 791 792
    int32_t **rxdataF_comp,
    int32_t **dl_ch_mag,
    int32_t **dl_ch_magb,
793 794 795 796 797 798 799 800 801 802 803
    uint8_t symbol,
    uint16_t nb_rb)
    \brief This function does antenna selection (based on antenna cycling pattern) on RX and prepares LLR inputs by skipping pilots, PBCH and primary/secondary synchronization signals.  Note that this is not LTE, it is just included for comparison purposes.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param symbol Symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
*/
void dlsch_antcyc(LTE_DL_FRAME_PARMS *frame_parms,
804 805 806 807 808
                  int32_t **rxdataF_comp,
                  int32_t **dl_ch_mag,
                  int32_t **dl_ch_magb,
                  uint8_t symbol,
                  uint16_t nb_rb);
809 810

/** \fn dlsch_detection_mrc(LTE_DL_FRAME_PARMS *frame_parms,
gauthier's avatar
gauthier committed
811 812 813 814 815 816
    int32_t **rxdataF_comp,
    int32_t **rxdataF_comp_i,
    int32_t **rho,
    int32_t **rho_i,
    int32_t **dl_ch_mag,
    int32_t **dl_ch_magb,
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
    uint8_t symbol,
    uint16_t nb_rb,
    uint8_t dual_stream_UE)

    \brief This function does maximal-ratio combining for dual-antenna receivers.
    @param frame_parms Frame descriptor structure
    @param rxdataF_comp Compensated channel output
    @param rxdataF_comp_i Compensated channel output for interference
    @param rho Cross correlation between spatial channels
    @param rho_i Cross correlation between signal and inteference channels
    @param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation.  Alamouti combining should be performed on this as well. Result is stored in first antenna position
    @param symbol Symbol in sub-frame
    @param nb_rb Number of RBs in this allocation
    @param dual_stream_UE Flag to indicate dual-stream detection
*/
void dlsch_detection_mrc(LTE_DL_FRAME_PARMS *frame_parms,
834 835 836 837 838 839 840 841 842 843 844
                         int32_t **rxdataF_comp,
                         int32_t **rxdataF_comp_i,
                         int32_t **rho,
                         int32_t **rho_i,
                         int32_t **dl_ch_mag,
                         int32_t **dl_ch_magb,
                         int32_t **dl_ch_mag_i,
                         int32_t **dl_ch_magb_i,
                         uint8_t symbol,
                         uint16_t nb_rb,
                         uint8_t dual_stream_UE);
845

gauthier's avatar
gauthier committed
846 847 848 849
/** \fn dlsch_extract_rbs_single(int32_t **rxdataF,
    int32_t **dl_ch_estimates,
    int32_t **rxdataF_ext,
    int32_t **dl_ch_estimates_ext,
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
    uint16_t pmi,
    uint8_t *pmi_ext,
    uint32_t *rb_alloc,
    uint8_t symbol,
    uint8_t subframe,
    LTE_DL_FRAME_PARMS *frame_parms)
    \brief This function extracts the received resource blocks, both channel estimates and data symbols,
    for the current allocation and for single antenna eNB transmission.
    @param rxdataF Raw FFT output of received signal
    @param dl_ch_estimates Channel estimates of current slot
    @param rxdataF_ext FFT output for RBs in this allocation
    @param dl_ch_estimates_ext Channel estimates for RBs in this allocation
    @param pmi subband Precoding matrix indicator
    @param pmi_ext Extracted PMI for chosen RBs
    @param rb_alloc RB allocation vector
    @param symbol Symbol to extract
    @param subframe Subframe number
867
    @param vrb_type Flag to indicate distributed VRB type
868
    @param high_speed_flag
869 870
    @param frame_parms Pointer to frame descriptor
*/
gauthier's avatar
gauthier committed
871
uint16_t dlsch_extract_rbs_single(int32_t **rxdataF,
872 873 874 875 876 877 878 879 880 881
                                  int32_t **dl_ch_estimates,
                                  int32_t **rxdataF_ext,
                                  int32_t **dl_ch_estimates_ext,
                                  uint16_t pmi,
                                  uint8_t *pmi_ext,
                                  uint32_t *rb_alloc,
                                  uint8_t symbol,
                                  uint8_t subframe,
                                  uint32_t high_speed_flag,
                                  LTE_DL_FRAME_PARMS *frame_parms);
882

