/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see .
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
/*! \file lte-softmodem.c
* \brief main program to control HW and scheduling
* \author R. Knopp, F. Kaltenberger, Navid Nikaein
* \date 2012
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr,florian.kaltenberger@eurecom.fr, navid.nikaein@eurecom.fr
* \note
* \warning
*/
#define _GNU_SOURCE
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "rt_wrapper.h"
#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all
#ifdef USRP
static int hw_subframe;
#endif
#include "assertions.h"
#ifdef EMOS
#include
#endif
#include "PHY/types.h"
#include "PHY/defs.h"
#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all
#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all
#ifndef USRP
#include "openair0_lib.h"
#else
#include "../../ARCH/COMMON/common_lib.h"
#endif
#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all
#include "PHY/vars.h"
#include "MAC_INTERFACE/vars.h"
//#include "SCHED/defs.h"
#include "SCHED/vars.h"
#include "LAYER2/MAC/vars.h"
#include "../../SIMU/USER/init_lte.h"
#ifdef EMOS
#include "SCHED/phy_procedures_emos.h"
#endif
#ifdef OPENAIR2
#include "otg_tx.h"
#include "LAYER2/MAC/defs.h"
#include "LAYER2/MAC/vars.h"
#include "LAYER2/MAC/proto.h"
#ifndef CELLULAR
#include "RRC/LITE/vars.h"
#endif
#include "PHY_INTERFACE/vars.h"
#endif
#ifdef SMBV
#include "PHY/TOOLS/smbv.h"
unsigned short config_frames[4] = {2,9,11,13};
#endif
#include "UTIL/LOG/log_extern.h"
#include "UTIL/OTG/otg.h"
#include "UTIL/OTG/otg_vars.h"
#include "UTIL/MATH/oml.h"
#include "UTIL/LOG/vcd_signal_dumper.h"
#include "enb_config.h"
#if defined(ENABLE_ITTI)
# include "intertask_interface_init.h"
# include "create_tasks.h"
# if defined(ENABLE_USE_MME)
# include "s1ap_eNB.h"
# endif
#endif
#ifdef XFORMS
#include "PHY/TOOLS/lte_phy_scope.h"
#include "stats.h"
#endif
#define FRAME_PERIOD 100000000ULL
#define DAQ_PERIOD 66667ULL
#define DEBUG_THREADS 1
struct timing_info_t {
//unsigned int frame, hw_slot, last_slot, next_slot;
RTIME time_min, time_max, time_avg, time_last, time_now;
//unsigned int mbox0, mbox1, mbox2, mbox_target;
unsigned int n_samples;
} timing_info;
extern int16_t* sync_corr_ue0;
extern int16_t prach_ifft[4][1024*2];
int init_dlsch_threads(void);
void cleanup_dlsch_threads(void);
int32_t init_rx_pdsch_thread(void);
void cleanup_rx_pdsch_thread(void);
openair0_config_t openair0_cfg[MAX_CARDS];
int32_t *rxdata;
int32_t *txdata;
int setup_ue_buffers(PHY_VARS_UE **phy_vars_ue, openair0_config_t *openair0_cfg, openair0_rf_map rf_map[MAX_NUM_CCs]);
int setup_eNB_buffers(PHY_VARS_eNB **phy_vars_eNB, openair0_config_t *openair0_cfg, openair0_rf_map rf_map[MAX_NUM_CCs]);
#ifdef XFORMS
// current status is that every UE has a DL scope for a SINGLE eNB (eNB_id=0)
// at eNB 0, an UL scope for every UE
FD_lte_phy_scope_ue *form_ue[NUMBER_OF_UE_MAX];
FD_lte_phy_scope_enb *form_enb[NUMBER_OF_UE_MAX];
FD_stats_form *form_stats=NULL;
char title[255];
unsigned char scope_enb_num_ue = 1;
#endif //XFORMS
#ifdef RTAI
static SEM *mutex;
//static CND *cond;
static int thread0;
static int thread1;
#ifdef USRP
static SEM *sync_sem; // to sync rx & tx streaming
#endif
//static int sync_thread;
#else
pthread_t thread0;
pthread_t thread1;
pthread_attr_t attr_dlsch_threads;
struct sched_param sched_param_dlsch;
#ifdef USRP
pthread_cond_t sync_cond;
pthread_mutex_t sync_mutex;
#endif
#endif
pthread_attr_t attr_eNB_proc_tx[MAX_NUM_CCs][10];
pthread_attr_t attr_eNB_proc_rx[MAX_NUM_CCs][10];
struct sched_param sched_param_eNB_proc_tx[MAX_NUM_CCs][10];
struct sched_param sched_param_eNB_proc_rx[MAX_NUM_CCs][10];
#ifdef XFORMS
static pthread_t thread2; //xforms
#endif
#ifdef EMOS
static pthread_t thread3; //emos
#endif
openair0_device openair0;
openair0_timestamp timestamp;
/*
static int instance_cnt=-1; //0 means worker is busy, -1 means its free
int instance_cnt_ptr_kern,*instance_cnt_ptr_user;
int pci_interface_ptr_kern;
*/
//extern unsigned int bigphys_top;
//extern unsigned int mem_base;
int card = 0;
#if defined(ENABLE_ITTI)
static volatile int start_eNB = 0;
static volatile int start_UE = 0;
#endif
volatile int oai_exit = 0;
//static int time_offset[4] = {-138,-138,-138,-138};
//static int time_offset[4] = {-145,-145,-145,-145};
static int time_offset[4] = {0,0,0,0};
static char UE_flag=0;
static uint8_t eNB_id=0,UE_id=0;
uint32_t carrier_freq[MAX_NUM_CCs][4] = {{1907600000,1907600000,1907600000,1907600000}}; /* For UE! */
static uint32_t downlink_frequency[MAX_NUM_CCs][4] = {{1907600000,1907600000,1907600000,1907600000}};
static int32_t uplink_frequency_offset[MAX_NUM_CCs][4]= {{-120000000,-120000000,-120000000,-120000000}};
static char *conf_config_file_name = NULL;
#if defined(ENABLE_ITTI)
static char *itti_dump_file = NULL;
#endif
#ifndef USRP
double tx_gain[MAX_NUM_CCs][4] = {{20,10,0,0}};
double rx_gain[MAX_NUM_CCs][4] = {{10,10,0,0}};
// these are for EXMIMO2 target only
static unsigned int rxg_max[4] = {133,133,133,133};
static unsigned int rxg_med[4] = {127,127,127,127};
static unsigned int rxg_byp[4] = {120,120,120,120};
static rx_gain_t rx_gain_mode[MAX_NUM_CCs][4] = {{max_gain,max_gain,max_gain,max_gain}};
#else
double tx_gain[MAX_NUM_CCs][4] = {{120,0,0,0}};
double rx_gain[MAX_NUM_CCs][4] = {{50,0,0,0}};
#endif
double sample_rate=30.72e6;
double bw = 14e6;
static int tx_max_power[MAX_NUM_CCs] = {{0}};
#ifdef USRP
char ref[128] = "internal";
char channels[128] = "0";
unsigned int samples_per_frame = 307200;
unsigned int samples_per_packets = 2048; // samples got every recv or send
unsigned int tx_forward_nsamps;
int sf_bounds_5[10] = {8, 15, 23, 30, 38, 45, 53, 60, 68, 75};
int sf_bounds_10[10] = {8, 15, 23, 30, 38, 45, 53, 60, 68, 75};
int sf_bounds_20[10] = {15, 30, 45, 60, 75, 90, 105, 120, 135, 150};
int *sf_bounds;
int max_cnt;
int tx_delay;
#endif
/*
uint32_t rf_mode_max[4] = {55759,55759,55759,55759};
uint32_t rf_mode_med[4] = {39375,39375,39375,39375};
uint32_t rf_mode_byp[4] = {22991,22991,22991,22991};
*/
//static uint32_t rf_mode[4] = {MY_RF_MODE,0,0,0};
//static uint32_t rf_local[4] = {8255000,8255000,8255000,8255000}; // UE zepto
//{8254617, 8254617, 8254617, 8254617}; //eNB khalifa
//{8255067,8254810,8257340,8257340}; // eNB PETRONAS
//static uint32_t rf_vcocal[4] = {910,910,910,910};
//static uint32_t rf_vcocal_850[4] = {2015, 2015, 2015, 2015};
//static uint32_t rf_rxdc[4] = {32896,32896,32896,32896};
//static uint32_t rxgain[4] = {20,20,20,20};
//static uint32_t txgain[4] = {20,20,20,20};
static runmode_t mode;
static int rx_input_level_dBm;
static int online_log_messages=0;
#ifdef XFORMS
extern int otg_enabled;
static char do_forms=0;
#else
int otg_enabled;
#endif
//int number_of_cards = 1;
#ifndef USRP
static int mbox_bounds[20] = {8,16,24,30,38,46,54,60,68,76,84,90,98,106,114,120,128,136,144, 0}; ///boundaries of slots in terms ob mbox counter rounded up to even numbers
//static int mbox_bounds[20] = {6,14,22,28,36,44,52,58,66,74,82,88,96,104,112,118,126,134,142, 148}; ///boundaries of slots in terms ob mbox counter rounded up to even numbers
#endif
static LTE_DL_FRAME_PARMS *frame_parms[MAX_NUM_CCs];
int multi_thread=1;
uint32_t target_dl_mcs = 28; //maximum allowed mcs
uint32_t target_ul_mcs = 8;
int16_t glog_level=LOG_DEBUG;
int16_t glog_verbosity=LOG_MED;
int16_t hw_log_level=LOG_DEBUG;
int16_t hw_log_verbosity=LOG_MED;
int16_t phy_log_level=LOG_DEBUG;
int16_t phy_log_verbosity=LOG_MED;
int16_t mac_log_level=LOG_DEBUG;
int16_t mac_log_verbosity=LOG_MED;
int16_t rlc_log_level=LOG_DEBUG;
int16_t rlc_log_verbosity=LOG_MED;
int16_t pdcp_log_level=LOG_DEBUG;
int16_t pdcp_log_verbosity=LOG_MED;
int16_t rrc_log_level=LOG_DEBUG;
int16_t rrc_log_verbosity=LOG_MED;
unsigned int build_rflocal(int txi, int txq, int rxi, int rxq)
{
return (txi + (txq<<6) + (rxi<<12) + (rxq<<18));
}
unsigned int build_rfdc(int dcoff_i_rxfe, int dcoff_q_rxfe)
{
return (dcoff_i_rxfe + (dcoff_q_rxfe<<8));
}
#if !defined(ENABLE_ITTI)
void signal_handler(int sig)
{
void *array[10];
size_t size;
if (sig==SIGSEGV) {
// get void*'s for all entries on the stack
size = backtrace(array, 10);
// print out all the frames to stderr
fprintf(stderr, "Error: signal %d:\n", sig);
backtrace_symbols_fd(array, size, 2);
exit(-1);
}
else {
oai_exit = 1;
}
}
#endif
void exit_fun(const char* s)
{
if (s != NULL) {
printf("%s %s() Exiting: %s\n",__FILE__, __FUNCTION__, s);
}
oai_exit = 1;
#if defined(ENABLE_ITTI)
itti_terminate_tasks (TASK_UNKNOWN);
#endif
//rt_sleep_ns(FRAME_PERIOD);
//exit (-1);
}
static int latency_target_fd = -1;
static int32_t latency_target_value = 0;
/* Latency trick - taken from cyclictest.c
* if the file /dev/cpu_dma_latency exists,
* open it and write a zero into it. This will tell
* the power management system not to transition to
* a high cstate (in fact, the system acts like idle=poll)
* When the fd to /dev/cpu_dma_latency is closed, the behavior
* goes back to the system default.
