/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see .
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@lists.eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
/* file: 3gpplte_sse.c
purpose: Encoding routines for implementing Turbo-coded (DLSCH) transport channels from 36-212, V8.6 2009-03
author: Laurent Thomas
maintainer: raymond.knopp@eurecom.fr
date: 09.2012
*/
#ifndef TC_MAIN
#include "defs.h"
#include "extern_3GPPinterleaver.h"
#else
#include "vars.h"
#include
#endif
#include
#include
#include
#include "PHY/sse_intrin.h"
#define print_bytes(s,x) printf("%s %x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x\n",s,(x)[0],(x)[1],(x)[2],(x)[3],(x)[4],(x)[5],(x)[6],(x)[7],(x)[8],(x)[9],(x)[10],(x)[11],(x)[12],(x)[13],(x)[14],(x)[15])
#define print_shorts(s,x) printf("%s %x,%x,%x,%x,%x,%x,%x,%x\n",s,(x)[0],(x)[1],(x)[2],(x)[3],(x)[4],(x)[5],(x)[6],(x)[7])
#define print_ints(s,x) printf("%s %x %x %x %x\n",s,(x)[0],(x)[1],(x)[2],(x)[3])
#define print_bytes2(s,x) printf("%s %x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x\n",s,(x)[0],(x)[1],(x)[2],(x)[3],(x)[4],(x)[5],(x)[6],(x)[7],(x)[8],(x)[9],(x)[10],(x)[11],(x)[12],(x)[13],(x)[14],(x)[15],(x)[16],(x)[17],(x)[18],(x)[19],(x)[20],(x)[21],(x)[22],(x)[23],(x)[24],(x)[25],(x)[26],(x)[27],(x)[28],(x)[29],(x)[30],(x)[31])
//#define DEBUG_TURBO_ENCODER 1
//#define CALLGRIND 1
unsigned short threegpplte_interleaver_output;
unsigned long long threegpplte_interleaver_tmp;
#if defined(__x86_64__) || defined(__i386__)
struct treillis {
union {
__m64 systematic_andp1_64[3];
uint8_t systematic_andp1_8[24];
};
union {
__m64 parity2_64[3];
uint8_t parity2_8[24];
};
int exit_state;
} __attribute__ ((aligned(64)));
#elif defined(__arm__)
struct treillis {
union {
uint8x8_t systematic_andp1_64[3];
char systematic_andp1_8[24];
}__attribute__((aligned(64)));
union {
uint8x8_t parity2_64[3];
char parity2_8[24];
}__attribute__((aligned(64)));
int exit_state;
};
#endif
struct treillis all_treillis[8][256];
int all_treillis_initialized=0;
static inline unsigned char threegpplte_rsc(unsigned char input,unsigned char *state)
{
unsigned char output;
output = (input ^ (*state>>2) ^ (*state>>1))&1;
*state = (((input<<2)^(*state>>1))^((*state>>1)<<2)^((*state)<<2))&7;
return(output);
}
static inline void threegpplte_rsc_termination(unsigned char *x,unsigned char *z,unsigned char *state)
{
*z = ((*state>>2) ^ (*state)) &1;
*x = ((*state) ^ (*state>>1)) &1;
*state = (*state)>>1;
}
void treillis_table_init(void)
{
//struct treillis t[][]=all_treillis;
//t=memalign(16,sizeof(struct treillis)*8*256);
int i, j,b;
unsigned char v, current_state;
// clear all_treillis
for (i=0; i<8; i++) {
bzero( all_treillis[i], sizeof(all_treillis[0]) );
}
for (i=0; i<8; i++) { //all possible initial states
