lte_ul_channel_estimation.c 40.8 KB
Newer Older
ghaddab's avatar
ghaddab committed
1
/*******************************************************************************
2
    OpenAirInterface
ghaddab's avatar
ghaddab committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
17
18
    along with OpenAirInterface.The full GNU General Public License is
   included in this distribution in the file called "COPYING". If not,
ghaddab's avatar
ghaddab committed
19
20
21
22
23
   see <http://www.gnu.org/licenses/>.

  Contact Information
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
24
  OpenAirInterface Dev  : openair4g-devel@lists.eurecom.fr
25

ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
ghaddab's avatar
ghaddab committed
27
28

 *******************************************************************************/
29
30
#include "PHY/defs.h"
#include "PHY/extern.h"
31
#include "PHY/sse_intrin.h"
32
33
//#define DEBUG_CH

34
#include "T.h"
35
36

// For Channel Estimation in Distributed Alamouti Scheme
gauthier's avatar
gauthier committed
37
38
39
40
41
//static int16_t temp_out_ifft[2048*4] __attribute__((aligned(16)));
static int16_t temp_out_fft_0[2048*4] __attribute__((aligned(16)));
static int16_t temp_out_fft_1[2048*4] __attribute__((aligned(16)));
static int16_t temp_out_ifft_0[2048*4] __attribute__((aligned(16)));
static int16_t temp_out_ifft_1[2048*4] __attribute__((aligned(16)));
42
43


gauthier's avatar
gauthier committed
44
45
46
47
static int32_t temp_in_ifft_0[2048*2] __attribute__((aligned(16)));
static int32_t temp_in_ifft_1[2048*2] __attribute__((aligned(16)));
static int32_t temp_in_fft_0[2048*2] __attribute__((aligned(16)));
static int32_t temp_in_fft_1[2048*2] __attribute__((aligned(16)));
48
49

// round(exp(sqrt(-1)*(pi/2)*[0:1:N-1]/N)*pow2(15))
gauthier's avatar
gauthier committed
50
static int16_t ru_90[2*128] = {32767, 0,32766, 402,32758, 804,32746, 1206,32729, 1608,32706, 2009,32679, 2411,32647, 2811,32610, 3212,32568, 3612,32522, 4011,32470, 4410,32413, 4808,32352, 5205,32286, 5602,32214, 5998,32138, 6393,32058, 6787,31972, 7180,31881, 7571,31786, 7962,31686, 8351,31581, 8740,31471, 9127,31357, 9512,31238, 9896,31114, 10279,30986, 10660,30853, 11039,30715, 11417,30572, 11793,30425, 12167,30274, 12540,30118, 12910,29957, 13279,29792, 13646,29622, 14010,29448, 14373,29269, 14733,29086, 15091,28899, 15447,28707, 15800,28511, 16151,28311, 16500,28106, 16846,27897, 17190,27684, 17531,27467, 17869,27246, 18205,27020, 18538,26791, 18868,26557, 19195,26320, 19520,26078, 19841,25833, 20160,25583, 20475,25330, 20788,25073, 21097,24812, 21403,24548, 21706,24279, 22006,24008, 22302,23732, 22595,23453, 22884,23170, 23170,22884, 23453,22595, 23732,22302, 24008,22006, 24279,21706, 24548,21403, 24812,21097, 25073,20788, 25330,20475, 25583,20160, 25833,19841, 26078,19520, 26320,19195, 26557,18868, 26791,18538, 27020,18205, 27246,17869, 27467,17531, 27684,17190, 27897,16846, 28106,16500, 28311,16151, 28511,15800, 28707,15447, 28899,15091, 29086,14733, 29269,14373, 29448,14010, 29622,13646, 29792,13279, 29957,12910, 30118,12540, 30274,12167, 30425,11793, 30572,11417, 30715,11039, 30853,10660, 30986,10279, 31114,9896, 31238,9512, 31357,9127, 31471,8740, 31581,8351, 31686,7962, 31786,7571, 31881,7180, 31972,6787, 32058,6393, 32138,5998, 32214,5602, 32286,5205, 32352,4808, 32413,4410, 32470,4011, 32522,3612, 32568,3212, 32610,2811, 32647,2411, 32679,2009, 32706,1608, 32729,1206, 32746,804, 32758,402, 32766};
51

gauthier's avatar
gauthier committed
52
static int16_t ru_90c[2*128] = {32767, 0,32766, -402,32758, -804,32746, -1206,32729, -1608,32706, -2009,32679, -2411,32647, -2811,32610, -3212,32568, -3612,32522, -4011,32470, -4410,32413, -4808,32352, -5205,32286, -5602,32214, -5998,32138, -6393,32058, -6787,31972, -7180,31881, -7571,31786, -7962,31686, -8351,31581, -8740,31471, -9127,31357, -9512,31238, -9896,31114, -10279,30986, -10660,30853, -11039,30715, -11417,30572, -11793,30425, -12167,30274, -12540,30118, -12910,29957, -13279,29792, -13646,29622, -14010,29448, -14373,29269, -14733,29086, -15091,28899, -15447,28707, -15800,28511, -16151,28311, -16500,28106, -16846,27897, -17190,27684, -17531,27467, -17869,27246, -18205,27020, -18538,26791, -18868,26557, -19195,26320, -19520,26078, -19841,25833, -20160,25583, -20475,25330, -20788,25073, -21097,24812, -21403,24548, -21706,24279, -22006,24008, -22302,23732, -22595,23453, -22884,23170, -23170,22884, -23453,22595, -23732,22302, -24008,22006, -24279,21706, -24548,21403, -24812,21097, -25073,20788, -25330,20475, -25583,20160, -25833,19841, -26078,19520, -26320,19195, -26557,18868, -26791,18538, -27020,18205, -27246,17869, -27467,17531, -27684,17190, -27897,16846, -28106,16500, -28311,16151, -28511,15800, -28707,15447, -28899,15091, -29086,14733, -29269,14373, -29448,14010, -29622,13646, -29792,13279, -29957,12910, -30118,12540, -30274,12167, -30425,11793, -30572,11417, -30715,11039, -30853,10660, -30986,10279, -31114,9896, -31238,9512, -31357,9127, -31471,8740, -31581,8351, -31686,7962, -31786,7571, -31881,7180, -31972,6787, -32058,6393, -32138,5998, -32214,5602, -32286,5205, -32352,4808, -32413,4410, -32470,4011, -32522,3612, -32568,3212, -32610,2811, -32647,2411, -32679,2009, -32706,1608, -32729,1206, -32746,804, -32758,402, -32766};
53
54
55

#define SCALE 0x3FFF

gauthier's avatar
gauthier committed
56
int32_t lte_ul_channel_estimation(PHY_VARS_eNB *phy_vars_eNB,
57
58
59
60
61
62
63
                                  uint8_t eNB_id,
                                  uint8_t UE_id,
                                  uint8_t sched_subframe,
                                  unsigned char l,
                                  unsigned char Ns,
                                  uint8_t cooperation_flag)
{
64
65
66

