Commit 501ae74c authored by frtabu's avatar frtabu

first set of cppcheck fixes

parent 52754797
......@@ -166,6 +166,7 @@ int config_check_unknown_cmdlineopt(char *prefix) {
int unknowndetected=0;
char testprefix[CONFIG_MAXOPTLENGTH];
int finalcheck = 0;
memset(testprefix,0,sizeof(testprefix));
memset(testprefix,0,sizeof(testprefix));
if (prefix != NULL) {
......
......@@ -2,9 +2,9 @@
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
......@@ -28,17 +28,33 @@
//-------------------------------------------------------------------------------------------------------------------------------
char* hashtable_rc_code2string(hashtable_rc_t rcP)
char *hashtable_rc_code2string(hashtable_rc_t rcP)
//-------------------------------------------------------------------------------------------------------------------------------
{
switch (rcP) {
case HASH_TABLE_OK: return "HASH_TABLE_OK";break;
case HASH_TABLE_INSERT_OVERWRITTEN_DATA: return "HASH_TABLE_INSERT_OVERWRITTEN_DATA";break;
case HASH_TABLE_KEY_NOT_EXISTS: return "HASH_TABLE_KEY_NOT_EXISTS";break;
case HASH_TABLE_KEY_ALREADY_EXISTS: return "HASH_TABLE_KEY_ALREADY_EXISTS";break;
case HASH_TABLE_BAD_PARAMETER_HASHTABLE: return "HASH_TABLE_BAD_PARAMETER_HASHTABLE";break;
default: return "UNKNOWN hashtable_rc_t";
}
switch (rcP) {
case HASH_TABLE_OK:
return "HASH_TABLE_OK";
break;
case HASH_TABLE_INSERT_OVERWRITTEN_DATA:
return "HASH_TABLE_INSERT_OVERWRITTEN_DATA";
break;
case HASH_TABLE_KEY_NOT_EXISTS:
return "HASH_TABLE_KEY_NOT_EXISTS";
break;
case HASH_TABLE_KEY_ALREADY_EXISTS:
return "HASH_TABLE_KEY_ALREADY_EXISTS";
break;
case HASH_TABLE_BAD_PARAMETER_HASHTABLE:
return "HASH_TABLE_BAD_PARAMETER_HASHTABLE";
break;
default:
return "UNKNOWN hashtable_rc_t";
}
}
//-------------------------------------------------------------------------------------------------------------------------------
/*
......@@ -46,7 +62,7 @@ char* hashtable_rc_code2string(hashtable_rc_t rcP)
* hash_free_int_func() is used when this hashtable is used to store int values as data (pointer = value).
*/
void hash_free_int_func(void* memoryP){}
void hash_free_int_func(void *memoryP) {}
//-------------------------------------------------------------------------------------------------------------------------------
/*
......@@ -55,9 +71,8 @@ void hash_free_int_func(void* memoryP){}
* This is a simple/naive hash function which adds the key's ASCII char values. It will probably generate lots of collisions on large hash tables.
*/
static hash_size_t def_hashfunc(const uint64_t keyP)
{
return (hash_size_t)keyP;
static hash_size_t def_hashfunc(const uint64_t keyP) {
return (hash_size_t)keyP;
}
//-------------------------------------------------------------------------------------------------------------------------------
......@@ -67,132 +82,147 @@ static hash_size_t def_hashfunc(const uint64_t keyP)
* The user can also specify a hash function. If the hashfunc argument is NULL, a default hash function is used.
* If an error occurred, NULL is returned. All other values in the returned hash_table_t pointer should be released with hashtable_destroy().