*
* Documentation/power/pm_qos_interface.txt
*/
static void set_latency_target(void)
{
struct stat s;
int ret;
if (stat("/dev/cpu_dma_latency", &s) == 0) {
latency_target_fd = open("/dev/cpu_dma_latency", O_RDWR);
if (latency_target_fd == -1)
return;
ret = write(latency_target_fd, &latency_target_value, 4);
if (ret == 0) {
printf("# error setting cpu_dma_latency to %d!: %s\n", latency_target_value, strerror(errno));
close(latency_target_fd);
return;
}
printf("# /dev/cpu_dma_latency set to %dus\n", latency_target_value);
}
}
#ifdef XFORMS
static void *scope_thread(void *arg) {
char stats_buffer[16384];
# ifdef ENABLE_XFORMS_WRITE_STATS
FILE *UE_stats, *eNB_stats;
int len = 0;
# endif
struct sched_param sched_param;
sched_param.sched_priority = sched_get_priority_min(SCHED_FIFO)+1;
sched_setscheduler(0, SCHED_FIFO,&sched_param);
printf("Scope thread has priority %d\n",sched_param.sched_priority);
/*
if (UE_flag==1)
UE_stats = fopen("UE_stats.txt", "w");
else
eNB_stats = fopen("eNB_stats.txt", "w");
*/
while (!oai_exit) {
if (UE_flag==1) {
# ifdef ENABLE_XFORMS_WRITE_STATS
len =
# endif
dump_ue_stats (PHY_vars_UE_g[0][0], stats_buffer, 0, mode,rx_input_level_dBm);
fl_set_object_label(form_stats->stats_text, stats_buffer);
# ifdef ENABLE_XFORMS_WRITE_STATS
rewind (UE_stats);
fwrite (stats_buffer, 1, len, UE_stats);
# endif
phy_scope_UE(form_ue[UE_id],
PHY_vars_UE_g[UE_id][0],
eNB_id,
UE_id,7);
} else {
# ifdef ENABLE_XFORMS_WRITE_STATS
len =
# endif
dump_eNB_stats (PHY_vars_eNB_g[0][0], stats_buffer, 0);
fl_set_object_label(form_stats->stats_text, stats_buffer);
# ifdef ENABLE_XFORMS_WRITE_STATS
rewind (eNB_stats);
fwrite (stats_buffer, 1, len, eNB_stats);
# endif
for(UE_id=0;UE_id=4
else if (gps_stream(gps_data, WATCH_ENABLE,NULL) != 0)
#else
else if (gps_query(gps_data, "w+x") != 0)
#endif
{
//sprintf(tmptxt,"Error sending command to GPS, gps_data = %x", gps_data);
printf("[EMOS] Error sending command to GPS\n");
//exit(-1);
}
else
printf("[EMOS] Opened GPS, gps_data=%p\n");
if (UE_flag==0)
channel_buffer_size = sizeof(fifo_dump_emos_eNB);
else
channel_buffer_size = sizeof(fifo_dump_emos_UE);
// allocate memory for NO_FRAMES_DISK channes estimations
fifo2file_buffer = malloc(NO_ESTIMATES_DISK*channel_buffer_size);
fifo2file_ptr = fifo2file_buffer;
if (fifo2file_buffer == NULL)
{
printf("[EMOS] Cound not allocate memory for fifo2file_buffer\n");
exit(EXIT_FAILURE);
}
if ((fifo = open(CHANSOUNDER_FIFO_DEV, O_RDONLY)) < 0)
{
fprintf(stderr, "[EMOS] Error opening the fifo\n");
exit(EXIT_FAILURE);
}
time(&starttime_tmp);
localtime_r(&starttime_tmp,&starttime);
snprintf(dumpfile_name,1024,"/tmp/%s_data_%d%02d%02d_%02d%02d%02d.EMOS",
(UE_flag==0) ? "eNB" : "UE",
1900+starttime.tm_year, starttime.tm_mon+1, starttime.tm_mday, starttime.tm_hour, starttime.tm_min, starttime.tm_sec);
dumpfile_id = fopen(dumpfile_name,"w");
if (dumpfile_id == NULL)
{
fprintf(stderr, "[EMOS] Error opening dumpfile %s\n",dumpfile_name);
exit(EXIT_FAILURE);
}
printf("[EMOS] starting dump, channel_buffer_size=%d ...\n",channel_buffer_size);
while (!oai_exit)
{
bytes = rtf_read_timed(fifo, fifo2file_ptr, channel_buffer_size,100);
if (bytes==0)
continue;
/*
if (UE_flag==0)
printf("eNB: count %d, frame %d, read: %d bytes from the fifo\n",counter, ((fifo_dump_emos_eNB*)fifo2file_ptr)->frame_tx,bytes);
else
printf("UE: count %d, frame %d, read: %d bytes from the fifo\n",counter, ((fifo_dump_emos_UE*)fifo2file_ptr)->frame_rx,bytes);
*/
fifo2file_ptr += channel_buffer_size;
counter ++;
if (counter == NO_ESTIMATES_DISK)
{
//reset stuff
fifo2file_ptr = fifo2file_buffer;
counter = 0;
//flush buffer to disk
if (UE_flag==0)
printf("[EMOS] eNB: count %d, frame %d, flushing buffer to disk\n",
counter, ((fifo_dump_emos_eNB*)fifo2file_ptr)->frame_tx);
else
printf("[EMOS] UE: count %d, frame %d, flushing buffer to disk\n",
counter, ((fifo_dump_emos_UE*)fifo2file_ptr)->frame_rx);
if (fwrite(fifo2file_buffer, sizeof(char), NO_ESTIMATES_DISK*channel_buffer_size, dumpfile_id) != NO_ESTIMATES_DISK*channel_buffer_size)
{
fprintf(stderr, "[EMOS] Error writing to dumpfile\n");
exit(EXIT_FAILURE);
}
if (gps_data)
{
if (gps_poll(gps_data) != 0) {
printf("[EMOS] problem polling data from gps\n");
}
else {
printf("[EMOS] lat %g, lon %g\n",gps_data->fix.latitude,gps_data->fix.longitude);
}
if (fwrite(&(gps_data->fix), sizeof(char), sizeof(struct gps_fix_t), dumpfile_id) != sizeof(struct gps_fix_t))
{
printf("[EMOS] Error writing to dumpfile, stopping recording\n");
exit(EXIT_FAILURE);
}
}
else
{
printf("[EMOS] WARNING: No GPS data available, storing dummy packet\n");
if (fwrite(&(dummy_gps_data), sizeof(char), sizeof(struct gps_fix_t), dumpfile_id) != sizeof(struct gps_fix_t))
{
printf("[EMOS] Error writing to dumpfile, stopping recording\n");
exit(EXIT_FAILURE);
}
}
}
}
free(fifo2file_buffer);
fclose(dumpfile_id);
close(fifo);
pthread_exit((void*) arg);
}
#endif
#if defined(ENABLE_ITTI)
static void wait_system_ready (char *message, volatile int *start_flag)
{
/* Wait for eNB application initialization to be complete (eNB registration to MME) */
{
static char *indicator[] = {". ", ".. ", "... ", ".... ", ".....",
" ....", " ...", " ..", " .", " "};
int i = 0;
while ((!oai_exit) && (*start_flag == 0)) {
LOG_N(EMU, message, indicator[i]);
i = (i + 1) % (sizeof(indicator) / sizeof(indicator[0]));
usleep(200000);
}
LOG_D(EMU,"\n");
}
}
#endif
#if defined(ENABLE_ITTI)
void *l2l1_task(void *arg)
{
MessageDef *message_p = NULL;
int result;
itti_set_task_real_time(TASK_L2L1);
itti_mark_task_ready(TASK_L2L1);
if (UE_flag == 0) {
/* Wait for the initialize message */
do {
if (message_p != NULL) {
result = itti_free (ITTI_MSG_ORIGIN_ID(message_p), message_p);
AssertFatal (result == EXIT_SUCCESS, "Failed to free memory (%d)!\n", result);
}
itti_receive_msg (TASK_L2L1, &message_p);
switch (ITTI_MSG_ID(message_p)) {
case INITIALIZE_MESSAGE:
/* Start eNB thread */
LOG_D(EMU, "L2L1 TASK received %s\n", ITTI_MSG_NAME(message_p));
start_eNB = 1;
break;
case TERMINATE_MESSAGE:
oai_exit=1;
itti_exit_task ();
break;
default:
LOG_E(EMU, "Received unexpected message %s\n", ITTI_MSG_NAME(message_p));
break;
}
} while (ITTI_MSG_ID(message_p) != INITIALIZE_MESSAGE);
result = itti_free (ITTI_MSG_ORIGIN_ID(message_p), message_p);
AssertFatal (result == EXIT_SUCCESS, "Failed to free memory (%d)!\n", result);
}
do {
// Wait for a message
itti_receive_msg (TASK_L2L1, &message_p);
switch (ITTI_MSG_ID(message_p)) {
case TERMINATE_MESSAGE:
oai_exit=1;
itti_exit_task ();
break;
case ACTIVATE_MESSAGE:
start_UE = 1;
break;
case DEACTIVATE_MESSAGE:
start_UE = 0;
break;
case MESSAGE_TEST:
LOG_I(EMU, "Received %s\n", ITTI_MSG_NAME(message_p));
break;
default:
LOG_E(EMU, "Received unexpected message %s\n", ITTI_MSG_NAME(message_p));
break;
}
result = itti_free (ITTI_MSG_ORIGIN_ID(message_p), message_p);
AssertFatal (result == EXIT_SUCCESS, "Failed to free memory (%d)!\n", result);
} while(1);
return NULL;
}
#endif
void do_OFDM_mod_rt(int subframe,PHY_VARS_eNB *phy_vars_eNB) {
unsigned int aa,slot_offset, slot_offset_F;
int dummy_tx_b[7680*4] __attribute__((aligned(16)));
int i, tx_offset;
int slot_sizeF = (phy_vars_eNB->lte_frame_parms.ofdm_symbol_size)*
((phy_vars_eNB->lte_frame_parms.Ncp==1) ? 6 : 7);
slot_offset_F = (subframe<<1)*slot_sizeF;
slot_offset = subframe*phy_vars_eNB->lte_frame_parms.samples_per_tti;
if ((subframe_select(&phy_vars_eNB->lte_frame_parms,subframe)==SF_DL)||
((subframe_select(&phy_vars_eNB->lte_frame_parms,subframe)==SF_S))) {
// LOG_D(HW,"Frame %d: Generating slot %d\n",frame,next_slot);
for (aa=0; aalte_frame_parms.nb_antennas_tx; aa++) {
if (phy_vars_eNB->lte_frame_parms.Ncp == EXTENDED){
PHY_ofdm_mod(&phy_vars_eNB->lte_eNB_common_vars.txdataF[0][aa][slot_offset_F],
dummy_tx_b,
phy_vars_eNB->lte_frame_parms.log2_symbol_size,
6,
phy_vars_eNB->lte_frame_parms.nb_prefix_samples,
phy_vars_eNB->lte_frame_parms.twiddle_ifft,
phy_vars_eNB->lte_frame_parms.rev,
CYCLIC_PREFIX);
PHY_ofdm_mod(&phy_vars_eNB->lte_eNB_common_vars.txdataF[0][aa][slot_offset_F+slot_sizeF],
dummy_tx_b+(phy_vars_eNB->lte_frame_parms.samples_per_tti>>1),
phy_vars_eNB->lte_frame_parms.log2_symbol_size,
6,
phy_vars_eNB->lte_frame_parms.nb_prefix_samples,
phy_vars_eNB->lte_frame_parms.twiddle_ifft,
phy_vars_eNB->lte_frame_parms.rev,
CYCLIC_PREFIX);
}
else {
normal_prefix_mod(&phy_vars_eNB->lte_eNB_common_vars.txdataF[0][aa][slot_offset_F],
dummy_tx_b,
7,
&(phy_vars_eNB->lte_frame_parms));
normal_prefix_mod(&phy_vars_eNB->lte_eNB_common_vars.txdataF[0][aa][slot_offset_F+slot_sizeF],
dummy_tx_b+(phy_vars_eNB->lte_frame_parms.samples_per_tti>>1),
7,
&(phy_vars_eNB->lte_frame_parms));
}
for (i=0; ilte_frame_parms.samples_per_tti; i++) {
tx_offset = (int)slot_offset+time_offset[aa]+i;
if (tx_offset<0)
tx_offset += LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->lte_frame_parms.samples_per_tti;
if (tx_offset>=(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->lte_frame_parms.samples_per_tti))
tx_offset -= LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->lte_frame_parms.samples_per_tti;