gauthier's avatar
gauthier committed
883 884 885 886
/** \fn dlsch_extract_rbs_dual(int32_t **rxdataF,
    int32_t **dl_ch_estimates,
    int32_t **rxdataF_ext,
    int32_t **dl_ch_estimates_ext,
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
    uint16_t pmi,
    uint8_t *pmi_ext,
    uint32_t *rb_alloc,
    uint8_t symbol,
    LTE_DL_FRAME_PARMS *frame_parms)
    \brief This function extracts the received resource blocks, both channel estimates and data symbols,
    for the current allocation and for dual antenna eNB transmission.
    @param rxdataF Raw FFT output of received signal
    @param dl_ch_estimates Channel estimates of current slot
    @param rxdataF_ext FFT output for RBs in this allocation
    @param dl_ch_estimates_ext Channel estimates for RBs in this allocation
    @param pmi subband Precoding matrix indicator
    @param pmi_ext Extracted PMI for chosen RBs
    @param rb_alloc RB allocation vector
    @param symbol Symbol to extract
    @param subframe Subframe index
903
    @param high_speed_flag
904 905
    @param frame_parms Pointer to frame descriptor
*/
gauthier's avatar
gauthier committed
906
uint16_t dlsch_extract_rbs_dual(int32_t **rxdataF,
907 908 909 910 911 912 913 914 915 916
                                int32_t **dl_ch_estimates,
                                int32_t **rxdataF_ext,
                                int32_t **dl_ch_estimates_ext,
                                uint16_t pmi,
                                uint8_t *pmi_ext,
                                uint32_t *rb_alloc,
                                uint8_t symbol,
                                uint8_t subframe,
                                uint32_t high_speed_flag,
                                LTE_DL_FRAME_PARMS *frame_parms);
917 918 919 920 921 922

/** \brief This function performs channel compensation (matched filtering) on the received RBs for this allocation.  In addition, it computes the squared-magnitude of the channel with weightings for 16QAM/64QAM detection as well as dual-stream detection (cross-correlation)
    @param rxdataF_ext Frequency-domain received signal in RBs to be demodulated
    @param dl_ch_estimates_ext Frequency-domain channel estimates in RBs to be demodulated
    @param dl_ch_mag First Channel magnitudes (16QAM/64QAM)
    @param dl_ch_magb Second weighted Channel magnitudes (64QAM)
923
    @param rxdataF_comp Compensated received waveform
924 925 926 927 928 929 930 931 932
    @param rho Cross-correlation between two spatial channels on each RX antenna
    @param frame_parms Pointer to frame descriptor
    @param symbol Symbol on which to operate
    @param first_symbol_flag set to 1 on first DLSCH symbol
    @param mod_order Modulation order of allocation
    @param nb_rb Number of RBs in allocation
    @param output_shift Rescaling for compensated output (should be energy-normalizing)
    @param phy_measurements Pointer to UE PHY measurements
*/
gauthier's avatar
gauthier committed
933
void dlsch_channel_compensation(int32_t **rxdataF_ext,
934 935 936 937 938 939 940 941 942 943 944 945
                                int32_t **dl_ch_estimates_ext,
                                int32_t **dl_ch_mag,
                                int32_t **dl_ch_magb,
                                int32_t **rxdataF_comp,
                                int32_t **rho,
                                LTE_DL_FRAME_PARMS *frame_parms,
                                uint8_t symbol,
                                uint8_t first_symbol_flag,
                                uint8_t mod_order,
                                uint16_t nb_rb,
                                uint8_t output_shift,
                                PHY_MEASUREMENTS *phy_measurements);
946 947 948 949 950 951 952 953 954

void dlsch_dual_stream_correlation(LTE_DL_FRAME_PARMS *frame_parms,
                                   unsigned char symbol,
                                   unsigned short nb_rb,
                                   int **dl_ch_estimates_ext,
                                   int **dl_ch_estimates_ext_i,
                                   int **dl_ch_rho_ext,
                                   unsigned char output_shift);