for (j=0; j<=255; j++) { // all possible values of a byte
current_state=i;
for (b=0; b<8 ; b++ ) { // pre-compute the image of the byte j in _m128i vector right place
all_treillis[i][j].systematic_andp1_8[b*3]= (j&(1<<(7-b)))>>(7-b);
v=threegpplte_rsc( all_treillis[i][j].systematic_andp1_8[b*3] ,
¤t_state);
all_treillis[i][j].systematic_andp1_8[b*3+1]=v; // for the yparity1
// all_treillis[i][j].parity1_8[b*3+1]=v; // for the yparity1
all_treillis[i][j].parity2_8[b*3+2]=v; // for the yparity2
}
all_treillis[i][j].exit_state=current_state;
}
}
all_treillis_initialized=1;
return ;
}
char interleave_compact_byte(short * base_interleaver,unsigned char * input, unsigned char * output, int n)
{
char expandInput[768*8] __attribute__((aligned(32)));
int i,loop=n>>4;
#if defined(__x86_64__) || defined(__i386__)
#ifndef __AVX2__
__m128i *i_128=(__m128i *)input, *o_128=(__m128i*)expandInput;
__m128i tmp1, tmp2, tmp3, tmp4;
__m128i BIT_MASK = _mm_set_epi8( 0b00000001,
0b00000010,
0b00000100,
0b00001000,
0b00010000,
0b00100000,
0b01000000,
0b10000000,
0b00000001,
0b00000010,
0b00000100,
0b00001000,
0b00010000,
0b00100000,
0b01000000,
0b10000000);
#else
__m256i *i_256=(__m256i *)input, *o_256=(__m256i*)expandInput;
__m256i tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
__m256i BIT_MASK = _mm256_set_epi8( 0b00000001,
0b00000010,
0b00000100,
0b00001000,
0b00010000,
0b00100000,
0b01000000,
0b10000000,
0b00000001,
0b00000010,
0b00000100,
0b00001000,
0b00010000,
0b00100000,
0b01000000,
0b10000000,
0b00000001,
0b00000010,
0b00000100,
0b00001000,
0b00010000,
0b00100000,
0b01000000,
0b10000000,
0b00000001,
0b00000010,
0b00000100,
0b00001000,
0b00010000,
0b00100000,
0b01000000,
0b10000000);
#endif
#elif defined(__arm__)
uint8x16_t *i_128=(uint8x16_t *)input, *o_128=(uint8x16_t *)expandInput;
uint8x16_t tmp1,tmp2;
uint16x8_t tmp3;
uint32x4_t tmp4;
uint8x16_t and_tmp;
uint8x16_t BIT_MASK = { 0b10000000,
0b01000000,
0b00100000,
0b00010000,
0b00001000,
0b00000100,
0b00000010,
0b00000001,
0b10000000,
0b01000000,
0b00100000,
0b00010000,
0b00001000,
0b00000100,
0b00000010,
0b00000001};
#endif
#ifndef __AVX2__
if ((n&15) > 0)
loop++;
#else
loop=n>>5;
if ((n&31) > 0)
loop++;
#endif
for (i=0; i>(7-b);
#if defined(__x86_64__) || defined(__i386__)
#ifndef __AVX2__
tmp1=_mm_load_si128(i_128++); // tmp1 = B0,B1,...,B15
tmp2=_mm_unpacklo_epi8(tmp1,tmp1); // tmp2 = B0,B0,B1,B1,...,B7,B7
tmp3=_mm_unpacklo_epi16(tmp2,tmp2); // tmp3 = B0,B0,B0,B0,B1,B1,B1,B1,B2,B2,B2,B2,B3,B3,B3,B3
tmp4=_mm_unpacklo_epi32(tmp3,tmp3); // tmp4 - B0,B0,B0,B0,B0,B0,B0,B0,B1,B1,B1,B1,B1,B1,B1,B1
*o_128++=_mm_cmpeq_epi8(_mm_and_si128(tmp4,BIT_MASK),BIT_MASK);
tmp4=_mm_unpackhi_epi32(tmp3,tmp3); // tmp4 - B2,B2,B2,B2,B2,B2,B2,B2,B3,B3,B3,B3,B3,B3,B3,B3