((short*)&phy_vars_eNB->lte_eNB_common_vars.txdata[0][aa][tx_offset])[0]=
((short*)dummy_tx_b)[2*i]<<4;
((short*)&phy_vars_eNB->lte_eNB_common_vars.txdata[0][aa][tx_offset])[1]=
((short*)dummy_tx_b)[2*i+1]<<4;
}
}
}
}
int eNB_thread_tx_status[10];
static void * eNB_thread_tx(void *param) {
//unsigned long cpuid;
eNB_proc_t *proc = (eNB_proc_t*)param;
// RTIME time_in,time_out;
#ifdef RTAI
RT_TASK *task;
char task_name[8];
#endif
#if defined(ENABLE_ITTI)
/* Wait for eNB application initialization to be complete (eNB registration to MME) */
wait_system_ready ("Waiting for eNB application to be ready %s\r", &start_eNB);
#endif
#ifdef RTAI
sprintf(task_name,"TXC%dS%d",proc->CC_id,proc->subframe);
task = rt_task_init_schmod(nam2num(task_name), 0, 0, 0, SCHED_FIFO, 0xF);
if (task==NULL) {
LOG_E(PHY,"[SCHED][eNB] Problem starting eNB_proc_TX thread_index %d (%s)!!!!\n",proc->subframe,task_name);
return 0;
}
else {
LOG_I(PHY,"[SCHED][eNB] eNB TX thread CC %d SF %d started with id %p\n",
proc->CC_id,
proc->subframe,
task);
}
#else
// LOG_I(PHY,
printf("[SCHED][eNB] eNB TX thread %d started on CPU %d\n",
proc->subframe,sched_getcpu());
#endif
mlockall(MCL_CURRENT | MCL_FUTURE);
//rt_set_runnable_on_cpuid(task,1);
//cpuid = rtai_cpuid();
#ifdef HARD_RT
rt_make_hard_real_time();
#endif
while (!oai_exit){
vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_TX0+(2*proc->subframe),0);
// LOG_I(PHY,"Locking mutex for eNB proc %d (IC %d,mutex %p)\n",proc->subframe,proc->instance_cnt,&proc->mutex);
//printf("Locking mutex for eNB proc %d (subframe_tx %d))\n",proc->subframe,subframe_tx);
if (pthread_mutex_lock(&proc->mutex_tx) != 0) {
LOG_E(PHY,"[SCHED][eNB] error locking mutex for eNB TX proc %d\n",proc->subframe);
}
else {
while (proc->instance_cnt_tx < 0) {
// LOG_I(PHY,"Waiting and unlocking mutex for eNB proc %d (IC %d,lock %d)\n",proc->subframe,proc->instance_cnt,pthread_mutex_trylock(&proc->mutex));
//printf("Waiting and unlocking mutex for eNB proc %d (subframe_tx %d)\n",proc->subframe,subframe_tx);
pthread_cond_wait(&proc->cond_tx,&proc->mutex_tx);
}
// LOG_I(PHY,"Waking up and unlocking mutex for eNB proc %d\n",proc->subframe);
if (pthread_mutex_unlock(&proc->mutex_tx) != 0) {
LOG_E(PHY,"[SCHED][eNB] error unlocking mutex for eNB TX proc %d\n",proc->subframe);
}
}
vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_TX0+(2*proc->subframe),1);
vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_ENB, proc->frame_tx);
vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_SLOT_NUMBER_ENB, proc->subframe*2);
if (oai_exit) break;
if ((((PHY_vars_eNB_g[0][proc->CC_id]->lte_frame_parms.frame_type == TDD)&&
(subframe_select(&PHY_vars_eNB_g[0][proc->CC_id]->lte_frame_parms,proc->subframe_tx)==SF_DL))||
(PHY_vars_eNB_g[0][proc->CC_id]->lte_frame_parms.frame_type == FDD))) {
phy_procedures_eNB_TX(proc->subframe,PHY_vars_eNB_g[0][proc->CC_id],0,no_relay,NULL);
}
if ((subframe_select(&PHY_vars_eNB_g[0][proc->CC_id]->lte_frame_parms,proc->subframe_tx)==SF_S)) {
phy_procedures_eNB_TX(proc->subframe,PHY_vars_eNB_g[0][proc->CC_id],0,no_relay,NULL);
}
do_OFDM_mod_rt(proc->subframe_tx,PHY_vars_eNB_g[0][proc->CC_id]);
if (pthread_mutex_lock(&proc->mutex_tx) != 0) {
printf("[openair][SCHED][eNB] error locking mutex for eNB TX proc %d\n",proc->subframe);
}
else {
proc->instance_cnt_tx--;
if (pthread_mutex_unlock(&proc->mutex_tx) != 0) {
printf("[openair][SCHED][eNB] error unlocking mutex for eNB TX proc %d\n",proc->subframe);
}
}
proc->frame_tx++;
if (proc->frame_tx==1024)
proc->frame_tx=0;
}
vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_TX0+(2*proc->subframe),0);
#ifdef HARD_RT
rt_make_soft_real_time();
#endif
#ifdef DEBUG_THREADS
printf("Exiting eNB thread TX %d\n",proc->subframe);
#endif
// clean task
#ifdef RTAI
rt_task_delete(task);
#else
eNB_thread_tx_status[proc->subframe]=0;
pthread_exit(&eNB_thread_tx_status[proc->subframe]);
#endif
#ifdef DEBUG_THREADS
printf("Exiting eNB TX thread %d\n",proc->subframe);
#endif
}
int eNB_thread_rx_status[10];
static void * eNB_thread_rx(void *param) {
//unsigned long cpuid;
eNB_proc_t *proc = (eNB_proc_t*)param;
// RTIME time_in,time_out;
#ifdef RTAI
RT_TASK *task;
char task_name[8];
#endif
#if defined(ENABLE_ITTI)
/* Wait for eNB application initialization to be complete (eNB registration to MME) */
wait_system_ready ("Waiting for eNB application to be ready %s\r", &start_eNB);
#endif
#ifdef RTAI
sprintf(task_name,"RXC%1dS%1d",proc->CC_id,proc->subframe);
task = rt_task_init_schmod(nam2num(task_name), 0, 0, 0, SCHED_FIFO, 0xF);
if (task==NULL) {
LOG_E(PHY,"[SCHED][eNB] Problem starting eNB_proc_RX thread_index %d (%s)!!!!\n",proc->subframe,task_name);
return 0;
}
else {
LOG_I(PHY,"[SCHED][eNB] eNB RX thread CC_id %d SF %d started with id %p\n", /* on CPU %d*/
proc->CC_id,
proc->subframe,
task); /*,rtai_cpuid()*/
}
#else
LOG_I(PHY,"[SCHED][eNB] eNB RX thread %d started on CPU %d\n",
proc->subframe,sched_getcpu());
#endif
mlockall(MCL_CURRENT | MCL_FUTURE);
//rt_set_runnable_on_cpuid(task,1);
//cpuid = rtai_cpuid();
#ifdef HARD_RT
rt_make_hard_real_time();
#endif
while (!oai_exit){
vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RX0+(2*proc->subframe),0);
// LOG_I(PHY,"Locking mutex for eNB proc %d (IC %d,mutex %p)\n",proc->subframe,proc->instance_cnt,&proc->mutex);
if (pthread_mutex_lock(&proc->mutex_rx) != 0) {
LOG_E(PHY,"[SCHED][eNB] error locking mutex for eNB RX proc %d\n",proc->subframe);
}
else {
while (proc->instance_cnt_rx < 0) {
// LOG_I(PHY,"Waiting and unlocking mutex for eNB proc %d (IC %d,lock %d)\n",proc->subframe,proc->instance_cnt,pthread_mutex_trylock(&proc->mutex));
pthread_cond_wait(&proc->cond_rx,&proc->mutex_rx);
}
// LOG_I(PHY,"Waking up and unlocking mutex for eNB proc %d\n",proc->subframe);
if (pthread_mutex_unlock(&proc->mutex_rx) != 0) {
LOG_E(PHY,"[SCHED][eNB] error unlocking mutex for eNB RX proc %d\n",proc->subframe);
}
}
vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RX0+(2*proc->subframe),1);
if (oai_exit) break;
if ((((PHY_vars_eNB_g[0][proc->CC_id]->lte_frame_parms.frame_type == TDD )&&(subframe_select(&PHY_vars_eNB_g[0][proc->CC_id]->lte_frame_parms,proc->subframe_rx)==SF_UL)) ||
(PHY_vars_eNB_g[0][proc->CC_id]->lte_frame_parms.frame_type == FDD))){
phy_procedures_eNB_RX(proc->subframe,PHY_vars_eNB_g[0][proc->CC_id],0,no_relay);
}
if ((subframe_select(&PHY_vars_eNB_g[0][proc->CC_id]->lte_frame_parms,proc->subframe_rx)==SF_S)){
phy_procedures_eNB_S_RX(proc->subframe,PHY_vars_eNB_g[0][proc->CC_id],0,no_relay);
}
if (pthread_mutex_lock(&proc->mutex_rx) != 0) {
printf("[openair][SCHED][eNB] error locking mutex for eNB RX proc %d\n",proc->subframe);
}
else {
proc->instance_cnt_rx--;
if (pthread_mutex_unlock(&proc->mutex_rx) != 0) {
printf("[openair][SCHED][eNB] error unlocking mutex for eNB RX proc %d\n",proc->subframe);
}
}
proc->frame_rx++;
if (proc->frame_rx==1024)
proc->frame_rx=0;
}
vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RX0+(2*proc->subframe),0);
#ifdef HARD_RT
rt_make_soft_real_time();
#endif
#ifdef DEBUG_THREADS
printf("Exiting eNB thread RX %d\n",proc->subframe);
#endif
// clean task
#ifdef RTAI
rt_task_delete(task);
#else
eNB_thread_rx_status[proc->subframe]=0;
pthread_exit(&eNB_thread_rx_status[proc->subframe]);
#endif
#ifdef DEBUG_THREADS
printf("Exiting eNB RX thread %d\n",proc->subframe);
#endif
}
void init_eNB_proc(void) {
int i;
int CC_id;
for (CC_id=0;CC_idproc[i].instance_cnt_tx=-1;
PHY_vars_eNB_g[0][CC_id]->proc[i].instance_cnt_rx=-1;
PHY_vars_eNB_g[0][CC_id]->proc[i].subframe=i;
PHY_vars_eNB_g[0][CC_id]->proc[i].CC_id = CC_id;
pthread_mutex_init(&PHY_vars_eNB_g[0][CC_id]->proc[i].mutex_tx,NULL);
pthread_mutex_init(&PHY_vars_eNB_g[0][CC_id]->proc[i].mutex_rx,NULL);
pthread_cond_init(&PHY_vars_eNB_g[0][CC_id]->proc[i].cond_tx,NULL);
pthread_cond_init(&PHY_vars_eNB_g[0][CC_id]->proc[i].cond_rx,NULL);
pthread_create(&PHY_vars_eNB_g[0][CC_id]->proc[i].pthread_tx,NULL,eNB_thread_tx,(void*)&PHY_vars_eNB_g[0][CC_id]->proc[i]);
pthread_create(&PHY_vars_eNB_g[0][CC_id]->proc[i].pthread_rx,NULL,eNB_thread_rx,(void*)&PHY_vars_eNB_g[0][CC_id]->proc[i]);
PHY_vars_eNB_g[0][CC_id]->proc[i].frame_tx = 0;
PHY_vars_eNB_g[0][CC_id]->proc[i].frame_rx = 0;
#ifndef USRP
PHY_vars_eNB_g[0][CC_id]->proc[i].subframe_rx = (i+9)%10;
PHY_vars_eNB_g[0][CC_id]->proc[i].subframe_tx = (i+1)%10;
#else
PHY_vars_eNB_g[0][CC_id]->proc[i].subframe_rx = i;
PHY_vars_eNB_g[0][CC_id]->proc[i].subframe_tx = (i+2)%10;
#endif
}
#ifndef USRP
// TX processes subframe + 1, RX subframe -1
// Note this inialization is because the first process awoken for frame 0 is number 1 and so processes 9 and 0 have to start with frame 1
//PHY_vars_eNB_g[0][CC_id]->proc[0].frame_rx = 1023;
PHY_vars_eNB_g[0][CC_id]->proc[9].frame_tx = 1;
PHY_vars_eNB_g[0][CC_id]->proc[0].frame_tx = 1;
#else
// TX processes subframe +2, RX subframe
// Note this inialization is because the first process awoken for frame 0 is number 1 and so processes 8,9 and 0 have to start with frame 1