  LTE_DL_FRAME_PARMS *frame_parms = &phy_vars_eNB->lte_frame_parms;
  LTE_eNB_PUSCH *eNB_pusch_vars = phy_vars_eNB->lte_eNB_pusch_vars[UE_id];
gauthier's avatar
gauthier committed
67
68
69
70
71
  int32_t **ul_ch_estimates=eNB_pusch_vars->drs_ch_estimates[eNB_id];
  int32_t **ul_ch_estimates_time=  eNB_pusch_vars->drs_ch_estimates_time[eNB_id];
  int32_t **ul_ch_estimates_0=  eNB_pusch_vars->drs_ch_estimates_0[eNB_id];
  int32_t **ul_ch_estimates_1=  eNB_pusch_vars->drs_ch_estimates_1[eNB_id];
  int32_t **rxdataF_ext=  eNB_pusch_vars->rxdataF_ext[eNB_id];
knopp's avatar
   
knopp committed
72
73
  int subframe = phy_vars_eNB->proc[sched_subframe].subframe_rx;
  uint8_t harq_pid = subframe2harq_pid(frame_parms,phy_vars_eNB->proc[sched_subframe].frame_rx,subframe);
gauthier's avatar
gauthier committed
74
75
76
77
78
79
80
  int16_t delta_phase = 0;
  int16_t *ru1 = ru_90;
  int16_t *ru2 = ru_90;
  int16_t current_phase1,current_phase2;
  uint16_t N_rb_alloc = phy_vars_eNB->ulsch_eNB[UE_id]->harq_processes[harq_pid]->nb_rb;
  uint16_t aa,Msc_RS,Msc_RS_idx;
  uint16_t * Msc_idx_ptr;
81
  int k,pilot_pos1 = 3 - frame_parms->Ncp, pilot_pos2 = 10 - 2*frame_parms->Ncp;
gauthier's avatar
gauthier committed
82
83
84
85
86
  int16_t alpha, beta;
  int32_t *ul_ch1=NULL, *ul_ch2=NULL;
  int32_t *ul_ch1_0=NULL,*ul_ch2_0=NULL,*ul_ch1_1=NULL,*ul_ch2_1=NULL;
  int16_t ul_ch_estimates_re,ul_ch_estimates_im;
  int32_t rx_power_correction;
87

gauthier's avatar
gauthier committed
88
89
  //uint8_t nb_antennas_rx = frame_parms->nb_antennas_tx_eNB;
  uint8_t nb_antennas_rx = frame_parms->nb_antennas_rx;
90
  uint8_t cyclic_shift;
91

gauthier's avatar
gauthier committed
92
93
94
95
  uint32_t alpha_ind;
  uint32_t u=frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.grouphop[Ns+(subframe<<1)];
  uint32_t v=frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.seqhop[Ns+(subframe<<1)];
  int32_t tmp_estimates[N_rb_alloc*12] __attribute__((aligned(16)));
96
97
98
99
100
101

  int symbol_offset,i,j;

  //debug_msg("lte_ul_channel_estimation: cyclic shift %d\n",cyclicShift);


gauthier's avatar
gauthier committed
102
103
  int16_t alpha_re[12] = {32767, 28377, 16383,     0,-16384,  -28378,-32768,-28378,-16384,    -1, 16383, 28377};
  int16_t alpha_im[12] = {0,     16383, 28377, 32767, 28377,   16383,     0,-16384,-28378,-32768,-28378,-16384};
104

gauthier's avatar
gauthier committed
105
  int32_t *in_fft_ptr_0 = (int32_t*)0,*in_fft_ptr_1 = (int32_t*)0,
106
107
108
           *temp_out_fft_0_ptr = (int32_t*)0,*out_fft_ptr_0 = (int32_t*)0,
            *temp_out_fft_1_ptr = (int32_t*)0,*out_fft_ptr_1 = (int32_t*)0,
             *temp_in_ifft_ptr = (int32_t*)0;
109

110
#if defined(__x86_64__) || defined(__i386__)
111
112
  __m128i *rxdataF128,*ul_ref128,*ul_ch128;
  __m128i mmtmpU0,mmtmpU1,mmtmpU2,mmtmpU3;
113
114
115
116
#elif defined(__arm__)
  int16x8_t *rxdataF128,*ul_ref128,*ul_ch128;
  int32x4_t mmtmp0,mmtmp1,mmtmp_re,mmtmp_im;
#endif
117
118
119
  Msc_RS = N_rb_alloc*12;

  cyclic_shift = (frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.cyclicShift +
120
121
                  phy_vars_eNB->ulsch_eNB[UE_id]->harq_processes[harq_pid]->n_DMRS2 +
                  frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.nPRS[(subframe<<1)+Ns]) % 12;
122

123
#if defined(USER_MODE)
gauthier's avatar
gauthier committed
124
  Msc_idx_ptr = (uint16_t*) bsearch(&Msc_RS, dftsizes, 33, sizeof(uint16_t), compareints);
125

126
127
128
129
130
131
  if (Msc_idx_ptr)
    Msc_RS_idx = Msc_idx_ptr - dftsizes;
  else {
    msg("lte_ul_channel_estimation: index for Msc_RS=%d not found\n",Msc_RS);
    return(-1);
  }
132

133
#else
gauthier's avatar
gauthier committed
134
  uint8_t b;
135
136

  for (b=0; b<33; b++)
137
138
    if (Msc_RS==dftsizes[b])
      Msc_RS_idx = b;
139

140
141
#endif

knopp's avatar
   
knopp committed
142
143
  //  LOG_I(PHY,"subframe %d, Ns %d, l %d, Msc_RS = %d, Msc_RS_idx = %d, u %d, v %d, cyclic_shift %d\n",subframe,Ns,l,Msc_RS, Msc_RS_idx,u,v,cyclic_shift);
#ifdef DEBUG_CH
144
145

#ifdef USER_MODE
146

147
148
149
150
  if (Ns==0)
    write_output("drs_seq0.m","drsseq0",ul_ref_sigs_rx[u][v][Msc_RS_idx],2*Msc_RS,2,1);
  else
    write_output("drs_seq1.m","drsseq1",ul_ref_sigs_rx[u][v][Msc_RS_idx],2*Msc_RS,2,1);
151

152
153
154
155
156
157
158
159
160
#endif
#endif

  rx_power_correction = 1;

  if (l == (3 - frame_parms->Ncp)) {

    symbol_offset = frame_parms->N_RB_UL*12*(l+((7-frame_parms->Ncp)*(Ns&1)));

161
    for (aa=0; aa<nb_antennas_rx; aa++) {
162
163
      //           msg("Componentwise prod aa %d, symbol_offset %d,ul_ch_estimates %p,ul_ch_estimates[aa] %p,ul_ref_sigs_rx[0][0][Msc_RS_idx] %p\n",aa,symbol_offset,ul_ch_estimates,ul_ch_estimates[aa],ul_ref_sigs_rx[0][0][Msc_RS_idx]);