955
void dlsch_channel_compensation_TM56(int **rxdataF_ext,
956 957 958 959 960 961 962 963 964 965 966 967 968
                                     int **dl_ch_estimates_ext,
                                     int **dl_ch_mag,
                                     int **dl_ch_magb,
                                     int **rxdataF_comp,
                                     unsigned char *pmi_ext,
                                     LTE_DL_FRAME_PARMS *frame_parms,
                                     PHY_MEASUREMENTS *phy_measurements,
                                     int eNB_id,
                                     unsigned char symbol,
                                     unsigned char mod_order,
                                     unsigned short nb_rb,
                                     unsigned char output_shift,
                                     unsigned char dl_power_off);
969

970
void dlsch_channel_compensation_TM3(LTE_DL_FRAME_PARMS *frame_parms,
971 972 973 974 975 976 977 978 979
                                    LTE_UE_PDSCH *lte_ue_pdsch_vars,
                                    PHY_MEASUREMENTS *phy_measurements,
                                    int eNB_id,
                                    unsigned char symbol,
                                    unsigned char mod_order0,
                                    unsigned char mod_order1,
                                    int round,
                                    unsigned short nb_rb,
                                    unsigned char output_shift);
980 981


982 983 984 985 986 987 988
/** \brief This function computes the average channel level over all allocated RBs and antennas (TX/RX) in order to compute output shift for compensated signal
    @param dl_ch_estimates_ext Channel estimates in allocated RBs
    @param frame_parms Pointer to frame descriptor
    @param avg Pointer to average signal strength
    @param pilots_flag Flag to indicate pilots in symbol
    @param nb_rb Number of allocated RBs
*/
gauthier's avatar
gauthier committed
989
void dlsch_channel_level(int32_t **dl_ch_estimates_ext,
990 991 992 993
                         LTE_DL_FRAME_PARMS *frame_parms,
                         int32_t *avg,
                         uint8_t pilots_flag,
                         uint16_t nb_rb);
994

995
void dlsch_channel_level_TM3(int **dl_ch_estimates_ext,
996 997 998 999
                             LTE_DL_FRAME_PARMS *frame_parms,
                             int *avg,
                             uint8_t symbol,
                             unsigned short nb_rb);
1000 1001

void dlsch_channel_level_TM56(int32_t **dl_ch_estimates_ext,
1002 1003
                              LTE_DL_FRAME_PARMS *frame_parms,
                              unsigned char *pmi_ext,
gauthier's avatar
gauthier committed
1004
                              int32_t *avg,
1005 1006 1007
                              uint8_t symbol_mod,
                              uint16_t nb_rb);

gauthier's avatar
gauthier committed
1008
void dlsch_scale_channel(int32_t **dl_ch_estimates_ext,
1009 1010 1011 1012 1013 1014
                         LTE_DL_FRAME_PARMS *frame_parms,
                         LTE_UE_DLSCH_t **dlsch_ue,
                         uint8_t symbol_mod,
                         uint16_t nb_rb);

/** \brief This is the top-level entry point for DLSCH decoding in UE.  It should be replicated on several
1015
    threads (on multi-core machines) corresponding to different HARQ processes. The routine first
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
    computes the segmentation information, followed by rate dematching and sub-block deinterleaving the of the
    received LLRs computed by dlsch_demodulation for each transport block segment. It then calls the
    turbo-decoding algorithm for each segment and stops after either after unsuccesful decoding of at least
    one segment or correct decoding of all segments.  Only the segment CRCs are check for the moment, the
    overall CRC is ignored.  Finally transport block reassembly is performed.
    @param phy_vars_ue Pointer to ue variables
    @param dlsch_llr Pointer to LLR values computed by dlsch_demodulation
    @param lte_frame_parms Pointer to frame descriptor
    @param dlsch Pointer to DLSCH descriptor
    @param subframe Subframe number
    @param num_pdcch_symbols Number of PDCCH symbols
    @param is_crnti indicates if PDSCH belongs to a CRNTI (necessary for parallelizing decoding threads)
    @param llr8_flag If 1, indicate that the 8-bit turbo decoder should be used
    @returns 0 on success, 1 on unsuccessful decoding
*/
uint32_t dlsch_decoding(PHY_VARS_UE *phy_vars_ue,
1032 1033 1034 1035 1036 1037 1038 1039
                        int16_t *dlsch_llr,
                        LTE_DL_FRAME_PARMS *lte_frame_parms,
                        LTE_UE_DLSCH_t *dlsch,
                        LTE_DL_UE_HARQ_t *harq_process,
                        uint8_t subframe,
                        uint8_t harq_pid,
                        uint8_t is_crnti,
                        uint8_t llr8_flag);
1040 1041