PHY_vars_eNB_g[0][CC_id]->proc[8].frame_tx = 1;
PHY_vars_eNB_g[0][CC_id]->proc[9].frame_tx = 1;
PHY_vars_eNB_g[0][CC_id]->proc[0].frame_tx = 1;
#endif
}
}
void kill_eNB_proc(void) {
int i;
int *status_tx,*status_rx;
int CC_id;
for (CC_id=0;CC_idproc[i].instance_cnt_tx=0;
pthread_cond_signal(&PHY_vars_eNB_g[0][CC_id]->proc[i].cond_tx);
#ifdef DEBUG_THREADS
printf("Joining eNB TX CC_id %d thread %d...\n",CC_id,i);
#endif
pthread_join(PHY_vars_eNB_g[0][CC_id]->proc[i].pthread_tx,(void**)status_tx);
#ifdef DEBUG_THREADS
if (status_tx) printf("status %d...\n",*status_tx);
#endif
#ifdef DEBUG_THREADS
printf("Killing RX CC_id %d thread %d\n",CC_id,i);
#endif
PHY_vars_eNB_g[0][CC_id]->proc[i].instance_cnt_rx=0;
pthread_cond_signal(&PHY_vars_eNB_g[0][CC_id]->proc[i].cond_rx);
#ifdef DEBUG_THREADS
printf("Joining eNB RX CC_id %d thread %d...\n",CC_id,i);
#endif
pthread_join(PHY_vars_eNB_g[0][CC_id]->proc[i].pthread_rx,(void**)status_rx);
#ifdef DEBUG_THREADS
if (status_rx) printf("status %d...\n",*status_rx);
#endif
pthread_mutex_destroy(&PHY_vars_eNB_g[0][CC_id]->proc[i].mutex_tx);
pthread_mutex_destroy(&PHY_vars_eNB_g[0][CC_id]->proc[i].mutex_rx);
pthread_cond_destroy(&PHY_vars_eNB_g[0][CC_id]->proc[i].cond_tx);
pthread_cond_destroy(&PHY_vars_eNB_g[0][CC_id]->proc[i].cond_rx);
}
}
/* This is the main eNB thread. */
int eNB_thread_status;
static void *eNB_thread(void *arg)
{
#ifdef RTAI
RT_TASK *task;
#endif
#ifndef USRP
unsigned char slot=0;
#else
unsigned char slot=1;
#endif
int frame=0;
int CC_id;
RTIME time_in, time_diff;
int sf;
#ifndef USRP
volatile unsigned int *DAQ_MBOX = openair0_daq_cnt();
int mbox_target=0,mbox_current=0;
int hw_slot,delay_cnt;
int diff;
int ret;
#else
unsigned int rx_cnt = 0;
unsigned int tx_cnt = tx_delay;
// int tx_offset;
hw_subframe = 0;
#endif
#if defined(ENABLE_ITTI)
/* Wait for eNB application initialization to be complete (eNB registration to MME) */
wait_system_ready ("Waiting for eNB application to be ready %s\r", &start_eNB);
#endif
#ifdef RTAI
task = rt_task_init_schmod(nam2num("TASK0"), 0, 0, 0, SCHED_FIFO, 0xF);
#endif
if (!oai_exit) {
#ifdef RTAI
printf("[SCHED][eNB] Started eNB thread (id %p)\n",task);
#else
printf("[SCHED][eNB] Started eNB thread on CPU %d\n",
sched_getcpu());
#endif
#ifdef HARD_RT
rt_make_hard_real_time();
#endif
printf("eNB_thread: mlockall in ...\n");
mlockall(MCL_CURRENT | MCL_FUTURE);
printf("eNB_thread: mlockall out ...\n");
timing_info.time_min = 100000000ULL;
timing_info.time_max = 0;
timing_info.time_avg = 0;
timing_info.n_samples = 0;
#ifdef USRP
printf("waiting for USRP sync \n");
#ifdef RTAI
rt_sem_wait(sync_sem);
#else
//pthread_mutex_lock(&sync_mutex);
pthread_cond_wait(&sync_cond, &sync_mutex);
//pthread_mutex_unlock(&sync_mutex);
#endif
// printf("starting eNB thread @ %llu\n",get_usrp_time(&openair0));
#endif
while (!oai_exit) {
#ifndef USRP
hw_slot = (((((volatile unsigned int *)DAQ_MBOX)[0]+1)%150)<<1)/15;
// LOG_D(HW,"eNB frame %d, time %llu: slot %d, hw_slot %d (mbox %d)\n",frame,rt_get_time_ns(),slot,hw_slot,((unsigned int *)DAQ_MBOX)[0]);
vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_HW_SUBFRAME, hw_slot>>1);
vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_HW_FRAME, frame);
//this is the mbox counter where we should be
mbox_target = mbox_bounds[slot];
//this is the mbox counter where we are
mbox_current = ((volatile unsigned int *)DAQ_MBOX)[0];
//this is the time we need to sleep in order to synchronize with the hw (in multiples of DAQ_PERIOD)
if ((mbox_current>=135) && (mbox_target<15)) //handle the frame wrap-arround
diff = 150-mbox_current+mbox_target;
else if ((mbox_current<15) && (mbox_target>=135))
diff = -150+mbox_target-mbox_current;
else
diff = mbox_target - mbox_current;
if (((slot%2==0) && (diff < (-14))) || ((slot%2==1) && (diff < (-7)))) {
// at the eNB, even slots have double as much time since most of the processing is done here and almost nothing in odd slots
LOG_D(HW,"eNB Frame %d, time %llu: missed slot, proceeding with next one (slot %d, hw_slot %d, diff %d)\n",frame, rt_get_time_ns(), slot, hw_slot, diff);
slot++;
if (frame > 0) {
exit_fun("[HW][eNB] missed slot");
}
if (slot==20){
slot=0;
frame++;
}
continue;
}
if (diff>8)
LOG_D(HW,"eNB Frame %d, time %llu: skipped slot, waiting for hw to catch up (slot %d, hw_slot %d, mbox_current %d, mbox_target %d, diff %d)\n",frame, rt_get_time_ns(), slot, hw_slot, mbox_current, mbox_target, diff);
vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DAQ_MBOX, *DAQ_MBOX);
vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DIFF, diff);
delay_cnt = 0;
while ((diff>0) && (!oai_exit)) {
time_in = rt_get_time_ns();
//LOG_D(HW,"eNB Frame %d delaycnt %d : hw_slot %d (%d), slot %d, (slot+1)*15=%d, diff %d, time %llu\n",frame,delay_cnt,hw_slot,((unsigned int *)DAQ_MBOX)[0],slot,(((slot+1)*15)>>1),diff,time_in);
//LOG_D(HW,"eNB Frame %d, time %llu: sleeping for %llu (slot %d, hw_slot %d, diff %d, mbox %d, delay_cnt %d)\n", frame, time_in, diff*DAQ_PERIOD,slot,hw_slot,diff,((volatile unsigned int *)DAQ_MBOX)[0],delay_cnt);
vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_RT_SLEEP,1);
ret = rt_sleep_ns(diff*DAQ_PERIOD);
vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_RT_SLEEP,0);
vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DAQ_MBOX, *DAQ_MBOX);
if (ret)
LOG_D(HW,"eNB Frame %d, time %llu: rt_sleep_ns returned %d\n",frame, time_in);
hw_slot = (((((volatile unsigned int *)DAQ_MBOX)[0]+1)%150)<<1)/15;
//LOG_D(HW,"eNB Frame %d : hw_slot %d, time %llu\n",frame,hw_slot,rt_get_time_ns());
delay_cnt++;
if (delay_cnt == 10) {
LOG_D(HW,"eNB Frame %d: HW stopped ... \n",frame);
exit_fun("[HW][eNB] HW stopped");
}
mbox_current = ((volatile unsigned int *)DAQ_MBOX)[0];
if ((mbox_current>=135) && (mbox_target<15)) //handle the frame wrap-arround
diff = 150-mbox_current+mbox_target;
else if ((mbox_current<15) && (mbox_target>=135))
diff = -150+mbox_target-mbox_current;
else
diff = mbox_target - mbox_current;
}
#else // USRP
vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_HW_SUBFRAME, hw_subframe);
vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_HW_FRAME, frame);
while (rx_cnt < sf_bounds[hw_subframe]) {
openair0_timestamp time0,time1;
unsigned int rxs;
vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ,1);
/*
// Grab 1/4 of RX buffer and get timestamp
rxs = openair0.trx_read_func(&openair0,
×tamp,
&rxdata[rx_cnt*samples_per_packets],
(samples_per_packets>>2));
if (rxs != (samples_per_packets>>2))
oai_exit=1;
*/
rxs = openair0.trx_read_func(&openair0,
×tamp,
&rxdata[rx_cnt*samples_per_packets],
samples_per_packets);
if (rxs != samples_per_packets)
oai_exit=1;
vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ,0);
// Transmit TX buffer based on timestamp from RX
vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE,1);
openair0.trx_write_func(&openair0,
(timestamp+samples_per_packets*tx_delay-tx_forward_nsamps),
&txdata[tx_cnt*samples_per_packets],
samples_per_packets,
1);
vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE,0);
/*
// Grab remaining 3/4 of RX buffer
vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ,1);
rxs = openair0.trx_read_func(&openair0,
×tamp,
&rxdata[(rx_cnt*samples_per_packets)+(samples_per_packets>>2)],
3*((samples_per_packets>>2)));
vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ,0);
if (rxs != (3*(samples_per_packets>>2)))
oai_exit=1;
*/
rx_cnt++;
tx_cnt++;
if(tx_cnt == max_cnt)
tx_cnt = 0;
}
if(rx_cnt == max_cnt)
rx_cnt = 0;
#endif // USRP
if (oai_exit) break;
if (frame>99) {
timing_info.time_last = timing_info.time_now;
timing_info.time_now = rt_get_time_ns();
if (timing_info.n_samples>0) {
time_diff = timing_info.time_now - timing_info.time_last;
if (time_diff < timing_info.time_min)
timing_info.time_min = time_diff;
if (time_diff > timing_info.time_max)
timing_info.time_max = time_diff;
timing_info.time_avg += time_diff;
}
timing_info.n_samples++;
/*
if ((timing_info.n_samples%2000)==0) {
LOG_D(HW,"frame %d (%d), slot %d, hw_slot %d: diff=%llu, min=%llu, max=%llu, avg=%llu (n_samples %d)\n",
frame, PHY_vars_eNB_g[0]->frame, slot, hw_slot,time_diff,
timing_info.time_min,timing_info.time_max,timing_info.time_avg/timing_info.n_samples,timing_info.n_samples);
timing_info.n_samples = 0;
timing_info.time_avg = 0;
}
*/
//}
if (multi_thread == 0) {
if ((slot&1) == 0) {
LOG_I(PHY,"[eNB] Single thread slot %d\n",slot);
phy_procedures_eNB_lte ((2+(slot>>1))%10, PHY_vars_eNB_g[0], 0, no_relay,NULL);
for (CC_id=0;CC_id>1))%10,PHY_vars_eNB_g[0][CC_id]);
}
}
}
else { // multi-thread > 0
if ((slot&1) == 1) {
sf = ((slot>>1)+1)%10;
// LOG_I(PHY,"[eNB] Multithread slot %d (IC %d)\n",slot,PHY_vars_eNB_g[0][CC_id]->proc[sf].instance_cnt);
for (CC_id=0;CC_idproc[sf].mutex_tx) != 0) {
LOG_E(PHY,"[eNB] ERROR pthread_mutex_lock for eNB TX thread %d (IC %d)\n",sf,PHY_vars_eNB_g[0][CC_id]->proc[sf].instance_cnt_tx);
}
else {
// LOG_I(PHY,"[eNB] Waking up eNB process %d (IC %d)\n",sf,PHY_vars_eNB_g[0][CC_id]->proc[sf].instance_cnt);
PHY_vars_eNB_g[0][CC_id]->proc[sf].instance_cnt_tx++;