164
#if defined(__x86_64__) || defined(__i386__)
165
166
167
      rxdataF128 = (__m128i *)&rxdataF_ext[aa][symbol_offset];
      ul_ch128   = (__m128i *)&ul_ch_estimates[aa][symbol_offset];
      ul_ref128  = (__m128i *)ul_ref_sigs_rx[u][v][Msc_RS_idx];
168
169
170
171
172
#elif defined(__arm__)
      rxdataF128 = (int16x8_t *)&rxdataF_ext[aa][symbol_offset];
      ul_ch128   = (int16x8_t *)&ul_ch_estimates[aa][symbol_offset];
      ul_ref128  = (int16x8_t *)ul_ref_sigs_rx[u][v][Msc_RS_idx];
#endif
173

174
      for (i=0; i<Msc_RS/12; i++) {
175
#if defined(__x86_64__) || defined(__i386__)
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        // multiply by conjugated channel
        mmtmpU0 = _mm_madd_epi16(ul_ref128[0],rxdataF128[0]);
        // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
        mmtmpU1 = _mm_shufflelo_epi16(ul_ref128[0],_MM_SHUFFLE(2,3,0,1));
        mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
        mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)&conjugate[0]);
        mmtmpU1 = _mm_madd_epi16(mmtmpU1,rxdataF128[0]);
        // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
        mmtmpU0 = _mm_srai_epi32(mmtmpU0,15);
        mmtmpU1 = _mm_srai_epi32(mmtmpU1,15);
        mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
        mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);

        ul_ch128[0] = _mm_packs_epi32(mmtmpU2,mmtmpU3);
        //  printf("rb %d ch: %d %d\n",i,((int16_t*)ul_ch128)[0],((int16_t*)ul_ch128)[1]);
        // multiply by conjugated channel
        mmtmpU0 = _mm_madd_epi16(ul_ref128[1],rxdataF128[1]);
        // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
        mmtmpU1 = _mm_shufflelo_epi16(ul_ref128[1],_MM_SHUFFLE(2,3,0,1));
        mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
        mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)conjugate);
        mmtmpU1 = _mm_madd_epi16(mmtmpU1,rxdataF128[1]);
        // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
        mmtmpU0 = _mm_srai_epi32(mmtmpU0,15);
        mmtmpU1 = _mm_srai_epi32(mmtmpU1,15);
        mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
        mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);

        ul_ch128[1] = _mm_packs_epi32(mmtmpU2,mmtmpU3);

        mmtmpU0 = _mm_madd_epi16(ul_ref128[2],rxdataF128[2]);
        // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
        mmtmpU1 = _mm_shufflelo_epi16(ul_ref128[2],_MM_SHUFFLE(2,3,0,1));
        mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
        mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)conjugate);
        mmtmpU1 = _mm_madd_epi16(mmtmpU1,rxdataF128[2]);
        // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
        mmtmpU0 = _mm_srai_epi32(mmtmpU0,15);
        mmtmpU1 = _mm_srai_epi32(mmtmpU1,15);
        mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
        mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);

        ul_ch128[2] = _mm_packs_epi32(mmtmpU2,mmtmpU3);
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#elif defined(__arm__)
      mmtmp0 = vmull_s16(((int16x4_t*)ul_ref128)[0],((int16x4_t*)rxdataF128)[0]);
      mmtmp1 = vmull_s16(((int16x4_t*)ul_ref128)[1],((int16x4_t*)rxdataF128)[1]);
      mmtmp_re = vcombine_s32(vpadd_s32(vget_low_s32(mmtmp0),vget_high_s32(mmtmp0)),
                              vpadd_s32(vget_low_s32(mmtmp1),vget_high_s32(mmtmp1)));
      mmtmp0 = vmull_s16(vrev32_s16(vmul_s16(((int16x4_t*)ul_ref128)[0],*(int16x4_t*)conjugate)), ((int16x4_t*)rxdataF128)[0]);
      mmtmp1 = vmull_s16(vrev32_s16(vmul_s16(((int16x4_t*)ul_ref128)[1],*(int16x4_t*)conjugate)), ((int16x4_t*)rxdataF128)[1]);
      mmtmp_im = vcombine_s32(vpadd_s32(vget_low_s32(mmtmp0),vget_high_s32(mmtmp0)),
                              vpadd_s32(vget_low_s32(mmtmp1),vget_high_s32(mmtmp1)));

      ul_ch128[0] = vcombine_s16(vmovn_s32(mmtmp_re),vmovn_s32(mmtmp_im));
      ul_ch128++;
      ul_ref128++;
      rxdataF128++;
      mmtmp0 = vmull_s16(((int16x4_t*)ul_ref128)[0],((int16x4_t*)rxdataF128)[0]);
      mmtmp1 = vmull_s16(((int16x4_t*)ul_ref128)[1],((int16x4_t*)rxdataF128)[1]);
      mmtmp_re = vcombine_s32(vpadd_s32(vget_low_s32(mmtmp0),vget_high_s32(mmtmp0)),
                              vpadd_s32(vget_low_s32(mmtmp1),vget_high_s32(mmtmp1)));
      mmtmp0 = vmull_s16(vrev32_s16(vmul_s16(((int16x4_t*)ul_ref128)[0],*(int16x4_t*)conjugate)), ((int16x4_t*)rxdataF128)[0]);
      mmtmp1 = vmull_s16(vrev32_s16(vmul_s16(((int16x4_t*)ul_ref128)[1],*(int16x4_t*)conjugate)), ((int16x4_t*)rxdataF128)[1]);
      mmtmp_im = vcombine_s32(vpadd_s32(vget_low_s32(mmtmp0),vget_high_s32(mmtmp0)),
                              vpadd_s32(vget_low_s32(mmtmp1),vget_high_s32(mmtmp1)));

      ul_ch128[0] = vcombine_s16(vmovn_s32(mmtmp_re),vmovn_s32(mmtmp_im));
      ul_ch128++;
      ul_ref128++;
      rxdataF128++;

      mmtmp0 = vmull_s16(((int16x4_t*)ul_ref128)[0],((int16x4_t*)rxdataF128)[0]);
      mmtmp1 = vmull_s16(((int16x4_t*)ul_ref128)[1],((int16x4_t*)rxdataF128)[1]);
      mmtmp_re = vcombine_s32(vpadd_s32(vget_low_s32(mmtmp0),vget_high_s32(mmtmp0)),
                              vpadd_s32(vget_low_s32(mmtmp1),vget_high_s32(mmtmp1)));
      mmtmp0 = vmull_s16(vrev32_s16(vmul_s16(((int16x4_t*)ul_ref128)[0],*(int16x4_t*)conjugate)), ((int16x4_t*)rxdataF128)[0]);
      mmtmp1 = vmull_s16(vrev32_s16(vmul_s16(((int16x4_t*)ul_ref128)[1],*(int16x4_t*)conjugate)), ((int16x4_t*)rxdataF128)[1]);
      mmtmp_im = vcombine_s32(vpadd_s32(vget_low_s32(mmtmp0),vget_high_s32(mmtmp0)),
                              vpadd_s32(vget_low_s32(mmtmp1),vget_high_s32(mmtmp1)));

      ul_ch128[0] = vcombine_s16(vmovn_s32(mmtmp_re),vmovn_s32(mmtmp_im));
      ul_ch128++;
      ul_ref128++;
      rxdataF128++;