*o_128++=_mm_cmpeq_epi8(_mm_and_si128(tmp4,BIT_MASK),BIT_MASK);;
tmp3=_mm_unpackhi_epi16(tmp2,tmp2); // tmp3 = B4,B4,B4,B4,B5,B5,B5,B5,B6,B6,B6,B6,B7,B7,B7,B7
tmp4=_mm_unpacklo_epi32(tmp3,tmp3); // tmp4 - B4,B4,B4,B4,B4,B4,B4,B4,B5,B5,B5,B5,B5,B5,B5,B5
*o_128++=_mm_cmpeq_epi8(_mm_and_si128(tmp4,BIT_MASK),BIT_MASK);;
tmp4=_mm_unpackhi_epi32(tmp3,tmp3); // tmp4 - B6,B6,B6,B6,B6,B6,B6,B6,B7,B7,B7,B7,B7,B7,B7,B7
*o_128++=_mm_cmpeq_epi8(_mm_and_si128(tmp4,BIT_MASK),BIT_MASK);;
tmp2=_mm_unpackhi_epi8(tmp1,tmp1); // tmp2 = B8,B8,B9,B9,...,B15,B15
tmp3=_mm_unpacklo_epi16(tmp2,tmp2); // tmp3 = B8,B8,B8,B8,B9,B9,B9,B9,B10,B10,B10,B10,B11,B11,B11,B11
tmp4=_mm_unpacklo_epi32(tmp3,tmp3); // tmp4 = B8,B8,B8,B8,B8,B8,B8,B8,B9,B9,B9,B9,B9,B9,B9,B9
*o_128++=_mm_cmpeq_epi8(_mm_and_si128(tmp4,BIT_MASK),BIT_MASK);;
tmp4=_mm_unpackhi_epi32(tmp3,tmp3); // tmp4 = B10,B10,B10,B10,B10,B10,B10,B10,B11,B11,B11,B11,B11,B11,B11,B11
*o_128++=_mm_cmpeq_epi8(_mm_and_si128(tmp4,BIT_MASK),BIT_MASK);;
tmp3=_mm_unpackhi_epi16(tmp2,tmp2); // tmp3 = B12,B12,B12,B12,B13,B13,B13,B13,B14,B14,B14,B14,B15,B15,B15,B15
tmp4=_mm_unpacklo_epi32(tmp3,tmp3); // tmp4 = B12,B12,B12,B12,B12,B12,B12,B12,B13,B13,B13,B13,B13,B13,B13,B13
*o_128++=_mm_cmpeq_epi8(_mm_and_si128(tmp4,BIT_MASK),BIT_MASK);;
tmp4=_mm_unpackhi_epi32(tmp3,tmp3); // tmp4 = B14,B14,B14,B14,B14,B14,B14,B14,B15,B15,B15,B15,B15,B15,B15,B15
*o_128++=_mm_cmpeq_epi8(_mm_and_si128(tmp4,BIT_MASK),BIT_MASK);;
#else
tmp1=_mm256_load_si256(i_256++); // tmp1 = B0,B1,...,B15,...,B31
//print_bytes2("in",(uint8_t*)&tmp1);
tmp2=_mm256_unpacklo_epi8(tmp1,tmp1); // tmp2 = B0,B0,B1,B1,...,B7,B7,B16,B16,B17,B17,...,B23,B23
tmp3=_mm256_unpacklo_epi16(tmp2,tmp2); // tmp3 = B0,B0,B0,B0,B1,B1,B1,B1,B2,B2,B2,B2,B3,B3,B3,B3,B16,B16,B16,B16,...,B19,B19,B19,B19
tmp4=_mm256_unpacklo_epi32(tmp3,tmp3); // tmp4 - B0,B0,B0,B0,B0,B0,B0,B0,B1,B1,B1,B1,B1,B1,B1,B1,B16,B16...,B17..,B17
tmp5=_mm256_unpackhi_epi32(tmp3,tmp3); // tmp5 - B2,B2,B2,B2,B2,B2,B2,B2,B3,B3,B3,B3,B3,B3,B3,B3,B18...,B18,B19,...,B19
tmp6=_mm256_insertf128_si256(tmp4,_mm256_extracti128_si256(tmp5,0),1); // tmp6 = B0 B1 B2 B3
tmp7=_mm256_insertf128_si256(tmp5,_mm256_extracti128_si256(tmp4,1),0); // tmp7 = B16 B17 B18 B19
//print_bytes2("tmp2",(uint8_t*)&tmp2);
//print_bytes2("tmp3",(uint8_t*)&tmp3);
//print_bytes2("tmp4",(uint8_t*)&tmp4);
//print_bytes2("tmp5",(uint8_t*)&tmp4);
//print_bytes2("tmp6",(uint8_t*)&tmp6);
//print_bytes2("tmp7",(uint8_t*)&tmp7);
o_256[0]=_mm256_cmpeq_epi8(_mm256_and_si256(tmp6,BIT_MASK),BIT_MASK);
//print_bytes2("out",(uint8_t*)o_256);
o_256[4]=_mm256_cmpeq_epi8(_mm256_and_si256(tmp7,BIT_MASK),BIT_MASK);;
//print_bytes2("out",(uint8_t*)(o_256+4));
tmp3=_mm256_unpackhi_epi16(tmp2,tmp2); // tmp3 = B4,B4,B4,B4,B5,B5,B5,B5,B6,B6,B6,B6,B7,B7,B7,B7,B20,B20,B20,B20,...,B23,B23,B23,B23