pthread_mutex_unlock(&PHY_vars_eNB_g[0][CC_id]->proc[sf].mutex_tx);
if (PHY_vars_eNB_g[0][CC_id]->proc[sf].instance_cnt_tx == 0) {
if (pthread_cond_signal(&PHY_vars_eNB_g[0][CC_id]->proc[sf].cond_tx) != 0) {
LOG_E(PHY,"[eNB] ERROR pthread_cond_signal for eNB TX thread %d\n",sf);
}
}
else {
LOG_W(PHY,"[eNB] Frame %d, eNB TX thread %d busy!!\n",PHY_vars_eNB_g[0][CC_id]->proc[sf].frame_tx,sf);
oai_exit=1;
}
}
if (pthread_mutex_lock(&PHY_vars_eNB_g[0][CC_id]->proc[sf].mutex_rx) != 0) {
LOG_E(PHY,"[eNB] ERROR pthread_mutex_lock for eNB RX thread %d (IC %d)\n",sf,PHY_vars_eNB_g[0][CC_id]->proc[sf].instance_cnt_rx);
}
else {
// LOG_I(PHY,"[eNB] Waking up eNB process %d (IC %d)\n",sf,PHY_vars_eNB_g[0][CC_id]->proc[sf].instance_cnt);
PHY_vars_eNB_g[0][CC_id]->proc[sf].instance_cnt_rx++;
pthread_mutex_unlock(&PHY_vars_eNB_g[0][CC_id]->proc[sf].mutex_rx);
if (PHY_vars_eNB_g[0][CC_id]->proc[sf].instance_cnt_rx == 0) {
if (pthread_cond_signal(&PHY_vars_eNB_g[0][CC_id]->proc[sf].cond_rx) != 0) {
LOG_E(PHY,"[eNB] ERROR pthread_cond_signal for eNB RX thread %d\n",sf);
}
}
else {
LOG_W(PHY,"[eNB] Frame %d, eNB RX thread %d busy!!\n",PHY_vars_eNB_g[0][CC_id]->proc[sf].frame_rx,sf);
oai_exit=1;
}
}
}
}
}
}
#ifndef RTAI
//pthread_mutex_lock(&tti_mutex);
#endif
#ifndef USRP
slot++;
if (slot == 20) {
frame++;
slot = 0;
}
#else
hw_subframe++;
slot+=2;
if(hw_subframe==10) {
hw_subframe = 0;
frame++;
slot = 1;
}
#endif
#if defined(ENABLE_ITTI)
itti_update_lte_time(frame, slot);
#endif
}
}
#ifdef DEBUG_THREADS
printf("eNB_thread: finished, ran %d times.\n",frame);
#endif
#ifdef HARD_RT
rt_make_soft_real_time();
#endif
#ifdef DEBUG_THREADS
printf("Exiting eNB_thread ...");
#endif
// clean task
#ifdef RTAI
rt_task_delete(task);
#else
eNB_thread_status = 0;
pthread_exit(&eNB_thread_status);
#endif
#ifdef DEBUG_THREADS
printf("eNB_thread deleted. returning\n");
#endif
return 0;
}
#ifndef USRP
/* This is the main UE thread. Initially it is doing a periodic get_frame. One synchronized it gets woken up by the kernel driver using the RTAI message mechanism (rt_send and rt_receive). */
static void *UE_thread(void *arg) {
#ifdef RTAI
RT_TASK *task;
#endif
// RTIME in, out, diff;
int slot=0,frame=0,hw_slot,last_slot, next_slot;
// unsigned int aa;
static int is_synchronized = 0;
int delay_cnt;
RTIME time_in;
int hw_slot_offset=0,rx_offset_mbox=0,mbox_target=0,mbox_current=0;
int diff2;
int i, ret;
volatile unsigned int *DAQ_MBOX = openair0_daq_cnt();
#ifndef USRP
//exmimo_config_t *p_exmimo_config = openair0_exmimo_pci[card].exmimo_config_ptr;;
#endif
#if defined(ENABLE_ITTI) && defined(ENABLE_USE_MME)
/* Wait for NAS UE to start cell selection */
wait_system_ready ("Waiting for UE to be activated by UserProcess %s\r", &start_UE);
#endif
#ifdef RTAI
task = rt_task_init_schmod(nam2num("TASK0"), 0, 0, 0, SCHED_FIFO, 0xF);
LOG_D(HW,"Started UE thread (id %p)\n",task);
#endif
#ifdef HARD_RT
rt_make_hard_real_time();
#endif
mlockall(MCL_CURRENT | MCL_FUTURE);
openair_daq_vars.freq_offset = 0; //-7500;
/*
if (mode == rx_calib_ue) {
openair_daq_vars.freq_offset = -7500;
for (i=0; i<4; i++) {
p_exmimo_config->rf.rf_freq_rx[i] = p_exmimo_config->rf.rf_freq_rx[i]+openair_daq_vars.freq_offset;
p_exmimo_config->rf.rf_freq_tx[i] = p_exmimo_config->rf.rf_freq_rx[i]+openair_daq_vars.freq_offset;
}
openair0_dump_config(0);
}
*/
while (!oai_exit) {
hw_slot = (((((volatile unsigned int *)DAQ_MBOX)[0]+1)%150)<<1)/15; //the slot the hw is about to store
if (is_synchronized) {
//this is the mbox counter that indicates the start of the frame
rx_offset_mbox = (PHY_vars_UE_g[0][0]->rx_offset * 150) / (10*PHY_vars_UE_g[0][0]->lte_frame_parms.samples_per_tti);
//this is the mbox counter where we should be
mbox_target = (((((slot+1)%20)*15+1)>>1) + rx_offset_mbox + 1)%150;
// round up to the next multiple of two (mbox counter from express MIMO gives only even numbers)
mbox_target = ((mbox_target+1)-((mbox_target-1)%2))%150;
//this is the mbox counter where we are
mbox_current = ((volatile unsigned int *)DAQ_MBOX)[0];
//this is the time we need to sleep in order to synchronize with the hw (in multiples of DAQ_PERIOD)
if ((mbox_current>=120) && (mbox_target<30)) //handle the frame wrap-arround
diff2 = 150-mbox_current+mbox_target;
else if ((mbox_current<30) && (mbox_target>=120))
diff2 = -150+mbox_target-mbox_current;
else
diff2 = mbox_target - mbox_current;
if (diff2 <(-7)) {
LOG_D(HW,"UE Frame %d: missed slot, proceeding with next one (slot %d, hw_slot %d, diff %d)\n",frame, slot, hw_slot, diff2);
if (frame>0)
exit_fun("[HW][UE] missed slot");
slot++;
if (slot==20) {
slot=0;
frame++;
}
continue;
}
if (diff2>8)
LOG_D(HW,"UE Frame %d: skipped slot, waiting for hw to catch up (slot %d, hw_slot %d, mbox_current %d, mbox_target %d, diff %d)\n",frame, slot, hw_slot, mbox_current, mbox_target, diff2);
/*
if (frame%100==0)
LOG_D(HW,"frame %d (%d), slot %d, hw_slot %d, rx_offset_mbox %d, mbox_target %d, mbox_current %d, diff %d\n",frame, PHY_vars_UE_g[0]->frame, slot,hw_slot,rx_offset_mbox,mbox_target,mbox_current,diff2);
*/
vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DAQ_MBOX, *DAQ_MBOX);
vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DIFF, diff2);
delay_cnt = 0;
while ((diff2>0) && (!oai_exit) && (is_synchronized) ) {
time_in = rt_get_time_ns();
//LOG_D(HW,"eNB Frame %d delaycnt %d : hw_slot %d (%d), slot %d (%d), diff %d, time %llu\n",frame,delay_cnt,hw_slot,((volatile unsigned int *)DAQ_MBOX)[0],slot,mbox_target,diff2,time_in);
vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DAQ_MBOX, *DAQ_MBOX);
vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_RT_SLEEP,1);
ret = rt_sleep_ns(diff2*DAQ_PERIOD);
vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_RT_SLEEP,0);
vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DAQ_MBOX, *DAQ_MBOX);
if (ret)
LOG_D(HW,"eNB Frame %d, time %llu: rt_sleep_ns returned %d\n",frame, time_in);
hw_slot = (((((volatile unsigned int *)DAQ_MBOX)[0]+1)%150)<<1)/15;
//LOG_D(HW,"eNB Frame %d : hw_slot %d, time %llu\n",frame,hw_slot,rt_get_time_ns());
delay_cnt++;
if (delay_cnt == 30) {
LOG_D(HW,"UE frame %d: HW stopped ... \n",frame);
exit_fun("[HW][UE] HW stopped");
}
mbox_current = ((volatile unsigned int *)DAQ_MBOX)[0];
if ((mbox_current>=135) && (mbox_target<15)) //handle the frame wrap-arround
diff2 = 150-mbox_current+mbox_target;
else if ((mbox_current<15) && (mbox_target>=135))
diff2 = -150+mbox_target-mbox_current;
else
diff2 = mbox_target - mbox_current;
vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DAQ_MBOX, *DAQ_MBOX);
vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DIFF, diff2);
}
}
last_slot = (slot)%LTE_SLOTS_PER_FRAME;
if (last_slot <0)
last_slot+=LTE_SLOTS_PER_FRAME;
next_slot = (slot+3)%LTE_SLOTS_PER_FRAME;
if (is_synchronized) {
phy_procedures_UE_lte (last_slot, next_slot, PHY_vars_UE_g[0][0], 0, 0,mode,0,NULL);
}
else { // we are not yet synchronized
hw_slot_offset = 0;
slot = 0;
openair0_get_frame(0);
// LOG_D(HW,"after get_frame\n");
// rt_sleep_ns(FRAME_PERIOD);
// LOG_D(HW,"after sleep\n");
if (initial_sync(PHY_vars_UE_g[0][0],mode)==0) {
/*
lte_adjust_synch(&PHY_vars_UE_g[0]->lte_frame_parms,
PHY_vars_UE_g[0],
0,
1,
16384);
*/
//for better visualization afterwards
/*
for (aa=0; aalte_frame_parms.nb_antennas_rx; aa++)
memset(PHY_vars_UE_g[0]->lte_ue_common_vars.rxdata[aa],0,
PHY_vars_UE_g[0]->lte_frame_parms.samples_per_tti*LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*sizeof(int));
*/
if (mode == rx_calib_ue) {
exit_fun("[HW][UE] UE in RX calibration mode");
}
else {
is_synchronized = 1;
//start the DMA transfers
//LOG_D(HW,"Before openair0_start_rt_acquisition \n");
openair0_start_rt_acquisition(0);
hw_slot_offset = (PHY_vars_UE_g[0][0]->rx_offset<<1) / PHY_vars_UE_g[0][0]->lte_frame_parms.samples_per_tti;
LOG_D(HW,"Got synch: hw_slot_offset %d\n",hw_slot_offset);
}
}
else {
if (openair_daq_vars.freq_offset >= 0) {
openair_daq_vars.freq_offset += 100;
openair_daq_vars.freq_offset *= -1;
}
else {
openair_daq_vars.freq_offset *= -1;
}
if (abs(openair_daq_vars.freq_offset) > 7500) {
LOG_I(PHY,"[initial_sync] No cell synchronization found, abondoning\n");
mac_xface->macphy_exit("No cell synchronization found, abondoning");
}
else {
LOG_I(PHY,"[initial_sync] trying carrier off %d Hz\n",openair_daq_vars.freq_offset);
#ifndef USRP
for (card=0;cardN_RB_DL=6;
frame_parms[CC_id]->N_RB_UL=6;
break;
case 25:
frame_parms[CC_id]->N_RB_DL=25;
frame_parms[CC_id]->N_RB_UL=25;
break;
case 50:
frame_parms[CC_id]->N_RB_DL=50;
frame_parms[CC_id]->N_RB_UL=50;
break;
case 100:
frame_parms[CC_id]->N_RB_DL=100;
frame_parms[CC_id]->N_RB_UL=100;
break;
default:
printf("Unknown N_RB_DL %d, switching to 25\n",atoi(optarg));
break;
}
}
break;
case 's':
#ifdef USRP
clock_src = atoi(optarg);
if (clock_src == 0) {
// char ref[128] = "internal";
//strncpy(uhd_ref, ref, strlen(ref)+1);
}
else if (clock_src == 1) {
//char ref[128] = "external";
//strncpy(uhd_ref, ref, strlen(ref)+1);
}
#else
printf("Note: -s not defined for ExpressMIMO2\n");
#endif
break;
case 'g':