*/
hash_table_t *hashtable_create(const hash_size_t sizeP, hash_size_t (*hashfuncP)(const hash_key_t ), void (*freefuncP)(void*))
{
hash_table_t *hashtbl = NULL;
hash_table_t *hashtable_create(const hash_size_t sizeP, hash_size_t (*hashfuncP)(const hash_key_t ), void (*freefuncP)(void *)) {
hash_table_t *hashtbl = NULL;
if(!(hashtbl=malloc(sizeof(hash_table_t)))) {
return NULL;
}
if(!(hashtbl=malloc(sizeof(hash_table_t)))) {
return NULL;
}
if(!(hashtbl->nodes=calloc(sizeP, sizeof(hash_node_t*)))) {
free(hashtbl);
return NULL;
}
if(!(hashtbl->nodes=calloc(sizeP, sizeof(hash_node_t *)))) {
free(hashtbl);
return NULL;
}
hashtbl->size=sizeP;
hashtbl->size=sizeP;
if(hashfuncP) hashtbl->hashfunc=hashfuncP;
else hashtbl->hashfunc=def_hashfunc;
if(hashfuncP) hashtbl->hashfunc=hashfuncP;
else hashtbl->hashfunc=def_hashfunc;
if(freefuncP) hashtbl->freefunc=freefuncP;
else hashtbl->freefunc=free;
if(freefuncP) hashtbl->freefunc=freefuncP;
else hashtbl->freefunc=free;
return hashtbl;
return hashtbl;
}
//-------------------------------------------------------------------------------------------------------------------------------
/*
* Cleanup
* The hashtable_destroy() walks through the linked lists for each possible hash value, and releases the elements. It also releases the nodes array and the hash_table_t.
*/
hashtable_rc_t hashtable_destroy(hash_table_t * hashtblP)
{
hash_size_t n;
hash_node_t *node, *oldnode;
hashtable_rc_t hashtable_destroy(hash_table_t **hashtblP) {
hash_size_t n;
hash_node_t *node, *oldnode;
if (hashtblP == NULL) {
return HASH_TABLE_BAD_PARAMETER_HASHTABLE;
}
if (*hashtblP == NULL) {
return HASH_TABLE_BAD_PARAMETER_HASHTABLE;
}
for(n=0; n<(*hashtblP)->size; ++n) {
node=(*hashtblP)->nodes[n];
for(n=0; n<hashtblP->size; ++n) {
node=hashtblP->nodes[n];
while(node) {
oldnode=node;
node=node->next;
if (oldnode->data) {
hashtblP->freefunc(oldnode->data);
}
free(oldnode);
}
while(node) {
oldnode=node;
node=node->next;
if (oldnode->data) {
(*hashtblP)->freefunc(oldnode->data);
}
free(oldnode);
}
free(hashtblP->nodes);
free(hashtblP);
hashtblP=NULL;
return HASH_TABLE_OK;
}
free((*hashtblP)->nodes);
free((*hashtblP));
*hashtblP=NULL;
return HASH_TABLE_OK;
}
//-------------------------------------------------------------------------------------------------------------------------------
hashtable_rc_t hashtable_is_key_exists (const hash_table_t * const hashtblP, const hash_key_t keyP)
hashtable_rc_t hashtable_is_key_exists (const hash_table_t *const hashtblP, const hash_key_t keyP)
//-------------------------------------------------------------------------------------------------------------------------------
{
hash_node_t *node = NULL;
hash_size_t hash = 0;
hash_node_t *node = NULL;
hash_size_t hash = 0;
if (hashtblP == NULL) {
return HASH_TABLE_BAD_PARAMETER_HASHTABLE;
}
if (hashtblP == NULL) {
return HASH_TABLE_BAD_PARAMETER_HASHTABLE;
}
hash=hashtblP->hashfunc(keyP)%hashtblP->size;
node=hashtblP->nodes[hash];
while(node) {
if(node->key == keyP) {
return HASH_TABLE_OK;
}
node=node->next;
hash=hashtblP->hashfunc(keyP)%hashtblP->size;
node=hashtblP->nodes[hash];
while(node) {
if(node->key == keyP) {
return HASH_TABLE_OK;
}
return HASH_TABLE_KEY_NOT_EXISTS;
node=node->next;
}
return HASH_TABLE_KEY_NOT_EXISTS;
}
//-------------------------------------------------------------------------------------------------------------------------------