261

262
#endif
263
264
265
        ul_ch128+=3;
        ul_ref128+=3;
        rxdataF128+=3;
266
267
268
      }

      alpha_ind = 0;
269
270
271
272
273

      if((cyclic_shift != 0)) {
        // Compensating for the phase shift introduced at the transmitte
#ifdef DEBUG_CH
        write_output("drs_est_pre.m","drsest_pre",ul_ch_estimates[0],300*12,1,1);
274
#endif
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

        for(i=symbol_offset; i<symbol_offset+Msc_RS; i++) {
          ul_ch_estimates_re = ((int16_t*) ul_ch_estimates[aa])[i<<1];
          ul_ch_estimates_im = ((int16_t*) ul_ch_estimates[aa])[(i<<1)+1];
          //    ((int16_t*) ul_ch_estimates[aa])[i<<1] =  (i%2 == 1? 1:-1) * ul_ch_estimates_re;
          ((int16_t*) ul_ch_estimates[aa])[i<<1] =
            (int16_t) (((int32_t) (alpha_re[alpha_ind]) * (int32_t) (ul_ch_estimates_re) +
                        (int32_t) (alpha_im[alpha_ind]) * (int32_t) (ul_ch_estimates_im))>>15);

          //((int16_t*) ul_ch_estimates[aa])[(i<<1)+1] =  (i%2 == 1? 1:-1) * ul_ch_estimates_im;
          ((int16_t*) ul_ch_estimates[aa])[(i<<1)+1] =
            (int16_t) (((int32_t) (alpha_re[alpha_ind]) * (int32_t) (ul_ch_estimates_im) -
                        (int32_t) (alpha_im[alpha_ind]) * (int32_t) (ul_ch_estimates_re))>>15);

          alpha_ind+=cyclic_shift;

          if (alpha_ind>11)
            alpha_ind-=12;
        }

295
#ifdef DEBUG_CH
296
        write_output("drs_est_post.m","drsest_post",ul_ch_estimates[0],300*12,1,1);
297
#endif
298
299
300
      }

      //copy MIMO channel estimates to temporary buffer for EMOS
gauthier's avatar
gauthier committed
301
      //memcpy(&ul_ch_estimates_0[aa][symbol_offset],&ul_ch_estimates[aa][symbol_offset],frame_parms->ofdm_symbol_size*sizeof(int32_t)*2);
302

303
      memset(temp_in_ifft_0,0,frame_parms->ofdm_symbol_size*sizeof(int32_t));
304

305
      // Convert to time domain for visualization
306
307
      for(i=0; i<Msc_RS; i++)
        ((int32_t*)temp_in_ifft_0)[i] = ul_ch_estimates[aa][symbol_offset+i];
308
309
310
      switch(frame_parms->N_RB_DL) {
      case 6:
	
311
	idft128((int16_t*) temp_in_ifft_0,
312
313
314
315
316
	       (int16_t*) ul_ch_estimates_time[aa],
	       1);
	break;
      case 25:
	
317
	idft512((int16_t*) temp_in_ifft_0,
318
319
320
321
322
	       (int16_t*) ul_ch_estimates_time[aa],
	       1);
	break;
      case 50:
	
323
	idft1024((int16_t*) temp_in_ifft_0,
324
325
326
327
328
	       (int16_t*) ul_ch_estimates_time[aa],
	       1);
	break;
      case 100:
	
329
	idft2048((int16_t*) temp_in_ifft_0,
330
331
332
	       (int16_t*) ul_ch_estimates_time[aa],
	       1);
	break;
333
334
      }

335
336
337
338
339
      if (aa == 0)
        T(T_ENB_UL_CHANNEL_ESTIMATE, T_INT(eNB_id), T_INT(UE_id),
          T_INT(phy_vars_eNB->proc[sched_subframe].frame_rx), T_INT(subframe),
          T_INT(0), T_BUFFER(ul_ch_estimates_time[0], 512  * 4));

340
341
#ifdef DEBUG_CH

342
      if (aa==0) {
343
344
345
        if (Ns == 0) {
          write_output("rxdataF_ext.m","rxF_ext",&rxdataF_ext[aa][symbol_offset],512*2,2,1);
          write_output("tmpin_ifft.m","drs_in",temp_in_ifft_0,512,1,1);
346
          write_output("drs_est0.m","drs0",ul_ch_estimates_time[aa],512,1,1);
347
        } else
348
          write_output("drs_est1.m","drs1",ul_ch_estimates_time[aa],512,1,1);
349
      }
350

351
352
353
354
#endif


      if(cooperation_flag == 2) {
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        memset(temp_in_ifft_0,0,frame_parms->ofdm_symbol_size*sizeof(int32_t*)*2);
        memset(temp_in_ifft_1,0,frame_parms->ofdm_symbol_size*sizeof(int32_t*)*2);
        memset(temp_in_fft_0,0,frame_parms->ofdm_symbol_size*sizeof(int32_t*)*2);
        memset(temp_in_fft_1,0,frame_parms->ofdm_symbol_size*sizeof(int32_t*)*2);

        temp_in_ifft_ptr = &temp_in_ifft_0[0];

        i = symbol_offset;

        for(j=0; j<(frame_parms->N_RB_UL*12); j++) {
          temp_in_ifft_ptr[j] = ul_ch_estimates[aa][i];
          i++;
        }

        alpha_ind = 0;

        // Compensating for the phase shift introduced at the transmitter
        for(i=symbol_offset; i<symbol_offset+Msc_RS; i++) {
          ul_ch_estimates_re = ((int16_t*) ul_ch_estimates[aa])[i<<1];
          ul_ch_estimates_im = ((int16_t*) ul_ch_estimates[aa])[(i<<1)+1];
          //    ((int16_t*) ul_ch_estimates[aa])[i<<1] =  (i%2 == 1? 1:-1) * ul_ch_estimates_re;
          ((int16_t*) ul_ch_estimates[aa])[i<<1] =
            (int16_t) (((int32_t) (alpha_re[alpha_ind]) * (int32_t) (ul_ch_estimates_re) +
                        (int32_t) (alpha_im[alpha_ind]) * (int32_t) (ul_ch_estimates_im))>>15);

          //((int16_t*) ul_ch_estimates[aa])[(i<<1)+1] =  (i%2 == 1? 1:-1) * ul_ch_estimates_im;
          ((int16_t*) ul_ch_estimates[aa])[(i<<1)+1] =
            (int16_t) (((int32_t) (alpha_re[alpha_ind]) * (int32_t) (ul_ch_estimates_im) -
                        (int32_t) (alpha_im[alpha_ind]) * (int32_t) (ul_ch_estimates_re))>>15);

          alpha_ind+=10;

          if (alpha_ind>11)
            alpha_ind-=12;
        }

        //Extracting Channel Estimates for Distributed Alamouti Receiver Combining

        temp_in_ifft_ptr = &temp_in_ifft_1[0];

        i = symbol_offset;

        for(j=0; j<(frame_parms->N_RB_UL*12); j++) {
          temp_in_ifft_ptr[j] = ul_ch_estimates[aa][i];
          i++;
        }