glog_level=atoi(optarg); // value between 1 - 9
break;
case 'G':
glog_verbosity=atoi(optarg);// value from 0, 0x5, 0x15, 0x35, 0x75
break;
default:
break;
}
}
if ((UE_flag == 0) && (conf_config_file_name != NULL)) {
int i;
NB_eNB_INST = 1;
/* Read eNB configuration file */
enb_properties = enb_config_init(conf_config_file_name);
AssertFatal (NB_eNB_INST <= enb_properties->number,
"Number of eNB is greater than eNB defined in configuration file %s (%d/%d)!",
conf_config_file_name, NB_eNB_INST, enb_properties->number);
/* Update some simulation parameters */
for (i=0; i < enb_properties->number; i++) {
AssertFatal (MAX_NUM_CCs == enb_properties->properties[i]->nb_cc,
"lte-softmodem compiled with MAX_NUM_CCs=%d, but only %d CCs configured for eNB %d!",
MAX_NUM_CCs, enb_properties->properties[i]->nb_cc, i);
for (CC_id=0;CC_idframe_type = enb_properties->properties[i]->frame_type[CC_id];
frame_parms[CC_id]->tdd_config = enb_properties->properties[i]->tdd_config[CC_id];
frame_parms[CC_id]->tdd_config_S = enb_properties->properties[i]->tdd_config_s[CC_id];
frame_parms[CC_id]->Ncp = enb_properties->properties[i]->prefix_type[CC_id];
//for (j=0; j < enb_properties->properties[i]->nb_cc; j++ ){
frame_parms[CC_id]->Nid_cell = enb_properties->properties[i]->Nid_cell[CC_id];
frame_parms[CC_id]->N_RB_DL = enb_properties->properties[i]->N_RB_DL[CC_id];
//} // j
}
glog_level = enb_properties->properties[i]->glog_level;
glog_verbosity = enb_properties->properties[i]->glog_verbosity;
hw_log_level = enb_properties->properties[i]->hw_log_level;
hw_log_verbosity = enb_properties->properties[i]->hw_log_verbosity ;
phy_log_level = enb_properties->properties[i]->phy_log_level;
phy_log_verbosity = enb_properties->properties[i]->phy_log_verbosity;
mac_log_level = enb_properties->properties[i]->mac_log_level;
mac_log_verbosity = enb_properties->properties[i]->mac_log_verbosity;
rlc_log_level = enb_properties->properties[i]->rlc_log_level;
rlc_log_verbosity = enb_properties->properties[i]->rlc_log_verbosity;
pdcp_log_level = enb_properties->properties[i]->pdcp_log_level;
pdcp_log_verbosity = enb_properties->properties[i]->pdcp_log_verbosity;
rrc_log_level = enb_properties->properties[i]->rrc_log_level;
rrc_log_verbosity = enb_properties->properties[i]->rrc_log_verbosity;
// adjust the log
for (CC_id=0; CC_idproperties[i]->downlink_frequency[CC_id];
uplink_frequency_offset[CC_id][k] = enb_properties->properties[i]->uplink_frequency_offset[CC_id];
}
printf("Downlink frequency/ uplink offset of CC_id %d set to %llu/%d\n", CC_id,
enb_properties->properties[i]->downlink_frequency[CC_id],
enb_properties->properties[i]->uplink_frequency_offset[CC_id]);
} // CC_id
}// i
}
}
int main(int argc, char **argv) {
#ifdef RTAI
// RT_TASK *task;
#else
int *eNB_thread_status_p;
// int *eNB_thread_status_rx[10],*eNB_thread_status_tx[10];
#endif
int i,j,aa;
#if defined (XFORMS) || defined (EMOS) || (! defined (RTAI))
void *status;
#endif
int CC_id;
uint16_t Nid_cell = 0;
uint8_t cooperation_flag=0, transmission_mode=1, abstraction_flag=0;
#ifndef OPENAIR2
uint8_t beta_ACK=0,beta_RI=0,beta_CQI=2;
#endif
#ifdef ENABLE_TCXO
unsigned int tcxo = 114;
#endif
// int amp;
// uint8_t prach_fmt;
// int N_ZC;
// int ret, ant;
int ant_offset=0;
#ifdef XFORMS
int ret;
#endif
#if defined (EMOS) || (! defined (RTAI))
int error_code;
#endif
memset(&openair0_cfg[0],0,sizeof(openair0_config_t)*MAX_CARDS);
set_latency_target();
mode = normal_txrx;
for (CC_id=0;CC_idframe_type = TDD; /* TDD */
frame_parms[CC_id]->tdd_config = 3;
frame_parms[CC_id]->tdd_config_S = 0;
frame_parms[CC_id]->N_RB_DL = 25;
frame_parms[CC_id]->N_RB_UL = 25;
frame_parms[CC_id]->Ncp = NORMAL;
frame_parms[CC_id]->Ncp_UL = NORMAL;
frame_parms[CC_id]->Nid_cell = Nid_cell;
}
get_options (argc, argv); //Command-line options
//randominit (0);
set_taus_seed (0);
// initialize the log (see log.h for details)
logInit();
set_glog(glog_level, glog_verbosity);
if (UE_flag==1)
{
printf("configuring for UE\n");
set_comp_log(HW, LOG_INFO, LOG_HIGH, 1);
#ifdef OPENAIR2
set_comp_log(PHY, LOG_INFO, LOG_HIGH, 1);
#else
set_comp_log(PHY, LOG_INFO, LOG_HIGH, 1);
#endif
set_comp_log(MAC, LOG_INFO, LOG_HIGH, 1);
set_comp_log(RLC, LOG_INFO, LOG_HIGH, 1);
set_comp_log(PDCP, LOG_INFO, LOG_HIGH, 1);
set_comp_log(OTG, LOG_INFO, LOG_HIGH, 1);
set_comp_log(RRC, LOG_INFO, LOG_HIGH, 1);
#if defined(ENABLE_ITTI)
set_comp_log(EMU, LOG_INFO, LOG_MED, 1);
# if defined(ENABLE_USE_MME)
set_comp_log(NAS, LOG_INFO, LOG_HIGH, 1);
# endif
#endif
}
else
{
printf("configuring for eNB\n");
set_comp_log(HW, hw_log_level, hw_log_verbosity, 1);
#ifdef OPENAIR2
set_comp_log(PHY, phy_log_level, phy_log_verbosity, 1);
#else
set_comp_log(PHY, LOG_INFO, LOG_HIGH, 1);
#endif
set_comp_log(MAC, mac_log_level, mac_log_verbosity, 1);
set_comp_log(RLC, rlc_log_level, rlc_log_verbosity, 1);
set_comp_log(PDCP, pdcp_log_level, pdcp_log_verbosity, 1);
set_comp_log(RRC, rrc_log_level, rrc_log_verbosity, 1);
#if defined(ENABLE_ITTI)
set_comp_log(EMU, LOG_INFO, LOG_MED, 1);
# if defined(ENABLE_USE_MME)
set_comp_log(UDP_, LOG_DEBUG, LOG_HIGH, 1);
set_comp_log(GTPU, LOG_DEBUG, LOG_HIGH, 1);
set_comp_log(S1AP, LOG_DEBUG, LOG_HIGH, 1);
set_comp_log(SCTP, LOG_INFO, LOG_HIGH, 1);
# endif
#if defined(ENABLE_SECURITY)
set_comp_log(OSA, LOG_DEBUG, LOG_HIGH, 1);
#endif
#endif
set_comp_log(ENB_APP, LOG_INFO, LOG_HIGH, 1);
set_comp_log(OTG, LOG_INFO, LOG_HIGH, 1);
if (online_log_messages == 1) {
set_component_filelog(RRC);
set_component_filelog(PDCP);
}
}
if (ouput_vcd) {
if (UE_flag==1)
vcd_signal_dumper_init("/tmp/openair_dump_UE.vcd");
else
vcd_signal_dumper_init("/tmp/openair_dump_eNB.vcd");
}
#if defined(ENABLE_ITTI)
if (UE_flag == 1) {
log_set_instance_type (LOG_INSTANCE_UE);
}
else {
log_set_instance_type (LOG_INSTANCE_ENB);
}
itti_init(TASK_MAX, THREAD_MAX, MESSAGES_ID_MAX, tasks_info, messages_info, messages_definition_xml, itti_dump_file);
#endif
#ifdef NAS_NETLINK
netlink_init();
#endif
#if !defined(ENABLE_ITTI)
// to make a graceful exit when ctrl-c is pressed
signal(SIGSEGV, signal_handler);
signal(SIGINT, signal_handler);
#endif
#ifndef RTAI
check_clock();
#endif
// init the parameters
for (CC_id=0;CC_idnushift = 0;
if (UE_flag==0)
{
switch (transmission_mode) {
case 1:
frame_parms[CC_id]->nb_antennas_tx = 1;
frame_parms[CC_id]->nb_antennas_rx = 1;
break;
case 2:
case 5:
case 6:
frame_parms[CC_id]->nb_antennas_tx = 2;
frame_parms[CC_id]->nb_antennas_rx = 2;
break;
default:
printf("Unsupported transmission mode %d\n",transmission_mode);
exit(-1);
}
}
else
{ //UE_flag==1
frame_parms[CC_id]->nb_antennas_tx = 1;
frame_parms[CC_id]->nb_antennas_rx = 1;
}
frame_parms[CC_id]->nb_antennas_tx_eNB = (transmission_mode == 1) ? 1 : 2; //initial value overwritten by initial sync later
frame_parms[CC_id]->mode1_flag = (transmission_mode == 1) ? 1 : 0;
frame_parms[CC_id]->phich_config_common.phich_resource = oneSixth;
frame_parms[CC_id]->phich_config_common.phich_duration = normal;
// UL RS Config
frame_parms[CC_id]->pusch_config_common.ul_ReferenceSignalsPUSCH.cyclicShift = 0;//n_DMRS1 set to 0
frame_parms[CC_id]->pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = 0;
frame_parms[CC_id]->pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = 0;
frame_parms[CC_id]->pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = 0;
init_ul_hopping(frame_parms[CC_id]);
init_frame_parms(frame_parms[CC_id],1);
phy_init_top(frame_parms[CC_id]);
}
phy_init_lte_top(frame_parms[0]);
for (CC_id=0;CC_idprach_config_common.rootSequenceIndex=22;
frame_parms[CC_id]->prach_config_common.prach_ConfigInfo.zeroCorrelationZoneConfig=1;
frame_parms[CC_id]->prach_config_common.prach_ConfigInfo.prach_ConfigIndex=0;
frame_parms[CC_id]->prach_config_common.prach_ConfigInfo.highSpeedFlag=0;
frame_parms[CC_id]->prach_config_common.prach_ConfigInfo.prach_FreqOffset=0;
// prach_fmt = get_prach_fmt(frame_parms->prach_config_common.prach_ConfigInfo.prach_ConfigIndex, frame_parms->frame_type);
// N_ZC = (prach_fmt <4)?839:139;
}
if (UE_flag==1) {
PHY_vars_UE_g = malloc(sizeof(PHY_VARS_UE**));
PHY_vars_UE_g[0] = malloc(sizeof(PHY_VARS_UE*)*MAX_NUM_CCs);
for (CC_id=0;CC_idpusch_config_dedicated[i].betaOffset_ACK_Index = beta_ACK;
PHY_vars_UE_g[0][CC_id]->pusch_config_dedicated[i].betaOffset_RI_Index = beta_RI;
PHY_vars_UE_g[0][CC_id]->pusch_config_dedicated[i].betaOffset_CQI_Index = beta_CQI;
PHY_vars_UE_g[0][CC_id]->scheduling_request_config[i].sr_PUCCH_ResourceIndex = UE_id;
PHY_vars_UE_g[0][CC_id]->scheduling_request_config[i].sr_ConfigIndex = 7+(UE_id%3);
PHY_vars_UE_g[0][CC_id]->scheduling_request_config[i].dsr_TransMax = sr_n4;
}
#endif
compute_prach_seq(&PHY_vars_UE_g[0][CC_id]->lte_frame_parms.prach_config_common,
PHY_vars_UE_g[0][CC_id]->lte_frame_parms.frame_type,
PHY_vars_UE_g[0][CC_id]->X_u);
PHY_vars_UE_g[0][CC_id]->lte_ue_pdcch_vars[0]->crnti = 0x1234;
#ifndef OPENAIR2
PHY_vars_UE_g[0][CC_id]->lte_ue_pdcch_vars[0]->crnti = 0x1235;
#endif
#ifndef USRP
for (i=0;i<4;i++) {
PHY_vars_UE_g[0][CC_id]->rx_gain_max[i] = rxg_max[i];