uint32_t dlsch_decoding_emul(PHY_VARS_UE *phy_vars_ue,
1042 1043 1044
                             uint8_t subframe,
                             uint8_t dlsch_id,
                             uint8_t eNB_id);
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

/** \brief This function is the top-level entry point to PDSCH demodulation, after frequency-domain transformation and channel estimation.  It performs
    - RB extraction (signal and channel estimates)
    - channel compensation (matched filtering)
    - RE extraction (pilot, PBCH, synch. signals)
    - antenna combining (MRC, Alamouti, cycling)
    - LLR computation
    @param phy_vars_ue Pointer to PHY variables
    @param type Type of PDSCH (SI_PDSCH,RA_PDSCH,PDSCH,PMCH)
    @param eNB_id eNb index (Nid1) 0,1,2
    @param eNB_id_i Interfering eNB index (Nid1) 0,1,2, or 3 in case of MU-MIMO IC receiver
    @param subframe Subframe number
    @param symbol Symbol on which to act (within sub-frame)
    @param first_symbol_flag set to 1 on first DLSCH symbol
    @param dual_stream_UE Flag to indicate dual-stream interference cancellation
    @param i_mod Modulation order of the interfering stream
*/
gauthier's avatar
gauthier committed
1062
int32_t rx_pdsch(PHY_VARS_UE *phy_vars_ue,
1063 1064 1065 1066 1067 1068 1069 1070 1071
                 PDSCH_t type,
                 uint8_t eNB_id,
                 uint8_t eNB_id_i,
                 uint8_t subframe,
                 uint8_t symbol,
                 uint8_t first_symbol_flag,
                 uint8_t dual_stream_UE,
                 uint8_t i_mod,
                 uint8_t harq_pid);
1072

gauthier's avatar
gauthier committed
1073
int32_t rx_pdcch(LTE_UE_COMMON *lte_ue_common_vars,
1074 1075 1076 1077 1078 1079 1080
                 LTE_UE_PDCCH **lte_ue_pdcch_vars,
                 LTE_DL_FRAME_PARMS *frame_parms,
                 uint8_t subframe,
                 uint8_t eNB_id,
                 MIMO_mode_t mimo_mode,
                 uint32_t high_speed_flag,
                 uint8_t is_secondary_ue);
1081 1082 1083 1084 1085 1086 1087 1088
/*! \brief Performs detection of SSS to find cell ID and other framing parameters (FDD/TDD, normal/extended prefix)
  @param phy_vars_ue Pointer to UE variables
  @param tot_metric Pointer to variable containing maximum metric under framing hypothesis (to be compared to other hypotheses
  @param flip_max Pointer to variable indicating if start of frame is in second have of RX buffer (i.e. PSS/SSS is flipped)
  @param phase_max Pointer to variable (0 ... 6) containing rought phase offset between PSS and SSS (can be used for carrier
  frequency adjustment. 0 means -pi/3, 6 means pi/3.
  @returns 0 on success
*/
gauthier's avatar
gauthier committed
1089
int rx_sss(PHY_VARS_UE *phy_vars_ue,int32_t *tot_metric,uint8_t *flip_max,uint8_t *phase_max);
1090 1091 1092 1093 1094