tmp4=_mm256_unpacklo_epi32(tmp3,tmp3); // tmp4 - B4,B4,B4,B4,B4,B4,B4,B4,B5,B5,B5,B5,B5,B5,B5,B5,B20,B20...,B21..,B21
tmp5=_mm256_unpackhi_epi32(tmp3,tmp3); // tmp5 - B6,B6,B6,B6,B6,B6,B6,B6,B7,B7,B7,B7,B7,B7,B7,B7,B22...,B22,B23,...,B23
tmp6=_mm256_insertf128_si256(tmp4,_mm256_extracti128_si256(tmp5,0),1); // tmp6 = B4 B5 B6 B7
tmp7=_mm256_insertf128_si256(tmp5,_mm256_extracti128_si256(tmp4,1),0); // tmp7 = B20 B21 B22 B23
//print_bytes2("tmp2",(uint8_t*)&tmp2);
//print_bytes2("tmp3",(uint8_t*)&tmp3);
//print_bytes2("tmp4",(uint8_t*)&tmp4);
//print_bytes2("tmp5",(uint8_t*)&tmp4);
//print_bytes2("tmp6",(uint8_t*)&tmp6);
//print_bytes2("tmp7",(uint8_t*)&tmp7);
o_256[1]=_mm256_cmpeq_epi8(_mm256_and_si256(tmp6,BIT_MASK),BIT_MASK);
//print_bytes2("out",(uint8_t*)(o_256+1));
o_256[5]=_mm256_cmpeq_epi8(_mm256_and_si256(tmp7,BIT_MASK),BIT_MASK);;
//print_bytes2("out",(uint8_t*)(o_256+4));
tmp2=_mm256_unpackhi_epi8(tmp1,tmp1); // tmp2 = B8 B9 B10 B11 B12 B13 B14 B15 B25 B26 B27 B28 B29 B30 B31
tmp3=_mm256_unpacklo_epi16(tmp2,tmp2); // tmp3 = B8,B9,B10,B11,B26,B27,B28,B29
tmp4=_mm256_unpacklo_epi32(tmp3,tmp3); // tmp4 - B8,B9,B26,B27
tmp5=_mm256_unpackhi_epi32(tmp3,tmp3); // tmp5 - B10,B11,B28,B29
tmp6=_mm256_insertf128_si256(tmp4,_mm256_extracti128_si256(tmp5,0),1); // tmp6 = B8 B9 B10 B11
tmp7=_mm256_insertf128_si256(tmp5,_mm256_extracti128_si256(tmp4,1),0); // tmp7 = B26 B27 B28 B29
//print_bytes2("tmp2",(uint8_t*)&tmp2);
//print_bytes2("tmp3",(uint8_t*)&tmp3);
//print_bytes2("tmp4",(uint8_t*)&tmp4);
//print_bytes2("tmp5",(uint8_t*)&tmp4);
//print_bytes2("tmp6",(uint8_t*)&tmp6);
//print_bytes2("tmp7",(uint8_t*)&tmp7);
o_256[2]=_mm256_cmpeq_epi8(_mm256_and_si256(tmp6,BIT_MASK),BIT_MASK);
//print_bytes2("out",(uint8_t*)(o_256+2));
o_256[6]=_mm256_cmpeq_epi8(_mm256_and_si256(tmp7,BIT_MASK),BIT_MASK);;
//print_bytes2("out",(uint8_t*)(o_256+4));
tmp3=_mm256_unpackhi_epi16(tmp2,tmp2); // tmp3 = B12 B13 B14 B15 B28 B29 B30 B31
tmp4=_mm256_unpacklo_epi32(tmp3,tmp3); // tmp4 = B12 B13 B28 B29
tmp5=_mm256_unpackhi_epi32(tmp3,tmp3); // tmp5 = B14 B15 B30 B31
tmp6=_mm256_insertf128_si256(tmp4,_mm256_extracti128_si256(tmp5,0),1); // tmp6 = B12 B13 B14 B15
tmp7=_mm256_insertf128_si256(tmp5,_mm256_extracti128_si256(tmp4,1),0); // tmp7 = B28 B29 B30 B31
//print_bytes2("tmp2",(uint8_t*)&tmp2);
//print_bytes2("tmp3",(uint8_t*)&tmp3);
//print_bytes2("tmp4",(uint8_t*)&tmp4);
//print_bytes2("tmp5",(uint8_t*)&tmp4);
//print_bytes2("tmp6",(uint8_t*)&tmp6);
//print_bytes2("tmp7",(uint8_t*)&tmp7);
o_256[3]=_mm256_cmpeq_epi8(_mm256_and_si256(tmp6,BIT_MASK),BIT_MASK);
//print_bytes2("out",(uint8_t*)(o_256+3));
o_256[7]=_mm256_cmpeq_epi8(_mm256_and_si256(tmp7,BIT_MASK),BIT_MASK);;
//print_bytes2("out",(uint8_t*)(o_256+7));
o_256+=8;
#endif
#elif defined(__arm__)