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
	switch (frame_parms->N_RB_DL) {
	case 6:
	  idft128((int16_t*) &temp_in_ifft_0[0],                          // Performing IFFT on Combined Channel Estimates
		  temp_out_ifft_0,
		  1);
	  idft128((int16_t*) &temp_in_ifft_1[0],                          // Performing IFFT on Combined Channel Estimates
		  temp_out_ifft_1,
		  1);
	  break;
	case 25:
	  idft512((int16_t*) &temp_in_ifft_0[0],                          // Performing IFFT on Combined Channel Estimates
		  temp_out_ifft_0,
		  1);
	  idft512((int16_t*) &temp_in_ifft_1[0],                          // Performing IFFT on Combined Channel Estimates
		  temp_out_ifft_1,
		  1);
	  break;
	case 50:
	  idft1024((int16_t*) &temp_in_ifft_0[0],                          // Performing IFFT on Combined Channel Estimates
		  temp_out_ifft_0,
		  1);
	  idft1024((int16_t*) &temp_in_ifft_1[0],                          // Performing IFFT on Combined Channel Estimates
		  temp_out_ifft_1,
		  1);
	  break;
	case 100:
	  idft2048((int16_t*) &temp_in_ifft_0[0],                          // Performing IFFT on Combined Channel Estimates
		  temp_out_ifft_0,
		  1);
	  idft2048((int16_t*) &temp_in_ifft_1[0],                          // Performing IFFT on Combined Channel Estimates
		  temp_out_ifft_1,
		  1);
	  break;
	}
436
437
438
439
440

        // because the ifft is not power preserving, we should apply the factor sqrt(power_correction) here, but we rather apply power_correction here and nothing after the next fft
        in_fft_ptr_0 = &temp_in_fft_0[0];
        in_fft_ptr_1 = &temp_in_fft_1[0];

441
        for(j=0; j<(frame_parms->ofdm_symbol_size)/12; j++) {
442
          if (j>19) {
443
444
445
446
            ((int16_t*)in_fft_ptr_0)[-40+(2*j)] = ((int16_t*)temp_out_ifft_0)[-80+(2*j)]*rx_power_correction;
            ((int16_t*)in_fft_ptr_0)[-40+(2*j)+1] = ((int16_t*)temp_out_ifft_0)[-80+(2*j+1)]*rx_power_correction;
            ((int16_t*)in_fft_ptr_1)[-40+(2*j)] = ((int16_t*)temp_out_ifft_1)[-80+(2*j)]*rx_power_correction;
            ((int16_t*)in_fft_ptr_1)[-40+(2*j)+1] = ((int16_t*)temp_out_ifft_1)[-80+(2*j)+1]*rx_power_correction;
447
          } else {
448
449
450
451
            ((int16_t*)in_fft_ptr_0)[2*(frame_parms->ofdm_symbol_size-20+j)] = ((int16_t*)temp_out_ifft_0)[2*(frame_parms->ofdm_symbol_size-20+j)]*rx_power_correction;
            ((int16_t*)in_fft_ptr_0)[2*(frame_parms->ofdm_symbol_size-20+j)+1] = ((int16_t*)temp_out_ifft_0)[2*(frame_parms->ofdm_symbol_size-20+j)+1]*rx_power_correction;
            ((int16_t*)in_fft_ptr_1)[2*(frame_parms->ofdm_symbol_size-20+j)] = ((int16_t*)temp_out_ifft_1)[2*(frame_parms->ofdm_symbol_size-20+j)]*rx_power_correction;
            ((int16_t*)in_fft_ptr_1)[2*(frame_parms->ofdm_symbol_size-20+j)+1] = ((int16_t*)temp_out_ifft_1)[2*(frame_parms->ofdm_symbol_size-20+j)+1]*rx_power_correction;
452
          }
453
454
        }

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
	switch (frame_parms->N_RB_DL) {
        case 6:
	  dft128((int16_t*) &temp_in_fft_0[0],     
		 // Performing FFT to obtain the Channel Estimates for UE0 to eNB1
		 temp_out_fft_0,
		 1);
	  break;
        case 25:
	  dft512((int16_t*) &temp_in_fft_0[0],     
		 // Performing FFT to obtain the Channel Estimates for UE0 to eNB1
		 temp_out_fft_0,
		 1);
	  break;
        case 50:
	  dft1024((int16_t*) &temp_in_fft_0[0],     
		 // Performing FFT to obtain the Channel Estimates for UE0 to eNB1
		 temp_out_fft_0,
		 1);
	  break;
        case 100:
	  dft2048((int16_t*) &temp_in_fft_0[0],     
		 // Performing FFT to obtain the Channel Estimates for UE0 to eNB1
		 temp_out_fft_0,
		 1);
	  break;
	}
481
482
483
484
485
486
487

        out_fft_ptr_0 = &ul_ch_estimates_0[aa][symbol_offset]; // CHANNEL ESTIMATES FOR UE0 TO eNB1
        temp_out_fft_0_ptr = (int32_t*) temp_out_fft_0;

        i=0;

        for(j=0; j<frame_parms->N_RB_UL*12; j++) {
488
          out_fft_ptr_0[i] = temp_out_fft_0_ptr[j];
489
490
          i++;
        }
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
	switch (frame_parms->N_RB_DL) {
	case 6:
	  dft128((int16_t*) &temp_in_fft_1[0],                          // Performing FFT to obtain the Channel Estimates for UE1 to eNB1
		 temp_out_fft_1,
		 1);
	  break;
	case 25:
	  dft512((int16_t*) &temp_in_fft_1[0],                          // Performing FFT to obtain the Channel Estimates for UE1 to eNB1
		 temp_out_fft_1,
		 1);
	  break;
	case 50:
	  dft1024((int16_t*) &temp_in_fft_1[0],                          // Performing FFT to obtain the Channel Estimates for UE1 to eNB1
		 temp_out_fft_1,
		 1);
	  break;
	case 100:
	  dft2048((int16_t*) &temp_in_fft_1[0],                          // Performing FFT to obtain the Channel Estimates for UE1 to eNB1
		 temp_out_fft_1,
		 1);
	  break;
	}
513
514
515
516
517
518
519

        out_fft_ptr_1 = &ul_ch_estimates_1[aa][symbol_offset];   // CHANNEL ESTIMATES FOR UE1 TO eNB1
        temp_out_fft_1_ptr = (int32_t*) temp_out_fft_1;

        i=0;

        for(j=0; j<frame_parms->N_RB_UL*12; j++) {
520
          out_fft_ptr_1[i] = temp_out_fft_1_ptr[j];
521
522
          i++;
        }
523
524
525