/*! \brief receiver for the PBCH
  \returns number of tx antennas or -1 if error
*/
uint16_t rx_pbch(LTE_UE_COMMON *lte_ue_common_vars,
1095 1096 1097 1098 1099 1100
                 LTE_UE_PBCH *lte_ue_pbch_vars,
                 LTE_DL_FRAME_PARMS *frame_parms,
                 uint8_t eNB_id,
                 MIMO_mode_t mimo_mode,
                 uint32_t high_speed_flag,
                 uint8_t frame_mod4);
1101 1102

uint16_t rx_pbch_emul(PHY_VARS_UE *phy_vars_ue,
1103 1104
                      uint8_t eNB_id,
                      uint8_t pbch_phase);
1105 1106 1107 1108

/*! \brief PBCH scrambling. Applies 36.211 PBCH scrambling procedure.
  \param frame_parms Pointer to frame descriptor
  \param coded_data Output of the coding and rate matching
1109
  \param length Length of the sequence*/
1110
void pbch_scrambling(LTE_DL_FRAME_PARMS *frame_parms,
1111 1112
                     uint8_t* coded_data,
                     uint32_t length);
1113 1114 1115 1116 1117 1118

/*! \brief PBCH unscrambling
  This is similar to pbch_scrabling with the difference that inputs are signed s16s (llr values) and instead of flipping bits we change signs.
  \param frame_parms Pointer to frame descriptor
  \param llr Output of the demodulator
  \param length Length of the sequence
1119
  \param frame_mod4 Frame number modulo 4*/
1120
void pbch_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
1121 1122 1123
                       int8_t* llr,
                       uint32_t length,
                       uint8_t frame_mod4);
1124 1125 1126 1127 1128 1129

/*! \brief DCI Encoding. This routine codes an arbitrary DCI PDU after appending the 8-bit 3GPP CRC.  It then applied sub-block interleaving and rate matching.
  \param a Pointer to DCI PDU (coded in bytes)
  \param A Length of DCI PDU in bits
  \param E Length of DCI PDU in coded bits
  \param e Pointer to sequence
1130
  \param rnti RNTI for CRC scrambling*/
1131
void dci_encoding(uint8_t *a,
1132 1133 1134 1135
                  uint8_t A,
                  uint16_t E,
                  uint8_t *e,
                  uint16_t rnti);
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

/*! \brief Top-level DCI entry point. This routine codes an set of DCI PDUs and performs PDCCH modulation, interleaving and mapping.
  \param num_ue_spec_dci  Number of UE specific DCI pdus to encode
  \param num_common_dci Number of Common DCI pdus to encode
  \param dci_alloc Allocation vectors for each DCI pdu
  \param n_rnti n_RNTI (see )
  \param amp Amplitude of QPSK symbols
  \param frame_parms Pointer to DL Frame parameter structure
  \param txdataF Pointer to tx signal buffers
  \param sub_frame_offset subframe offset in frame
  @returns Number of PDCCH symbols
1147
*/
1148
uint8_t generate_dci_top(uint8_t num_ue_spec_dci,
1149 1150 1151 1152 1153 1154 1155
                         uint8_t num_common_dci,
                         DCI_ALLOC_t *dci_alloc,
                         uint32_t n_rnti,
                         int16_t amp,
                         LTE_DL_FRAME_PARMS *frame_parms,
                         mod_sym_t **txdataF,
                         uint32_t sub_frame_offset);
1156 1157

uint8_t generate_dci_top_emul(PHY_VARS_eNB *phy_vars_eNB,
1158 1159 1160 1161
                              uint8_t num_ue_spec_dci,
                              uint8_t num_common_dci,
                              DCI_ALLOC_t *dci_alloc,
                              uint8_t subframe);
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173


void generate_64qam_table(void);
void generate_16qam_table(void);

uint16_t extract_crc(uint8_t *dci,uint8_t DCI_LENGTH);

/*! \brief LLR from two streams. This function takes two streams (qpsk modulated) and calculates the LLR, considering one stream as interference.
  \param stream0_in pointer to first stream0
  \param stream1_in pointer to first stream1
  \param stream0_out pointer to output stream
  \param rho01 pointer to correlation matrix
1174
  \param length*/
1175
void qpsk_qpsk_TM3456(short *stream0_in,
1176 1177 1178 1179 1180
                      short *stream1_in,
                      short *stream0_out,
                      short *rho01,
                      int length
                     );
1181 1182 1183 1184 1185 1186 1187 1188