hashtable_rc_t hashtable_apply_funct_on_elements (hash_table_t *const hashtblP, void functP(hash_key_t keyP, void* dataP, void* parameterP), void* parameterP)
hashtable_rc_t hashtable_apply_funct_on_elements (hash_table_t *const hashtblP, void functP(hash_key_t keyP, void *dataP, void *parameterP), void *parameterP)
//-------------------------------------------------------------------------------------------------------------------------------
{
hash_node_t *node = NULL;
unsigned int i = 0;
unsigned int num_elements = 0;
if (hashtblP == NULL) {
return HASH_TABLE_BAD_PARAMETER_HASHTABLE;
}
while ((num_elements < hashtblP->num_elements) && (i < hashtblP->size)) {
if (hashtblP->nodes[i] != NULL) {
node=hashtblP->nodes[i];
while(node) {
num_elements += 1;
functP(node->key, node->data, parameterP);
node=node->next;
}
}
i += 1;
hash_node_t *node = NULL;
unsigned int i = 0;
unsigned int num_elements = 0;
if (hashtblP == NULL) {
return HASH_TABLE_BAD_PARAMETER_HASHTABLE;
}
while ((num_elements < hashtblP->num_elements) && (i < hashtblP->size)) {
if (hashtblP->nodes[i] != NULL) {
node=hashtblP->nodes[i];
while(node) {
num_elements += 1;
functP(node->key, node->data, parameterP);
node=node->next;
}
}
return HASH_TABLE_OK;
i += 1;
}
return HASH_TABLE_OK;
}
//-------------------------------------------------------------------------------------------------------------------------------
hashtable_rc_t hashtable_dump_content (const hash_table_t * const hashtblP, char * const buffer_pP, int * const remaining_bytes_in_buffer_pP )
hashtable_rc_t hashtable_dump_content (const hash_table_t *const hashtblP, char *const buffer_pP, int *const remaining_bytes_in_buffer_pP )
//-------------------------------------------------------------------------------------------------------------------------------
{
hash_node_t *node = NULL;
unsigned int i = 0;
if (hashtblP == NULL) {
hash_node_t *node = NULL;
unsigned int i = 0;
if (hashtblP == NULL) {
*remaining_bytes_in_buffer_pP = snprintf(
buffer_pP,
*remaining_bytes_in_buffer_pP,
"HASH_TABLE_BAD_PARAMETER_HASHTABLE");
return HASH_TABLE_BAD_PARAMETER_HASHTABLE;
}
while ((i < hashtblP->size) && (*remaining_bytes_in_buffer_pP > 0)) {
if (hashtblP->nodes[i] != NULL) {
node=hashtblP->nodes[i];
while(node) {
*remaining_bytes_in_buffer_pP = snprintf(
buffer_pP,
*remaining_bytes_in_buffer_pP,
"HASH_TABLE_BAD_PARAMETER_HASHTABLE");
return HASH_TABLE_BAD_PARAMETER_HASHTABLE;
}
while ((i < hashtblP->size) && (*remaining_bytes_in_buffer_pP > 0)) {
if (hashtblP->nodes[i] != NULL) {
node=hashtblP->nodes[i];
while(node) {
*remaining_bytes_in_buffer_pP = snprintf(
buffer_pP,
*remaining_bytes_in_buffer_pP,
"Key 0x%"PRIx64" Element %p\n",
node->key,
node->data);
node=node->next;
}
}
i += 1;
buffer_pP,
*remaining_bytes_in_buffer_pP,
"Key 0x%"PRIx64" Element %p\n",
node->key,
node->data);
node=node->next;
}
}
return HASH_TABLE_OK;
i += 1;
}
return HASH_TABLE_OK;
}
//-------------------------------------------------------------------------------------------------------------------------------
......@@ -200,97 +230,110 @@ hashtable_rc_t hashtable_dump_content (const hash_table_t * const hashtblP, char
* Adding a new element
* To make sure the hash value is not bigger than size, the result of the user provided hash function is used modulo size.