#ifdef DEBUG_CH
#ifdef USER_MODE
526
527
528
529
530
531
532
533
534
535

        if((aa == 0)&& (cooperation_flag == 2)) {
          write_output("test1.m","t1",temp_in_ifft_0,512,1,1);
          write_output("test2.m","t2",temp_out_ifft_0,512*2,2,1);
          write_output("test3.m","t3",temp_in_fft_0,512,1,1);
          write_output("test4.m","t4",temp_out_fft_0,512,1,1);
          write_output("test5.m","t5",temp_in_fft_1,512,1,1);
          write_output("test6.m","t6",temp_out_fft_1,512,1,1);
        }

536
537
538
539
540
541
542
#endif
#endif

      }//cooperation_flag == 2

      if (Ns&1) {//we are in the second slot of the sub-frame, so do the interpolation

543
544
        ul_ch1 = &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*pilot_pos1];
        ul_ch2 = &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*pilot_pos2];
545
546


547
548
549
        if(cooperation_flag == 2) { // For Distributed Alamouti
          ul_ch1_0 = &ul_ch_estimates_0[aa][frame_parms->N_RB_UL*12*pilot_pos1];
          ul_ch2_0 = &ul_ch_estimates_0[aa][frame_parms->N_RB_UL*12*pilot_pos2];
550

551
552
553
          ul_ch1_1 = &ul_ch_estimates_1[aa][frame_parms->N_RB_UL*12*pilot_pos1];
          ul_ch2_1 = &ul_ch_estimates_1[aa][frame_parms->N_RB_UL*12*pilot_pos2];
        }
554

555
556
557
558
559
560
        // Estimation of phase difference between the 2 channel estimates
        delta_phase = lte_ul_freq_offset_estimation(frame_parms,
                      ul_ch_estimates[aa],
                      N_rb_alloc);
        // negative phase index indicates negative Im of ru
        //    msg("delta_phase: %d\n",delta_phase);
561
562

#ifdef DEBUG_CH
563
        msg("lte_ul_channel_estimation: ul_ch1 = %p, ul_ch2 = %p, pilot_pos1=%d, pilot_pos2=%d\n",ul_ch1, ul_ch2, pilot_pos1,pilot_pos2);
564
565
#endif

566
567
568
569
570
571
572
        for (k=0; k<frame_parms->symbols_per_tti; k++) {

          // we scale alpha and beta by SCALE (instead of 0x7FFF) to avoid overflows
          alpha = (int16_t) (((int32_t) SCALE * (int32_t) (pilot_pos2-k))/(pilot_pos2-pilot_pos1));
          beta  = (int16_t) (((int32_t) SCALE * (int32_t) (k-pilot_pos1))/(pilot_pos2-pilot_pos1));


573
#ifdef DEBUG_CH
574
          msg("lte_ul_channel_estimation: k=%d, alpha = %d, beta = %d\n",k,alpha,beta);
575
#endif
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
          //symbol_offset_subframe = frame_parms->N_RB_UL*12*k;

          // interpolate between estimates
          if ((k != pilot_pos1) && (k != pilot_pos2))  {
            //          multadd_complex_vector_real_scalar((int16_t*) ul_ch1,alpha,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],1,Msc_RS);
            //          multadd_complex_vector_real_scalar((int16_t*) ul_ch2,beta ,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],0,Msc_RS);

            //          multadd_complex_vector_real_scalar((int16_t*) ul_ch1,SCALE,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],1,Msc_RS);
            //          multadd_complex_vector_real_scalar((int16_t*) ul_ch2,SCALE,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],0,Msc_RS);
            //          msg("phase = %d\n",ru[2*cmax(((delta_phase/7)*(k-3)),0)]);

            // the phase is linearly interpolated
            current_phase1 = (delta_phase/7)*(k-pilot_pos1);
            current_phase2 = (delta_phase/7)*(k-pilot_pos2);
            //          msg("sym: %d, current_phase1: %d, current_phase2: %d\n",k,current_phase1,current_phase2);
            // set the right quadrant
            (current_phase1 > 0) ? (ru1 = ru_90) : (ru1 = ru_90c);
            (current_phase2 > 0) ? (ru2 = ru_90) : (ru2 = ru_90c);
            // take absolute value and clip
            current_phase1 = cmin(abs(current_phase1),127);
            current_phase2 = cmin(abs(current_phase2),127);

            //          msg("sym: %d, current_phase1: %d, ru: %d + j%d, current_phase2: %d, ru: %d + j%d\n",k,current_phase1,ru1[2*current_phase1],ru1[2*current_phase1+1],current_phase2,ru2[2*current_phase2],ru2[2*current_phase2+1]);

            // rotate channel estimates by estimated phase
601
602
603
604
605
606
607
608
609
610
611
            rotate_cpx_vector((int16_t*) ul_ch1,
                              &ru1[2*current_phase1],
                              (int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],
                              Msc_RS,
                              15);

            rotate_cpx_vector((int16_t*) ul_ch2,
                              &ru2[2*current_phase2],
                              (int16_t*) &tmp_estimates[0],
                              Msc_RS,
                              15);
612

613
614
615
            // Combine the two rotated estimates
            multadd_complex_vector_real_scalar((int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],SCALE,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],1,Msc_RS);
            multadd_complex_vector_real_scalar((int16_t*) &tmp_estimates[0],SCALE,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],0,Msc_RS);
616

617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
            /*
            if ((k<pilot_pos1) || ((k>pilot_pos2))) {

                multadd_complex_vector_real_scalar((int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],SCALE>>1,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],1,Msc_RS);

                multadd_complex_vector_real_scalar((int16_t*) &tmp_estimates[0],SCALE>>1,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],0,Msc_RS);

            } else {

                multadd_complex_vector_real_scalar((int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],SCALE>>1,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],1,Msc_RS);

                multadd_complex_vector_real_scalar((int16_t*) &tmp_estimates[0],SCALE>>1,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],0,Msc_RS);

                //              multadd_complex_vector_real_scalar((int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],alpha,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],1,Msc_RS);

                //              multadd_complex_vector_real_scalar((int16_t*) &tmp_estimates[0],beta ,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],0,Msc_RS);

            }
            */

            //      memcpy(&ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],ul_ch1,Msc_RS*sizeof(int32_t));
            if(cooperation_flag == 2) { // For Distributed Alamouti
              multadd_complex_vector_real_scalar((int16_t*) ul_ch1_0,beta ,(int16_t*) &ul_ch_estimates_0[aa][frame_parms->N_RB_UL*12*k],1,Msc_RS);
              multadd_complex_vector_real_scalar((int16_t*) ul_ch2_0,alpha,(int16_t*) &ul_ch_estimates_0[aa][frame_parms->N_RB_UL*12*k],0,Msc_RS);

              multadd_complex_vector_real_scalar((int16_t*) ul_ch1_1,beta ,(int16_t*) &ul_ch_estimates_1[aa][frame_parms->N_RB_UL*12*k],1,Msc_RS);
              multadd_complex_vector_real_scalar((int16_t*) ul_ch2_1,alpha,(int16_t*) &ul_ch_estimates_1[aa][frame_parms->N_RB_UL*12*k],0,Msc_RS);
            }
645
646

          }
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
        } //for(k=...