tmp1=vld1q_u8((uint8_t*)i_128);
//print_bytes("tmp1:",(uint8_t*)&tmp1);
uint8x16x2_t temp1 = vzipq_u8(tmp1,tmp1);
tmp2 = temp1.val[0];
uint16x8x2_t temp2 = vzipq_u16((uint16x8_t)tmp2,(uint16x8_t)tmp2);
tmp3 = temp2.val[0];
uint32x4x2_t temp3 = vzipq_u32((uint32x4_t)tmp3,(uint32x4_t)tmp3);
tmp4 = temp3.val[0];
//print_bytes("tmp4:",(uint8_t*)&tmp4);
*o_128++=vceqq_u8(vandq_u8((uint8x16_t)tmp4,BIT_MASK),BIT_MASK); //1
//print_bytes("o:",(uint8_t*)(o_128-1));
tmp4 = temp3.val[1];
//print_bytes("tmp4:",(uint8_t*)&tmp4);
*o_128++=vceqq_u8(vandq_u8((uint8x16_t)tmp4,BIT_MASK),BIT_MASK); //2
//print_bytes("o:",(uint8_t*)(o_128-1));
tmp3 = temp2.val[1];
temp3 = vzipq_u32((uint32x4_t)tmp3,(uint32x4_t)tmp3);
tmp4 = temp3.val[0];
//print_bytes("tmp4:",(uint8_t*)&tmp4);
*o_128++=vceqq_u8(vandq_u8((uint8x16_t)tmp4,BIT_MASK),BIT_MASK); //3
//print_bytes("o:",(uint8_t*)(o_128-1));
tmp4 = temp3.val[1];
//print_bytes("tmp4:",(uint8_t*)&tmp4);
*o_128++=vceqq_u8(vandq_u8((uint8x16_t)tmp4,BIT_MASK),BIT_MASK); //4
//and_tmp = vandq_u8((uint8x16_t)tmp4,BIT_MASK); print_bytes("and:",and_tmp);
//print_bytes("o:",(uint8_t*)(o_128-1));
temp1 = vzipq_u8(tmp1,tmp1);
tmp2 = temp1.val[1];
temp2 = vzipq_u16((uint16x8_t)tmp2,(uint16x8_t)tmp2);
tmp3 = temp2.val[0];
temp3 = vzipq_u32((uint32x4_t)tmp3,(uint32x4_t)tmp3);
tmp4 = temp3.val[0];
//print_bytes("tmp4:",(uint8_t*)&tmp4);
*o_128++=vceqq_u8(vandq_u8((uint8x16_t)tmp4,BIT_MASK),BIT_MASK); //5
//print_bytes("o:",(uint8_t*)(o_128-1));
tmp4 = temp3.val[1];
//print_bytes("tmp4:",(uint8_t*)&tmp4);
*o_128++=vceqq_u8(vandq_u8((uint8x16_t)tmp4,BIT_MASK),BIT_MASK); //6
//print_bytes("o:",(uint8_t*)(o_128-1));
temp2 = vzipq_u16((uint16x8_t)tmp2,(uint16x8_t)tmp2);
tmp3 = temp2.val[1];
temp3 = vzipq_u32((uint32x4_t)tmp3,(uint32x4_t)tmp3);
tmp4 = temp3.val[0];
//print_bytes("tmp4:",(uint8_t*)&tmp4);
*o_128++=vceqq_u8(vandq_u8((uint8x16_t)tmp4,BIT_MASK),BIT_MASK); //7
//print_bytes("o:",(uint8_t*)(o_128-1));
tmp4 = temp3.val[1];
//print_bytes("tmp4:",(uint8_t*)&tmp4);
*o_128++=vceqq_u8(vandq_u8((uint8x16_t)tmp4,BIT_MASK),BIT_MASK); //7
//print_bytes("o:",(uint8_t*)(o_128-1));
i_128++;
#endif
}
short * ptr_intl=base_interleaver;
#if defined(__x86_64) || defined(__i386__)
#ifndef __AVX2__
__m128i tmp;
uint16_t *systematic2_ptr=(uint16_t *) output;
#else
__m256i tmp;
uint32_t *systematic2_ptr=(uint32_t *) output;
#endif
#elif defined(__arm__)
uint8x16_t tmp;
const uint8_t __attribute__ ((aligned (16))) _Powers[16]=
{ 1, 2, 4, 8, 16, 32, 64, 128, 1, 2, 4, 8, 16, 32, 64, 128 };
// Set the powers of 2 (do it once for all, if applicable)
uint8x16_t Powers= vld1q_u8(_Powers);
uint8_t *systematic2_ptr=(uint8_t *) output;
#endif
#ifndef __AVX2__
int input_length_words=1+((n-1)>>1);
#else
int input_length_words=1+((n-1)>>2);
#endif