/** \brief Attempt decoding of a particular DCI with given length and format.
    @param DCI_LENGTH length of DCI in bits
    @param DCI_FMT Format of DCI
    @param e e-sequence (soft bits)
    @param decoded_output Output of Viterbi decoder
*/
void dci_decoding(uint8_t DCI_LENGTH,
1189 1190 1191
                  uint8_t DCI_FMT,
                  int8_t *e,
                  uint8_t *decoded_output);
1192 1193 1194 1195 1196

/** \brief Do 36.213 DCI decoding procedure by searching different RNTI options and aggregation levels.  Currently does
    not employ the complexity reducing procedure based on RNTI.
    @param phy_vars_ue UE variables
    @param dci_alloc Pointer to DCI_ALLOC_t array to store results for DLSCH/ULSCH programming
1197
    @param do_common If 1 perform search in common search-space else ue-specific search-space
1198 1199 1200 1201 1202
    @param eNB_id eNB Index on which to act
    @param subframe Index of subframe
    @returns bitmap of occupied CCE positions (i.e. those detected)
*/
uint16_t dci_decoding_procedure(PHY_VARS_UE *phy_vars_ue,
1203 1204 1205 1206
                                DCI_ALLOC_t *dci_alloc,
                                int do_common,
                                int16_t eNB_id,
                                uint8_t subframe);
1207 1208 1209


uint16_t dci_decoding_procedure_emul(LTE_UE_PDCCH **lte_ue_pdcch_vars,
1210 1211 1212 1213 1214
                                     uint8_t num_ue_spec_dci,
                                     uint8_t num_common_dci,
                                     DCI_ALLOC_t *dci_alloc_tx,
                                     DCI_ALLOC_t *dci_alloc_rx,
                                     int16_t eNB_id);
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

/** \brief Compute Q (modulation order) based on I_MCS PDSCH.  Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS */
uint8_t get_Qm(uint8_t I_MCS);

/** \brief Compute Q (modulation order) based on I_MCS for PUSCH.  Implements table 8.6.1-1 from 36.213.
    @param I_MCS */
uint8_t get_Qm_ul(uint8_t I_MCS);

/** \brief Compute I_TBS (transport-block size) based on I_MCS for PDSCH.  Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS */
uint8_t get_I_TBS(uint8_t I_MCS);

/** \brief Compute I_TBS (transport-block size) based on I_MCS for PUSCH.  Implements table 8.6.1-1 from 36.213.
    @param I_MCS */
unsigned char get_I_TBS_UL(unsigned char I_MCS);

/** \brief Compute Q (modulation order) based on downlink I_MCS. Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS
    @param nb_rb
    @return Transport block size */
1236
uint32_t get_TBS_DL(uint8_t mcs, uint16_t nb_rb);
1237 1238 1239 1240 1241

/** \brief Compute Q (modulation order) based on uplink I_MCS. Implements table 7.1.7.1-1 from 36.213.
    @param I_MCS
    @param nb_rb
    @return Transport block size */
1242
uint32_t get_TBS_UL(uint8_t mcs, uint16_t nb_rb);
1243 1244

/* \brief Return bit-map of resource allocation for a given DCI rballoc (RIV format) and vrb type
1245 1246 1247 1248 1249 1250 1251 1252
   @param N_RB_DL number of PRB on DL
   @param indicator for even/odd slot
   @param vrb vrb index
   @param Ngap Gap indicator
*/
uint32_t get_prb(int N_RB_DL,int odd_slot,int vrb,int Ngap);

/* \brief Return prb for a given vrb index 
1253 1254 1255
   @param vrb_type VRB type (0=localized,1=distributed)
   @param rb_alloc_dci rballoc field from DCI
*/
1256
uint32_t get_rballoc(vrb_t vrb_type,uint16_t rb_alloc_dci);
1257

1258

1259 1260 1261
/* \brief Return bit-map of resource allocation for a given DCI rballoc (RIV format) and vrb type
   @returns Transmission mode (1-7)
*/
1262
uint8_t get_transmission_mode(module_id_t Mod_id, uint8_t CC_id, rnti_t rnti);
1263