*/
hashtable_rc_t hashtable_insert(hash_table_t * const hashtblP, const hash_key_t keyP, void *dataP)
{
hash_node_t *node = NULL;
hash_size_t hash = 0;
if (hashtblP == NULL) {
return HASH_TABLE_BAD_PARAMETER_HASHTABLE;
}
hash=hashtblP->hashfunc(keyP)%hashtblP->size;
hashtable_rc_t hashtable_insert(hash_table_t *const hashtblP, const hash_key_t keyP, void *dataP) {
hash_node_t *node = NULL;
hash_size_t hash = 0;
node=hashtblP->nodes[hash];
while(node) {
if(node->key == keyP) {
if (node->data) {
hashtblP->freefunc(node->data);
}
node->data=dataP;
return HASH_TABLE_INSERT_OVERWRITTEN_DATA;
}
node=node->next;
}
if(!(node=malloc(sizeof(hash_node_t)))) return -1;
node->key=keyP;
node->data=dataP;
if (hashtblP->nodes[hash]) {
node->next=hashtblP->nodes[hash];
} else {
node->next = NULL;
if (hashtblP == NULL) {
return HASH_TABLE_BAD_PARAMETER_HASHTABLE;
}
hash=hashtblP->hashfunc(keyP)%hashtblP->size;
node=hashtblP->nodes[hash];
while(node) {
if(node->key == keyP) {
if (node->data) {
hashtblP->freefunc(node->data);
}
node->data=dataP;
return HASH_TABLE_INSERT_OVERWRITTEN_DATA;
}
hashtblP->nodes[hash]=node;
hashtblP->num_elements += 1;
return HASH_TABLE_OK;
node=node->next;
}
if(!(node=malloc(sizeof(hash_node_t)))) return -1;
node->key=keyP;
node->data=dataP;
if (hashtblP->nodes[hash]) {
node->next=hashtblP->nodes[hash];
} else {
node->next = NULL;
}
hashtblP->nodes[hash]=node;
hashtblP->num_elements += 1;
return HASH_TABLE_OK;
}
//-------------------------------------------------------------------------------------------------------------------------------
/*
* To remove an element from the hash table, we just search for it in the linked list for that hash value,
* and remove it if it is found. If it was not found, it is an error and -1 is returned.
*/
hashtable_rc_t hashtable_remove(hash_table_t * const hashtblP, const hash_key_t keyP)
{
hash_node_t *node, *prevnode=NULL;
hash_size_t hash = 0;
hashtable_rc_t hashtable_remove(hash_table_t *const hashtblP, const hash_key_t keyP) {
hash_node_t *node, *prevnode=NULL;
hash_size_t hash = 0;
if (hashtblP == NULL) {
return HASH_TABLE_BAD_PARAMETER_HASHTABLE;
}
hash=hashtblP->hashfunc(keyP)%hashtblP->size;
node=hashtblP->nodes[hash];
while(node) {
if(node->key == keyP) {
if(prevnode) prevnode->next=node->next;
else hashtblP->nodes[hash]=node->next;
if (node->data) {
hashtblP->freefunc(node->data);
}
free(node);
hashtblP->num_elements -= 1;
return HASH_TABLE_OK;
}
prevnode=node;
node=node->next;
if (hashtblP == NULL) {
return HASH_TABLE_BAD_PARAMETER_HASHTABLE;
}
hash=hashtblP->hashfunc(keyP)%hashtblP->size;
node=hashtblP->nodes[hash];
while(node) {
if(node->key == keyP) {
if(prevnode) prevnode->next=node->next;
else hashtblP->nodes[hash]=node->next;
if (node->data) {
hashtblP->freefunc(node->data);
}
free(node);
hashtblP->num_elements -= 1;
return HASH_TABLE_OK;
}
return HASH_TABLE_KEY_NOT_EXISTS;
prevnode=node;
node=node->next;
}
return HASH_TABLE_KEY_NOT_EXISTS;
}
//-------------------------------------------------------------------------------------------------------------------------------
/*
* Searching for an element is easy. We just search through the linked list for the corresponding hash value.
* NULL is returned if we didn't find it.
*/
hashtable_rc_t hashtable_get(const hash_table_t * const hashtblP, const hash_key_t keyP, void** dataP)
{
hash_node_t *node = NULL;
hash_size_t hash = 0;
hashtable_rc_t hashtable_get(const hash_table_t *const hashtblP, const hash_key_t keyP, void **dataP) {
hash_node_t *node = NULL;
hash_size_t hash = 0;
if (hashtblP == NULL) {
*dataP = NULL;
return HASH_TABLE_BAD_PARAMETER_HASHTABLE;
}
hash=hashtblP->hashfunc(keyP)%hashtblP->size;
/* fprintf(stderr, "hashtable_get() key=%s, hash=%d\n", key, hash);*/
if (hashtblP == NULL) {
*dataP = NULL;
return HASH_TABLE_BAD_PARAMETER_HASHTABLE;
}
node=hashtblP->nodes[hash];
hash=hashtblP->hashfunc(keyP)%hashtblP->size;
/* fprintf(stderr, "hashtable_get() key=%s, hash=%d\n", key, hash);*/
node=hashtblP->nodes[hash];
while(node) {
if(node->key == keyP) {
*dataP = node->data;
return HASH_TABLE_OK;
}
node=node->next;
while(node) {
if(node->key == keyP) {
*dataP = node->data;
return HASH_TABLE_OK;
}
*dataP = NULL;
return HASH_TABLE_KEY_NOT_EXISTS;
node=node->next;
}
*dataP = NULL;
return HASH_TABLE_KEY_NOT_EXISTS;
}
//-------------------------------------------------------------------------------------------------------------------------------
/*
......@@ -304,36 +347,33 @@ hashtable_rc_t hashtable_get(const hash_table_t * const hashtblP, const hash_key
* After that, we can just free the old table and copy the elements from newtbl to hashtbl.