        // because of the scaling of alpha and beta we also need to scale the final channel estimate at the pilot positions

        //    multadd_complex_vector_real_scalar((int16_t*) ul_ch1,SCALE,(int16_t*) ul_ch1,1,Msc_RS);
        //    multadd_complex_vector_real_scalar((int16_t*) ul_ch2,SCALE,(int16_t*) ul_ch2,1,Msc_RS);

        if(cooperation_flag == 2) { // For Distributed Alamouti
          multadd_complex_vector_real_scalar((int16_t*) ul_ch1_0,SCALE,(int16_t*) ul_ch1_0,1,Msc_RS);
          multadd_complex_vector_real_scalar((int16_t*) ul_ch2_0,SCALE,(int16_t*) ul_ch2_0,1,Msc_RS);

          multadd_complex_vector_real_scalar((int16_t*) ul_ch1_1,SCALE,(int16_t*) ul_ch1_1,1,Msc_RS);
          multadd_complex_vector_real_scalar((int16_t*) ul_ch2_1,SCALE,(int16_t*) ul_ch2_1,1,Msc_RS);
        }

662
663
664
665

      } //if (Ns&1)

    } //for(aa=...
666

667
668
669
  } //if(l==...


670

671
  return(0);
672
}
673

gauthier's avatar
gauthier committed
674
extern uint16_t transmission_offset_tdd[16];
675
676
#define DEBUG_SRS

gauthier's avatar
gauthier committed
677
int32_t lte_srs_channel_estimation(LTE_DL_FRAME_PARMS *frame_parms,
678
679
680
681
682
683
                                   LTE_eNB_COMMON *eNb_common_vars,
                                   LTE_eNB_SRS *eNb_srs_vars,
                                   SOUNDINGRS_UL_CONFIG_DEDICATED *soundingrs_ul_config_dedicated,
                                   unsigned char sub_frame_number,
                                   unsigned char eNb_id)
{
684
685
686

  int T_SFC,aa;
  int N_symb,symbol;
gauthier's avatar
gauthier committed
687
  uint8_t nb_antennas_rx = frame_parms->nb_antennas_tx_eNB;
688
689
690
691
#ifdef DEBUG_SRS
  char fname[40], vname[40];
#endif

gauthier's avatar
gauthier committed
692
  uint8_t Ssrs  = frame_parms->soundingrs_ul_config_common.srs_SubframeConfig;
693
694
695
696
697

  N_symb = 2*7-frame_parms->Ncp;
  symbol = (sub_frame_number+1)*N_symb-1; //SRS is always in last symbol of subframe
  T_SFC = (Ssrs<=7 ? 5 : 10);

698
  /*
699
700
701
702
703
704
705
706
707
708
     msg("SRS channel estimation eNb %d, subframs %d, %d %d %d %d %d\n",eNb_id,sub_frame_number,
     SRS_parms->Csrs,
     SRS_parms->Bsrs,
     SRS_parms->kTC,
     SRS_parms->n_RRC,
     SRS_parms->Ssrs);
  */

  if ((1<<(sub_frame_number%T_SFC))&transmission_offset_tdd[Ssrs]) {

709
710
711
    if (generate_srs_rx(frame_parms,
                        soundingrs_ul_config_dedicated,
                        eNb_srs_vars->srs)==-1) {
712
713
714
715
      msg("lte_srs_channel_estimation: Error in generate_srs_rx\n");
      return(-1);
    }

716
    for (aa=0; aa<nb_antennas_rx; aa++) {
717
718
#ifdef DEBUG_SRS
      msg("SRS channel estimation eNb %d, subframs %d, aarx %d, %p, %p, %p\n",eNb_id,sub_frame_number,aa,
719
720
721
          &eNb_common_vars->rxdataF[eNb_id][aa][2*frame_parms->ofdm_symbol_size*symbol],
          eNb_srs_vars->srs,
          eNb_srs_vars->srs_ch_estimates[eNb_id][aa]);
722
723
724
725
726
#endif

      //write_output("eNb_rxF.m","rxF",&eNb_common_vars->rxdataF[0][aa][2*frame_parms->ofdm_symbol_size*symbol],2*(frame_parms->ofdm_symbol_size),2,1);
      //write_output("eNb_srs.m","srs_eNb",eNb_common_vars->srs,(frame_parms->ofdm_symbol_size),1,1);

727
728
729
730
731
      mult_cpx_conj_vector((int16_t*) &eNb_common_vars->rxdataF[eNb_id][aa][2*frame_parms->ofdm_symbol_size*symbol],
                      (int16_t*) eNb_srs_vars->srs,
                      (int16_t*) eNb_srs_vars->srs_ch_estimates[eNb_id][aa],
                      frame_parms->ofdm_symbol_size,
                      15);
732
733
734
735
736
737
738
739
740
741
742

      //msg("SRS channel estimation cmult out\n");
#ifdef USER_MODE
#ifdef DEBUG_SRS
      sprintf(fname,"eNB_id%d_an%d_srs_ch_est.m",eNb_id,aa);
      sprintf(vname,"eNB%d_%d_srs_ch_est",eNb_id,aa);
      write_output(fname,vname,eNb_srs_vars->srs_ch_estimates[eNb_id][aa],frame_parms->ofdm_symbol_size,1,1);
#endif
#endif
    }
  }
743

744
745
  /*
    else {
746
    for (aa=0;aa<nb_antennas_rx;aa++)
747
748
749
750
751
752
    bzero(eNb_srs_vars->srs_ch_estimates[eNb_id][aa],frame_parms->ofdm_symbol_size*sizeof(int));
    }
  */
  return(0);
}

gauthier's avatar
gauthier committed
753
int16_t lte_ul_freq_offset_estimation(LTE_DL_FRAME_PARMS *frame_parms,
754
755
756
757
                                      int32_t *ul_ch_estimates,
                                      uint16_t nb_rb)
{

758
#if defined(__x86_64__) || defined(__i386__)
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
  int k, rb;
  int a_idx = 64;
  uint8_t conj_flag = 0;
  uint8_t output_shift;
  int pilot_pos1 = 3 - frame_parms->Ncp;
  int pilot_pos2 = 10 - 2*frame_parms->Ncp;
  __m128i *ul_ch1 = (__m128i*)&ul_ch_estimates[pilot_pos1*frame_parms->N_RB_UL*12];
  __m128i *ul_ch2 = (__m128i*)&ul_ch_estimates[pilot_pos2*frame_parms->N_RB_UL*12];
  int32_t avg[2];
  int16_t Ravg[2];
  Ravg[0]=0;
  Ravg[1]=0;
  int16_t iv, rv, phase_idx;
  __m128i avg128U1, avg128U2, R[3], mmtmpD0,mmtmpD1,mmtmpD2,mmtmpD3;