for ( i=0; i< input_length_words ; i ++ ) {
#if defined(__x86_64__) || defined(__i386__)
#ifndef __AVX2__
tmp=_mm_insert_epi8(tmp,expandInput[*ptr_intl++],7);
tmp=_mm_insert_epi8(tmp,expandInput[*ptr_intl++],6);
tmp=_mm_insert_epi8(tmp,expandInput[*ptr_intl++],5);
tmp=_mm_insert_epi8(tmp,expandInput[*ptr_intl++],4);
tmp=_mm_insert_epi8(tmp,expandInput[*ptr_intl++],3);
tmp=_mm_insert_epi8(tmp,expandInput[*ptr_intl++],2);
tmp=_mm_insert_epi8(tmp,expandInput[*ptr_intl++],1);
tmp=_mm_insert_epi8(tmp,expandInput[*ptr_intl++],0);
tmp=_mm_insert_epi8(tmp,expandInput[*ptr_intl++],8+7);
tmp=_mm_insert_epi8(tmp,expandInput[*ptr_intl++],8+6);
tmp=_mm_insert_epi8(tmp,expandInput[*ptr_intl++],8+5);
tmp=_mm_insert_epi8(tmp,expandInput[*ptr_intl++],8+4);
tmp=_mm_insert_epi8(tmp,expandInput[*ptr_intl++],8+3);
tmp=_mm_insert_epi8(tmp,expandInput[*ptr_intl++],8+2);
tmp=_mm_insert_epi8(tmp,expandInput[*ptr_intl++],8+1);
tmp=_mm_insert_epi8(tmp,expandInput[*ptr_intl++],8+0);
*systematic2_ptr++=(unsigned short)_mm_movemask_epi8(tmp);
#else
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],7);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],6);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],5);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],4);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],3);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],2);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],1);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],0);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],8+7);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],8+6);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],8+5);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],8+4);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],8+3);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],8+2);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],8+1);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],8+0);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],16+7);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],16+6);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],16+5);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],16+4);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],16+3);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],16+2);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],16+1);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],16+0);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],24+7);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],24+6);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],24+5);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],24+4);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],24+3);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],24+2);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],24+1);