*/
hashtable_rc_t hashtable_resize(hash_table_t * const hashtblP, const hash_size_t sizeP)
{
hash_table_t newtbl;
hash_size_t n;
hash_node_t *node,*next;
if (hashtblP == NULL) {
return HASH_TABLE_BAD_PARAMETER_HASHTABLE;
}
hashtable_rc_t hashtable_resize(hash_table_t *const hashtblP, const hash_size_t sizeP) {
hash_table_t newtbl;
hash_size_t n;
hash_node_t *node,*next;
newtbl.size = sizeP;
newtbl.hashfunc = hashtblP->hashfunc;
if (hashtblP == NULL) {
return HASH_TABLE_BAD_PARAMETER_HASHTABLE;
}
if(!(newtbl.nodes=calloc(sizeP, sizeof(hash_node_t*)))) return -1;
newtbl.size = sizeP;
newtbl.hashfunc = hashtblP->hashfunc;
for(n=0; n<hashtblP->size; ++n) {
for(node=hashtblP->nodes[n]; node; node=next) {
next = node->next;
hashtable_insert(&newtbl, node->key, node->data);
// Lionel GAUTHIER: BAD CODE TO BE REWRITTEN
hashtable_remove(hashtblP, node->key);
if(!(newtbl.nodes=calloc(sizeP, sizeof(hash_node_t *)))) return -1;
}
for(n=0; n<hashtblP->size; ++n) {
for(node=hashtblP->nodes[n]; node; node=next) {
next = node->next;
hashtable_insert(&newtbl, node->key, node->data);
// Lionel GAUTHIER: BAD CODE TO BE REWRITTEN
hashtable_remove(hashtblP, node->key);
}
}
free(hashtblP->nodes);
hashtblP->size=newtbl.size;
hashtblP->nodes=newtbl.nodes;
return HASH_TABLE_OK;
free(hashtblP->nodes);
hashtblP->size=newtbl.size;
hashtblP->nodes=newtbl.nodes;
return HASH_TABLE_OK;
}
......
......@@ -2,9 +2,9 @@
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
......@@ -31,41 +31,41 @@ typedef uint64_t hash_key_t;
#define HASHTABLE_NOT_A_KEY_VALUE ((uint64_t)-1)
typedef enum hashtable_return_code_e {
HASH_TABLE_OK = 0,
HASH_TABLE_INSERT_OVERWRITTEN_DATA = 1,
HASH_TABLE_KEY_NOT_EXISTS = 2,
HASH_TABLE_KEY_ALREADY_EXISTS = 3,
HASH_TABLE_BAD_PARAMETER_HASHTABLE = 4,
HASH_TABLE_SYSTEM_ERROR = 5,
HASH_TABLE_CODE_MAX
HASH_TABLE_OK = 0,
HASH_TABLE_INSERT_OVERWRITTEN_DATA = 1,
HASH_TABLE_KEY_NOT_EXISTS = 2,
HASH_TABLE_KEY_ALREADY_EXISTS = 3,
HASH_TABLE_BAD_PARAMETER_HASHTABLE = 4,
HASH_TABLE_SYSTEM_ERROR = 5,
HASH_TABLE_CODE_MAX
} hashtable_rc_t;
typedef struct hash_node_s {
hash_key_t key;
void *data;
struct hash_node_s *next;
hash_key_t key;
void *data;
struct hash_node_s *next;
} hash_node_t;
typedef struct hash_table_s {
hash_size_t size;
hash_size_t num_elements;
struct hash_node_s **nodes;
hash_size_t (*hashfunc)(const hash_key_t);