  // round(tan((pi/4)*[1:1:N]/N)*pow2(15))
  int16_t alpha[128] = {201, 402, 603, 804, 1006, 1207, 1408, 1610, 1811, 2013, 2215, 2417, 2619, 2822, 3024, 3227, 3431, 3634, 3838, 4042, 4246, 4450, 4655, 4861, 5066, 5272, 5479, 5686, 5893, 6101, 6309, 6518, 6727, 6937, 7147, 7358, 7570, 7782, 7995, 8208, 8422, 8637, 8852, 9068, 9285, 9503, 9721, 9940, 10160, 10381, 10603, 10825, 11049, 11273, 11498, 11725, 11952, 12180, 12410, 12640, 12872, 13104, 13338, 13573, 13809, 14046, 14285, 14525, 14766, 15009, 15253, 15498, 15745, 15993, 16243, 16494, 16747, 17001, 17257, 17515, 17774, 18035, 18298, 18563, 18829, 19098, 19368, 19640, 19915, 20191, 20470, 20750, 21033, 21318, 21605, 21895, 22187, 22481, 22778, 23078, 23380, 23685, 23992, 24302, 24615, 24931, 25250, 25572, 25897, 26226, 26557, 26892, 27230, 27572, 27917, 28266, 28618, 28975, 29335, 29699, 30067, 30440, 30817, 31198, 31583, 31973, 32368, 32767};

  // compute log2_maxh (output_shift)
  avg128U1 = _mm_setzero_si128();
  avg128U2 = _mm_setzero_si128();

  for (rb=0; rb<nb_rb; rb++) {
    avg128U1 = _mm_add_epi32(avg128U1,_mm_madd_epi16(ul_ch1[0],ul_ch1[0]));
    avg128U1 = _mm_add_epi32(avg128U1,_mm_madd_epi16(ul_ch1[1],ul_ch1[1]));
    avg128U1 = _mm_add_epi32(avg128U1,_mm_madd_epi16(ul_ch1[2],ul_ch1[2]));

    avg128U2 = _mm_add_epi32(avg128U2,_mm_madd_epi16(ul_ch2[0],ul_ch2[0]));
    avg128U2 = _mm_add_epi32(avg128U2,_mm_madd_epi16(ul_ch2[1],ul_ch2[1]));
    avg128U2 = _mm_add_epi32(avg128U2,_mm_madd_epi16(ul_ch2[2],ul_ch2[2]));

    ul_ch1+=3;
    ul_ch2+=3;
  }

  avg[0] = (((int*)&avg128U1)[0] +
            ((int*)&avg128U1)[1] +
            ((int*)&avg128U1)[2] +
            ((int*)&avg128U1)[3])/(nb_rb*12);

  avg[1] = (((int*)&avg128U2)[0] +
            ((int*)&avg128U2)[1] +
            ((int*)&avg128U2)[2] +
            ((int*)&avg128U2)[3])/(nb_rb*12);

  //    msg("avg0 = %d, avg1 = %d\n",avg[0],avg[1]);
  avg[0] = cmax(avg[0],avg[1]);
  avg[1] = log2_approx(avg[0]);
  output_shift = cmax(0,avg[1]-10);
  //output_shift  = (log2_approx(avg[0])/2)+ log2_approx(frame_parms->nb_antennas_rx-1)+1;
  //    msg("avg= %d, shift = %d\n",avg[0],output_shift);

  ul_ch1 = (__m128i*)&ul_ch_estimates[pilot_pos1*frame_parms->N_RB_UL*12];
  ul_ch2 = (__m128i*)&ul_ch_estimates[pilot_pos2*frame_parms->N_RB_UL*12];

  // correlate and average the 2 channel estimates ul_ch1*ul_ch2
  for (rb=0; rb<nb_rb; rb++) {
    mmtmpD0 = _mm_madd_epi16(ul_ch1[0],ul_ch2[0]);
    mmtmpD1 = _mm_shufflelo_epi16(ul_ch1[0],_MM_SHUFFLE(2,3,0,1));
    mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
    mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)&conjugate);
    mmtmpD1 = _mm_madd_epi16(mmtmpD1,ul_ch2[0]);
    mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
    mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
    mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
    mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
    R[0] = _mm_packs_epi32(mmtmpD2,mmtmpD3);

    mmtmpD0 = _mm_madd_epi16(ul_ch1[1],ul_ch2[1]);
    mmtmpD1 = _mm_shufflelo_epi16(ul_ch1[1],_MM_SHUFFLE(2,3,0,1));
    mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
    mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)&conjugate);
    mmtmpD1 = _mm_madd_epi16(mmtmpD1,ul_ch2[1]);
    mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
    mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
    mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
    mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
    R[1] = _mm_packs_epi32(mmtmpD2,mmtmpD3);

    mmtmpD0 = _mm_madd_epi16(ul_ch1[2],ul_ch2[2]);
    mmtmpD1 = _mm_shufflelo_epi16(ul_ch1[2],_MM_SHUFFLE(2,3,0,1));
    mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
    mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)&conjugate);
    mmtmpD1 = _mm_madd_epi16(mmtmpD1,ul_ch2[2]);
    mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
    mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
    mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
    mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
    R[2] = _mm_packs_epi32(mmtmpD2,mmtmpD3);

    R[0] = _mm_add_epi16(_mm_srai_epi16(R[0],1),_mm_srai_epi16(R[1],1));
    R[0] = _mm_add_epi16(_mm_srai_epi16(R[0],1),_mm_srai_epi16(R[2],1));

    Ravg[0] += (((short*)&R)[0] +
                ((short*)&R)[2] +
                ((short*)&R)[4] +
                ((short*)&R)[6])/(nb_rb*4);

    Ravg[1] += (((short*)&R)[1] +
                ((short*)&R)[3] +
                ((short*)&R)[5] +
                ((short*)&R)[7])/(nb_rb*4);

    ul_ch1+=3;
    ul_ch2+=3;
  }

  // phase estimation on Ravg
  //   Ravg[0] = 56;
  //   Ravg[1] = 0;
  rv = Ravg[0];
  iv = Ravg[1];

  if (iv<0)
    iv = -Ravg[1];

  if (rv<iv) {
    rv = iv;
    iv = Ravg[0];
    conj_flag = 1;
  }

  //   msg("rv = %d, iv = %d\n",rv,iv);
  //   msg("max_avg = %d, log2_approx = %d, shift = %d\n",avg[0], avg[1], output_shift);

  for (k=0; k<6; k++) {
    (iv<(((int32_t)(alpha[a_idx]*rv))>>15)) ? (a_idx -= 32>>k) : (a_idx += 32>>k);
  }

  (conj_flag==1) ? (phase_idx = 127-(a_idx>>1)) : (phase_idx = (a_idx>>1));

  if (Ravg[1]<0)
    phase_idx = -phase_idx;

  return(phase_idx);
894
895
896
#elif defined(__arm__)
  return(0);
#endif
897
}