1264

1265
/* \brief
1266
   @param ra_header Header of resource allocation (0,1) (See sections 7.1.6.1/7.1.6.2 of 36.213 Rel8.6)
1267
   @param rb_alloc Bitmap allocation from DCI (format 1,2)
1268 1269 1270 1271
   @returns number of physical resource blocks
*/
uint32_t conv_nprb(uint8_t ra_header,uint32_t rb_alloc,int N_RB_DL);

knopp's avatar
 
knopp committed
1272
int get_G(LTE_DL_FRAME_PARMS *frame_parms,uint16_t nb_rb,uint32_t *rb_alloc,uint8_t mod_order,uint8_t Nl,uint8_t num_pdcch_symbols,int frame,uint8_t subframe);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298

int adjust_G(LTE_DL_FRAME_PARMS *frame_parms,uint32_t *rb_alloc,uint8_t mod_order,uint8_t subframe);
int adjust_G2(LTE_DL_FRAME_PARMS *frame_parms,uint32_t *rb_alloc,uint8_t mod_order,uint8_t subframe,uint8_t symbol);


#ifndef modOrder
#define modOrder(I_MCS,I_TBS) ((I_MCS-I_TBS)*2+2) // Find modulation order from I_TBS and I_MCS
#endif

/** \fn uint8_t I_TBS2I_MCS(uint8_t I_TBS);
    \brief This function maps I_tbs to I_mcs according to Table 7.1.7.1-1 in 3GPP TS 36.213 V8.6.0. Where there is two supported modulation orders for the same I_TBS then either high or low modulation is chosen by changing the equality of the two first comparisons in the if-else statement.
    \param I_TBS Index of Transport Block Size
    \return I_MCS given I_TBS
*/
uint8_t I_TBS2I_MCS(uint8_t I_TBS);

/** \fn uint8_t SE2I_TBS(float SE,
    uint8_t N_PRB,
    uint8_t symbPerRB);
    \brief This function maps a requested throughput in number of bits to I_tbs. The throughput is calculated as a function of modulation order, RB allocation and number of symbols per RB. The mapping orginates in the "Transport block size table" (Table 7.1.7.2.1-1 in 3GPP TS 36.213 V8.6.0)
    \param SE Spectral Efficiency (before casting to integer, multiply by 1024, remember to divide result by 1024!)
    \param N_PRB Number of PhysicalResourceBlocks allocated \sa lte_frame_parms->N_RB_DL
    \param symbPerRB Number of symbols per resource block allocated to this channel
    \return I_TBS given an SE and an N_PRB
*/
uint8_t SE2I_TBS(float SE,
1299 1300
                 uint8_t N_PRB,
                 uint8_t symbPerRB);
1301 1302 1303 1304 1305 1306
/** \brief This function generates the sounding reference symbol (SRS) for the uplink according to 36.211 v8.6.0. If IFFT_FPGA is defined, the SRS is quantized to a QPSK sequence.
    @param frame_parms LTE DL Frame Parameters
    @param soundingrs_ul_config_dedicated Dynamic configuration from RRC during Connection Establishment
    @param txdataF pointer to the frequency domain TX signal
    @returns 0 on success*/
int generate_srs_rx(LTE_DL_FRAME_PARMS *frame_parms,
1307 1308
                    SOUNDINGRS_UL_CONFIG_DEDICATED *soundingrs_ul_config_dedicated,
                    int *txdataF);
1309

gauthier's avatar
gauthier committed
1310
int32_t generate_srs_tx_emul(PHY_VARS_UE *phy_vars_ue,
1311
                             uint8_t subframe);
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

/*!
  \brief This function is similar to generate_srs_tx but generates a conjugate sequence for channel estimation. If IFFT_FPGA is defined, the SRS is quantized to a QPSK sequence.
  @param phy_vars_ue Pointer to PHY_VARS structure
  @param eNB_id Index of destination eNB for this SRS
  @param amp Linear amplitude of SRS
  @param subframe Index of subframe on which to act
  @returns 0 on success, -1 on error with message
*/

gauthier's avatar
gauthier committed
1322
int32_t generate_srs_tx(PHY_VARS_UE *phy_vars_ue,
1323 1324 1325
                        uint8_t eNB_id,
                        int16_t amp,
                        uint32_t subframe);
1326 1327 1328 1329 1330