PHY_vars_UE_g[0][CC_id]->rx_gain_med[i] = rxg_med[i];
PHY_vars_UE_g[0][CC_id]->rx_gain_byp[i] = rxg_byp[i];
}
if ((mode == normal_txrx) || (mode == rx_calib_ue) || (mode == no_L2_connect) || (mode == debug_prach)) {
for (i=0;i<4;i++)
rx_gain_mode[CC_id][i] = max_gain;
PHY_vars_UE_g[0][CC_id]->rx_total_gain_dB = PHY_vars_UE_g[0][CC_id]->rx_gain_max[0] + (int)rx_gain[CC_id][0] - 30; //-30 because it was calibrated with a 30dB gain
}
else if ((mode == rx_calib_ue_med)) {
for (i=0;i<4;i++)
rx_gain_mode[CC_id][i] = med_gain;
PHY_vars_UE_g[0][CC_id]->rx_total_gain_dB = PHY_vars_UE_g[0][CC_id]->rx_gain_med[0] + (int)rx_gain[CC_id][0] - 30; //-30 because it was calibrated with a 30dB gain;
}
else if ((mode == rx_calib_ue_byp)) {
for (i=0;i<4;i++)
rx_gain_mode[CC_id][i] = byp_gain;
PHY_vars_UE_g[0][CC_id]->rx_total_gain_dB = PHY_vars_UE_g[0][CC_id]->rx_gain_byp[0] + (int)rx_gain[CC_id][0] - 30; //-30 because it was calibrated with a 30dB gain;
}
#else
PHY_vars_UE_g[0][CC_id]->rx_total_gain_dB = (int)rx_gain[CC_id][0];
#endif
PHY_vars_UE_g[0][CC_id]->tx_power_max_dBm = tx_max_power[CC_id];
}
NB_UE_INST=1;
NB_INST=1;
openair_daq_vars.manual_timing_advance = 0;
//openair_daq_vars.timing_advance = TIMING_ADVANCE_HW;
openair_daq_vars.rx_gain_mode = DAQ_AGC_ON;
openair_daq_vars.auto_freq_correction = 0;
openair_daq_vars.use_ia_receiver = 0;
// printf("tx_max_power = %d -> amp %d\n",tx_max_power,get_tx_amp(tx_max_power,tx_max_power));
}
else
{ //this is eNB
PHY_vars_eNB_g = malloc(sizeof(PHY_VARS_eNB**));
PHY_vars_eNB_g[0] = malloc(sizeof(PHY_VARS_eNB*));
for (CC_id=0;CC_idCC_id = CC_id;
#ifndef OPENAIR2
for (i=0;ipusch_config_dedicated[i].betaOffset_ACK_Index = beta_ACK;
PHY_vars_eNB_g[0][CC_id]->pusch_config_dedicated[i].betaOffset_RI_Index = beta_RI;
PHY_vars_eNB_g[0][CC_id]->pusch_config_dedicated[i].betaOffset_CQI_Index = beta_CQI;
PHY_vars_eNB_g[0][CC_id]->scheduling_request_config[i].sr_PUCCH_ResourceIndex = i;
PHY_vars_eNB_g[0][CC_id]->scheduling_request_config[i].sr_ConfigIndex = 7+(i%3);
PHY_vars_eNB_g[0][CC_id]->scheduling_request_config[i].dsr_TransMax = sr_n4;
}
#endif
compute_prach_seq(&PHY_vars_eNB_g[0][CC_id]->lte_frame_parms.prach_config_common,
PHY_vars_eNB_g[0][CC_id]->lte_frame_parms.frame_type,
PHY_vars_eNB_g[0][CC_id]->X_u);
#ifdef USRP
PHY_vars_eNB_g[0][CC_id]->rx_total_gain_eNB_dB = (int)rx_gain[CC_id][0];
#else
PHY_vars_eNB_g[0][CC_id]->rx_total_gain_eNB_dB = rxg_max[0] + (int)rx_gain[CC_id][0] - 30; //was measured at rxgain=30;
// set eNB to max gain
for (i=0;i<4;i++)
rx_gain_mode[CC_id][i] = max_gain;
#endif
}
NB_eNB_INST=1;
NB_INST=1;
openair_daq_vars.ue_dl_rb_alloc=0x1fff;
openair_daq_vars.target_ue_dl_mcs=target_dl_mcs;
openair_daq_vars.ue_ul_nb_rb=6;
openair_daq_vars.target_ue_ul_mcs=target_ul_mcs;
}
dump_frame_parms(frame_parms[0]);
if(frame_parms[0]->N_RB_DL == 100) {
sample_rate = 30.72e6;
#ifdef USRP
samples_per_packets = 2048;
samples_per_frame = 307200;
// from usrp_time_offset
tx_forward_nsamps = 175;
sf_bounds = sf_bounds_20;
max_cnt = 150;
tx_delay = 8;
#endif
}
else if(frame_parms[0]->N_RB_DL == 50){
sample_rate = 15.36e6;
#ifdef USRP
samples_per_packets = 2048;
samples_per_frame = 153600;
tx_forward_nsamps = 95;
sf_bounds = sf_bounds_10;
max_cnt = 75;
tx_delay = 4;
#endif
}
else if (frame_parms[0]->N_RB_DL == 25) {
sample_rate = 7.68e6;
#ifdef USRP
samples_per_packets = 1024;
samples_per_frame = 76800;
tx_forward_nsamps = 70;
sf_bounds = sf_bounds_5;
max_cnt = 75;
tx_delay = 8;
#endif
}
for (card=0;carddl_phy_sync_success (0, 0, 0, 1);
else
mac_xface->mrbch_phy_sync_failure (0, 0, 0);
#endif
mac_xface->macphy_exit = &exit_fun;
#if defined(ENABLE_ITTI)
if (create_tasks(UE_flag ? 0 : 1, UE_flag ? 1 : 0) < 0) {
printf("cannot create ITTI tasks\n");
exit(-1); // need a softer mode
}
printf("ITTI tasks created\n");
#endif
#ifdef OPENAIR2
//if (otg_enabled) {
init_all_otg(0);
g_otg->seed = 0;
init_seeds(g_otg->seed);
g_otg->num_nodes = 2;
for (i=0; inum_nodes; i++){
for (j=0; jnum_nodes; j++){
g_otg->application_idx[i][j] = 1;
//g_otg->packet_gen_type=SUBSTRACT_STRING;
g_otg->aggregation_level[i][j][0]=1;
g_otg->application_type[i][j][0] = BCBR; //MCBR, BCBR
}
}
init_predef_traffic(UE_flag ? 1 : 0, UE_flag ? 0 : 1);
// }
#endif
// number_of_cards = openair0_num_detected_cards;
openair_daq_vars.timing_advance = 0;
openair0_rf_map rf_map[MAX_NUM_CCs];
for(CC_id=0;CC_idsamples_per_tti*10; i++)
for (aa=0; aanb_antennas_tx; aa++)
PHY_vars_UE_g[0][CC_id]->lte_ue_common_vars.txdata[aa][i] = 0x00010001;
}
//p_exmimo_config->framing.tdd_config = TXRXSWITCH_TESTRX;
}
else {
if (setup_eNB_buffers(PHY_vars_eNB_g[0],&openair0_cfg[0],rf_map)!=0) {
printf("Error setting up eNB buffer\n");
exit(-1);
}
printf("Setting eNB buffer to all-RX\n");
// Set LSBs for antenna switch (ExpressMIMO)
for (CC_id=0;CC_idsamples_per_tti*10; i++)
for (aa=0; aanb_antennas_tx; aa++)
PHY_vars_eNB_g[0][CC_id]->lte_eNB_common_vars.txdata[0][aa][i] = 0x00010001;
}
}
#ifndef USRP
openair0_dump_config(&openair0_cfg[0],UE_flag);
#endif
/*
for (ant=0;ant<4;ant++)
p_exmimo_config->rf.do_autocal[ant] = 0;
*/
#ifdef EMOS
error_code = rtf_create(CHANSOUNDER_FIFO_MINOR,CHANSOUNDER_FIFO_SIZE);
if (error_code==0)
printf("[OPENAIR][SCHED][INIT] Created EMOS FIFO %d\n",CHANSOUNDER_FIFO_MINOR);
else if (error_code==ENODEV)
printf("[OPENAIR][SCHED][INIT] Problem: EMOS FIFO %d is greater than or equal to RTF_NO\n",CHANSOUNDER_FIFO_MINOR);
else if (error_code==ENOMEM)
printf("[OPENAIR][SCHED][INIT] Problem: cannot allocate memory for EMOS FIFO %d\n",CHANSOUNDER_FIFO_MINOR);
else
printf("[OPENAIR][SCHED][INIT] Problem creating EMOS FIFO %d, error_code %d\n",CHANSOUNDER_FIFO_MINOR,error_code);
#endif
mlockall(MCL_CURRENT | MCL_FUTURE);
#ifdef RTAI
// make main thread LXRT soft realtime
/* task = */ rt_task_init_schmod(nam2num("MYTASK"), 9, 0, 0, SCHED_FIFO, 0xF);
// start realtime timer and scheduler
//rt_set_oneshot_mode();
rt_set_periodic_mode();
start_rt_timer(0);
//now = rt_get_time() + 10*PERIOD;
//rt_task_make_periodic(task, now, PERIOD);
printf("Init mutex\n");
//mutex = rt_get_adr(nam2num("MUTEX"));
mutex = rt_sem_init(nam2num("MUTEX"), 1);
if (mutex==0)
{
printf("Error init mutex\n");
exit(-1);
}
else
printf("mutex=%p\n",mutex);
#ifdef USRP
sync_sem = rt_typed_sem_init(nam2num("syncsem"), 0, BIN_SEM|FIFO_Q);
if(sync_sem == 0)
printf("error init sync semphore\n");
#endif
#else
#ifdef USRP
pthread_cond_init(&sync_cond,NULL);
pthread_mutex_init(&sync_mutex, NULL);
#endif
#endif
// this starts the DMA transfers
#ifndef USRP
if (UE_flag!=1)
openair0_start_rt_acquisition(0);
#endif
#ifdef XFORMS
if (do_forms==1) {
fl_initialize (&argc, argv, NULL, 0, 0);
form_stats = create_form_stats_form();
if (UE_flag==1) {
form_ue[UE_id] = create_lte_phy_scope_ue();
sprintf (title, "LTE DL SCOPE UE");
fl_show_form (form_ue[UE_id]->lte_phy_scope_ue, FL_PLACE_HOTSPOT, FL_FULLBORDER, title);
} else {
for(UE_id=0;UE_idlte_phy_scope_enb, FL_PLACE_HOTSPOT, FL_FULLBORDER, title);
}
}
fl_show_form (form_stats->stats_form, FL_PLACE_HOTSPOT, FL_FULLBORDER, "stats");
if (UE_flag==0) {
for (UE_id=0;UE_idbutton_0,1);
fl_set_object_label(form_enb[UE_id]->button_0,"DL Traffic ON");
}
else {
fl_set_button(form_enb[UE_id]->button_0,0);
fl_set_object_label(form_enb[UE_id]->button_0,"DL Traffic OFF");
}
}
}
else {
if (openair_daq_vars.use_ia_receiver) {
fl_set_button(form_ue[UE_id]->button_0,1);
fl_set_object_label(form_ue[UE_id]->button_0, "IA Receiver ON");
}
else {
fl_set_button(form_ue[UE_id]->button_0,0);
fl_set_object_label(form_ue[UE_id]->button_0, "IA Receiver OFF");
}
}
ret = pthread_create(&thread2, NULL, scope_thread, NULL);
printf("Scope thread created, ret=%d\n",ret);
}
#endif
#ifdef EMOS
ret = pthread_create(&thread3, NULL, emos_thread, NULL);
printf("EMOS thread created, ret=%d\n",ret);
#endif
rt_sleep_ns(10*FRAME_PERIOD);
#ifndef RTAI
pthread_attr_init (&attr_dlsch_threads);
pthread_attr_setstacksize(&attr_dlsch_threads,OPENAIR_THREAD_STACK_SIZE);
//attr_dlsch_threads.priority = 1;
sched_param_dlsch.sched_priority = 90;//sched_get_priority_max(SCHED_FIFO); //OPENAIR_THREAD_PRIORITY;
pthread_attr_setschedparam (&attr_dlsch_threads, &sched_param_dlsch);
pthread_attr_setschedpolicy (&attr_dlsch_threads, SCHED_FIFO);
#endif
// start the main thread
if (UE_flag == 1) {
#ifndef USRP
#ifdef RTAI
thread1 = rt_thread_create(UE_thread, NULL, 100000000);
#else
error_code = pthread_create(&thread1, &attr_dlsch_threads, UE_thread, NULL);
if (error_code!= 0) {
LOG_D(HW,"[lte-softmodem.c] Could not allocate UE_thread, error %d\n",error_code);
return(error_code);
}
else {
LOG_D(HW,"[lte-softmodem.c] Allocate UE_thread successful\n");
}
#endif
#ifdef DLSCH_THREAD
init_rx_pdsch_thread();
rt_sleep_ns(FRAME_PERIOD/10);
init_dlsch_threads();
#endif
printf("UE threads created\n");
#else
printf("UE functionality not yet supported on USRP");
#endif
}
else {
if (multi_thread>0) {
init_eNB_proc();
LOG_D(HW,"[lte-softmodem.c] eNB threads created\n");
}
printf("Creating eNB_thread \n");
#ifdef RTAI
thread0 = rt_thread_create(eNB_thread, NULL, OPENAIR_THREAD_STACK_SIZE);