tmp=_mm256_insert_epi8(tmp,expandInput[*ptr_intl++],24+0);
*systematic2_ptr++=(unsigned int)_mm256_movemask_epi8(tmp);
#endif
#elif defined(__arm__)
tmp=vsetq_lane_u8(expandInput[*ptr_intl++],tmp,7);
tmp=vsetq_lane_u8(expandInput[*ptr_intl++],tmp,6);
tmp=vsetq_lane_u8(expandInput[*ptr_intl++],tmp,5);
tmp=vsetq_lane_u8(expandInput[*ptr_intl++],tmp,4);
tmp=vsetq_lane_u8(expandInput[*ptr_intl++],tmp,3);
tmp=vsetq_lane_u8(expandInput[*ptr_intl++],tmp,2);
tmp=vsetq_lane_u8(expandInput[*ptr_intl++],tmp,1);
tmp=vsetq_lane_u8(expandInput[*ptr_intl++],tmp,0);
tmp=vsetq_lane_u8(expandInput[*ptr_intl++],tmp,8+7);
tmp=vsetq_lane_u8(expandInput[*ptr_intl++],tmp,8+6);
tmp=vsetq_lane_u8(expandInput[*ptr_intl++],tmp,8+5);
tmp=vsetq_lane_u8(expandInput[*ptr_intl++],tmp,8+4);
tmp=vsetq_lane_u8(expandInput[*ptr_intl++],tmp,8+3);
tmp=vsetq_lane_u8(expandInput[*ptr_intl++],tmp,8+2);
tmp=vsetq_lane_u8(expandInput[*ptr_intl++],tmp,8+1);
tmp=vsetq_lane_u8(expandInput[*ptr_intl++],tmp,8+0);
// Compute the mask from the input
uint64x2_t Mask= vpaddlq_u32(vpaddlq_u16(vpaddlq_u8(vandq_u8(tmp, Powers))));
vst1q_lane_u8(systematic2_ptr++, (uint8x16_t)Mask, 0);
vst1q_lane_u8(systematic2_ptr++, (uint8x16_t)Mask, 8);
#endif
}
return n;
}
/*
#define _mm_expand_si128(xmmx, out, bit_mask) \
{ \
__m128i loc_mm; \
loc_mm=(xmmx); \
loc_mm=_mm_and_si128(loc_mm,bit_mask); \
out=_mm_cmpeq_epi8(loc_mm,bit_mask); \
}
*/
void threegpplte_turbo_encoder(unsigned char *input,
unsigned short input_length_bytes,
unsigned char *output,
unsigned char F,
unsigned short interleaver_f1,
unsigned short interleaver_f2)
{
int i;
unsigned char *x;
unsigned char state0=0,state1=0;
unsigned short input_length_bits = input_length_bytes<<3;
short * base_interleaver;
if ( all_treillis_initialized == 0 ) {
treillis_table_init();
}
// look for f1 and f2 precomputed interleaver values
for (i=0; i < 188 && f1f2mat[i].nb_bits != input_length_bits; i++);
if ( i == 188 ) {
printf("Illegal frame length!\n");
return;
} else {
base_interleaver=il_tb+f1f2mat[i].beg_index;
}
unsigned char systematic2[768] __attribute__((aligned(32)));
interleave_compact_byte(base_interleaver,input,systematic2,input_length_bytes);
#if defined(__x86_64__) || defined(__i386__)
__m64 *ptr_output=(__m64*) output;
#elif defined(__arm__)
uint8x8_t *ptr_output=(uint8x8_t*)output;
#endif
unsigned char cur_s1, cur_s2;
int code_rate;
for ( state0=state1=i=0 ; i%d) : (%d,%d)\n",state,state2,i,out);
}
}
printf("\n");
for (state=0; state<8; state++) {
state2=state;
threegpplte_rsc_termination(&x,&z,&state2);
printf("Termination: (%d->%d) : (%d,%d)\n",state,state2,x,z);
}
memset((void*)input,0,INPUT_LENGTH+16);
for (i=0; i