/*!
  \brief This function generates the downlink reference signal for the PUSCH according to 36.211 v8.6.0. The DRS occuies the RS defined by rb_alloc and the symbols 2 and 8 for extended CP and 3 and 10 for normal CP.
*/

gauthier's avatar
gauthier committed
1331
int32_t generate_drs_pusch(PHY_VARS_UE *phy_vars_ue,
1332 1333 1334 1335 1336 1337
                           uint8_t eNB_id,
                           int16_t amp,
                           uint32_t subframe,
                           uint32_t first_rb,
                           uint32_t nb_rb,
                           uint8_t ant);
1338 1339 1340 1341 1342 1343

/*!
  \brief This function initializes the Group Hopping, Sequence Hopping and nPRS sequences for PUCCH/PUSCH according to 36.211 v8.6.0. It should be called after configuration of UE (reception of SIB2/3) and initial configuration of eNB (or after reconfiguration of cell-specific parameters).
  @param frame_parms Pointer to a LTE_DL_FRAME_PARMS structure (eNB or UE)*/
void init_ul_hopping(LTE_DL_FRAME_PARMS *frame_parms);

gauthier's avatar
gauthier committed
1344
int32_t compareints (const void * a, const void * b);
1345 1346 1347


void ulsch_modulation(mod_sym_t **txdataF,
1348 1349 1350 1351 1352
                      int16_t amp,
                      frame_t frame,
                      uint32_t subframe,
                      LTE_DL_FRAME_PARMS *frame_parms,
                      LTE_UE_ULSCH_t *ulsch);
1353 1354


gauthier's avatar
gauthier committed
1355
void ulsch_extract_rbs_single(int32_t **rxdataF,
1356 1357 1358 1359 1360 1361
                              int32_t **rxdataF_ext,
                              uint32_t first_rb,
                              uint32_t nb_rb,
                              uint8_t l,
                              uint8_t Ns,
                              LTE_DL_FRAME_PARMS *frame_parms);
1362

gauthier's avatar
gauthier committed
1363
uint8_t subframe2harq_pid(LTE_DL_FRAME_PARMS *frame_parms,frame_t frame,uint8_t subframe);
1364 1365
uint8_t subframe2harq_pid_eNBrx(LTE_DL_FRAME_PARMS *frame_parms,uint8_t subframe);

1366 1367
int generate_ue_dlsch_params_from_dci(int frame,
				      uint8_t subframe,
1368
                                      void *dci_pdu,
gauthier's avatar
gauthier committed
1369
                                      rnti_t rnti,
1370 1371 1372 1373 1374 1375 1376 1377
                                      DCI_format_t dci_format,
                                      LTE_UE_DLSCH_t **dlsch,
                                      LTE_DL_FRAME_PARMS *frame_parms,
                                      PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
                                      uint16_t si_rnti,
                                      uint16_t ra_rnti,
                                      uint16_t p_rnti);

1378 1379
int32_t generate_eNB_dlsch_params_from_dci(int frame,
    uint8_t subframe,
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
    void *dci_pdu,
    rnti_t rnti,
    DCI_format_t dci_format,
    LTE_eNB_DLSCH_t **dlsch_eNB,
    LTE_DL_FRAME_PARMS *frame_parms,
    PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
    uint16_t si_rnti,
    uint16_t ra_rnti,
    uint16_t p_rnti,
    uint16_t DL_pmi_single);
1390

gauthier's avatar
gauthier committed
1391
int32_t generate_eNB_ulsch_params_from_rar(uint8_t *rar_pdu,
1392 1393 1394 1395
    frame_t frame,
    uint8_t subframe,
    LTE_eNB_ULSCH_t *ulsch,
    LTE_DL_FRAME_PARMS *frame_parms);
1396 1397

int generate_ue_ulsch_params_from_dci(void *dci_pdu,