#else
error_code = pthread_create(&thread0, &attr_dlsch_threads, eNB_thread, NULL);
if (error_code!= 0) {
LOG_D(HW,"[lte-softmodem.c] Could not allocate eNB_thread, error %d\n",error_code);
return(error_code);
}
else {
LOG_D(HW,"[lte-softmodem.c] Allocate eNB_thread successful\n");
}
#endif
}
// Sleep to allow all threads to setup
sleep(5);
#ifdef USRP
openair0.trx_start_func(&openair0);
// printf("returning from usrp start streaming: %llu\n",get_usrp_time(&openair0));
#ifdef RTAI
rt_sem_signal(sync_sem);
#else
//pthread_mutex_lock(&sync_mutex);
pthread_cond_signal(&sync_cond);
//pthread_mutex_unlock(&sync_mutex);
#endif
#endif
// wait for end of program
printf("TYPE TO TERMINATE\n");
//getchar();
#if defined(ENABLE_ITTI)
printf("Entering ITTI signals handler\n");
itti_wait_tasks_end();
#else
while (oai_exit==0)
rt_sleep_ns(FRAME_PERIOD);
#endif
// stop threads
#ifdef XFORMS
printf("waiting for XFORMS thread\n");
if (do_forms==1)
{
pthread_join(thread2,&status);
fl_hide_form(form_stats->stats_form);
fl_free_form(form_stats->stats_form);
if (UE_flag==1) {
fl_hide_form(form_ue[UE_id]->lte_phy_scope_ue);
fl_free_form(form_ue[UE_id]->lte_phy_scope_ue);
} else {
for(UE_id=0;UE_idlte_phy_scope_enb);
fl_free_form(form_enb[UE_id]->lte_phy_scope_enb);
}
}
}
#endif
printf("stopping MODEM threads\n");
// cleanup
if (UE_flag == 1) {
#ifndef USRP
#ifdef RTAI
rt_thread_join(thread1);
#else
pthread_join(thread1,&status);
#endif
#ifdef DLSCH_THREAD
cleanup_dlsch_threads();
cleanup_rx_pdsch_thread();
#endif
#endif
}
else {
#ifdef RTAI
rt_thread_join(thread0);
#else
#ifdef DEBUG_THREADS
printf("Joining eNB_thread ...");
#endif
pthread_join(thread0,(void**)&eNB_thread_status_p);
#ifdef DEBUG_THREADS
printf("status %d\n",*eNB_thread_status_p);
#endif
#endif
if (multi_thread>0) {
printf("Killing eNB processing threads\n");
kill_eNB_proc();
}
}
#ifdef OPENAIR2
//cleanup_pdcp_thread();
#endif
#ifdef USRP
#ifdef RTAI
rt_sem_delete(sync_sem);
stop_rt_timer();
#else
pthread_cond_destroy(&sync_cond);
pthread_mutex_destroy(&sync_mutex);
#endif
#endif
#ifndef USRP
printf("stopping card\n");
openair0_stop(0);
printf("closing openair0_lib\n");
openair0_close();
#endif
#ifdef EMOS
printf("waiting for EMOS thread\n");
pthread_cancel(thread3);
pthread_join(thread3,&status);
#endif
#ifdef EMOS
error_code = rtf_destroy(CHANSOUNDER_FIFO_MINOR);
printf("[OPENAIR][SCHED][CLEANUP] EMOS FIFO closed, error_code %d\n", error_code);
#endif
if (ouput_vcd)
vcd_signal_dumper_close();
logClean();
return 0;
}
int setup_ue_buffers(PHY_VARS_UE **phy_vars_ue, openair0_config_t *openair0_cfg, openair0_rf_map rf_map[MAX_NUM_CCs])
{
#ifndef USRP
int i, CC_id;
LTE_DL_FRAME_PARMS *frame_parms;
for (CC_id=0;CC_idlte_frame_parms);
}
else {
printf("phy_vars_eNB[%d] not initialized\n", CC_id);
return(-1);
}
openair0_cfg[CC_id].tx_num_channels = 0;
openair0_cfg[CC_id].rx_num_channels = 0;
// replace RX signal buffers with mmaped HW versions
for (i=0;inb_antennas_rx;i++) {
printf("Mapping eNB CC_id %d, rx_ant %d, freq %u on card %d, chain %d\n",CC_id,i,downlink_frequency[CC_id][i],rf_map[CC_id].card,rf_map[CC_id].chain+i);
free(phy_vars_ue[CC_id]->lte_ue_common_vars.rxdata[i]);
phy_vars_ue[CC_id]->lte_ue_common_vars.rxdata[i] = (int32_t*) openair0_exmimo_pci[rf_map[CC_id].card].adc_head[rf_map[CC_id].chain+i];
if (openair0_cfg[rf_map[CC_id].card].rx_freq[rf_map[CC_id].chain+i]) {
printf("Error with rf_map! A channel has already been allocated!\n");
return(-1);
}
else {
openair0_cfg[rf_map[CC_id].card].rx_freq[rf_map[CC_id].chain+i] = downlink_frequency[CC_id][i];
openair0_cfg[rf_map[CC_id].card].rx_gain[rf_map[CC_id].chain+i] = rx_gain[CC_id][i];
openair0_cfg[rf_map[CC_id].card].rxg_mode[rf_map[CC_id].chain+i] = rx_gain_mode[CC_id][i];
openair0_cfg[rf_map[CC_id].card].rx_num_channels++;
}
printf("rxdata[%d] @ %p\n",i,phy_vars_ue[CC_id]->lte_ue_common_vars.rxdata[i]);
}
for (i=0;inb_antennas_tx;i++) {
printf("Mapping eNB CC_id %d, tx_ant %d, freq %u on card %d, chain %d\n",CC_id,i,downlink_frequency[CC_id][i],rf_map[CC_id].card,rf_map[CC_id].chain+i);
free(phy_vars_ue[CC_id]->lte_ue_common_vars.txdata[i]);
phy_vars_ue[CC_id]->lte_ue_common_vars.txdata[i] = (int32_t*) openair0_exmimo_pci[rf_map[CC_id].card].dac_head[rf_map[CC_id].chain+i];
if (openair0_cfg[rf_map[CC_id].card].tx_freq[rf_map[CC_id].chain+i]) {
printf("Error with rf_map! A channel has already been allocated!\n");
return(-1);
}
else {
openair0_cfg[rf_map[CC_id].card].tx_freq[rf_map[CC_id].chain+i] = downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i];
openair0_cfg[rf_map[CC_id].card].tx_gain[rf_map[CC_id].chain+i] = tx_gain[CC_id][i];
openair0_cfg[rf_map[CC_id].card].tx_num_channels++;
}
printf("txdata[%d] @ %p\n",i,phy_vars_ue[CC_id]->lte_ue_common_vars.txdata[i]);
}
}
return(0);
#else
printf("USRP not supported for UE yet!");
return(-1);
#endif
}
/* this function maps the phy_vars_eNB tx and rx buffers to the available rf chains.
Each rf chain is is addressed by the card number and the chain on the card. The
rf_map specifies for each CC, on which rf chain the mapping should start. Multiple
antennas are mapped to successive RF chains on the same card. */
int setup_eNB_buffers(PHY_VARS_eNB **phy_vars_eNB, openair0_config_t *openair0_cfg, openair0_rf_map rf_map[MAX_NUM_CCs]) {
int i, CC_id;
#ifdef USRP
uint16_t N_TA_offset = 0;
#else
int j;
#endif
LTE_DL_FRAME_PARMS *frame_parms;
for (CC_id=0; CC_idlte_frame_parms);
}
else {
printf("phy_vars_eNB[%d] not initialized\n", CC_id);
return(-1);
}
#ifdef USRP
if (frame_parms->frame_type == TDD) {
if (frame_parms->N_RB_DL == 100)
N_TA_offset = 624;
else if (frame_parms->N_RB_DL == 50)
N_TA_offset = 624/2;
else if (frame_parms->N_RB_DL == 25)
N_TA_offset = 624/4;
}
#endif
openair0_cfg[CC_id].tx_num_channels = 0;
openair0_cfg[CC_id].rx_num_channels = 0;
// replace RX signal buffers with mmaped HW versions
#ifndef USRP
for (i=0;inb_antennas_rx;i++) {
printf("Mapping eNB CC_id %d, rx_ant %d, freq %u on card %d, chain %d\n",CC_id,i,downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i],rf_map[CC_id].card,rf_map[CC_id].chain+i);
free(phy_vars_eNB[CC_id]->lte_eNB_common_vars.rxdata[0][i]);
phy_vars_eNB[CC_id]->lte_eNB_common_vars.rxdata[0][i] = (int32_t*) openair0_exmimo_pci[rf_map[CC_id].card].adc_head[rf_map[CC_id].chain+i];
if (openair0_cfg[rf_map[CC_id].card].rx_freq[rf_map[CC_id].chain+i]) {
printf("Error with rf_map! A channel has already been allocated!\n");
return(-1);
}
else {
openair0_cfg[rf_map[CC_id].card].rx_freq[rf_map[CC_id].chain+i] = downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i];
openair0_cfg[rf_map[CC_id].card].rx_gain[rf_map[CC_id].chain+i] = rx_gain[CC_id][i];
openair0_cfg[rf_map[CC_id].card].rxg_mode[rf_map[CC_id].chain+i] = rx_gain_mode[CC_id][i];
openair0_cfg[rf_map[CC_id].card].rx_num_channels++;
}
printf("rxdata[%d] @ %p\n",i,phy_vars_eNB[CC_id]->lte_eNB_common_vars.rxdata[0][i]);
for (j=0;j<16;j++) {
printf("rxbuffer %d: %x\n",j,phy_vars_eNB[CC_id]->lte_eNB_common_vars.rxdata[0][i][j]);
phy_vars_eNB[CC_id]->lte_eNB_common_vars.rxdata[0][i][j] = 16-j;
}
}
for (i=0;inb_antennas_tx;i++) {
printf("Mapping eNB CC_id %d, tx_ant %d, freq %u on card %d, chain %d\n",CC_id,i,downlink_frequency[CC_id][i],rf_map[CC_id].card,rf_map[CC_id].chain+i);
free(phy_vars_eNB[CC_id]->lte_eNB_common_vars.txdata[0][i]);
phy_vars_eNB[CC_id]->lte_eNB_common_vars.txdata[0][i] = (int32_t*) openair0_exmimo_pci[rf_map[CC_id].card].dac_head[rf_map[CC_id].chain+i];
if (openair0_cfg[rf_map[CC_id].card].tx_freq[rf_map[CC_id].chain+i]) {
printf("Error with rf_map! A channel has already been allocated!\n");
return(-1);
}
else {
printf("Setting TX frequency to %d for CC_id %d, card %d, chain %d\n",
downlink_frequency[CC_id][i],CC_id,rf_map[CC_id].card,rf_map[CC_id].chain+i);
openair0_cfg[rf_map[CC_id].card].tx_freq[rf_map[CC_id].chain+i] = downlink_frequency[CC_id][i];
openair0_cfg[rf_map[CC_id].card].tx_gain[rf_map[CC_id].chain+i] = tx_gain[CC_id][i];
openair0_cfg[rf_map[CC_id].card].tx_num_channels++;
}
printf("txdata[%d] @ %p\n",i,phy_vars_eNB[CC_id]->lte_eNB_common_vars.txdata[0][i]);
for (j=0;j<16;j++) {
printf("txbuffer %d: %x\n",j,phy_vars_eNB[CC_id]->lte_eNB_common_vars.txdata[0][i][j]);
phy_vars_eNB[CC_id]->lte_eNB_common_vars.txdata[0][i][j] = 16-j;
}
}
#else // USRP
for (i=0;inb_antennas_rx;i++) {
free(phy_vars_eNB[CC_id]->lte_eNB_common_vars.rxdata[0][i]);
rxdata = (int32_t*)malloc16(samples_per_frame*sizeof(int32_t));
phy_vars_eNB[CC_id]->lte_eNB_common_vars.rxdata[0][i] = rxdata-N_TA_offset; // N_TA offset for TDD
memset(rxdata, 0, samples_per_frame*sizeof(int32_t));
printf("rxdata[%d] @ %p (%p)\n", i, phy_vars_eNB[CC_id]->lte_eNB_common_vars.rxdata[0][i],rxdata);
}
for (i=0;inb_antennas_tx;i++) {
free(phy_vars_eNB[CC_id]->lte_eNB_common_vars.txdata[0][i]);
txdata = (int32_t*)malloc16(samples_per_frame*sizeof(int32_t));
phy_vars_eNB[CC_id]->lte_eNB_common_vars.txdata[0][i] = txdata;
memset(txdata, 0, samples_per_frame*sizeof(int32_t));
printf("txdata[%d] @ %p\n", i, phy_vars_eNB[CC_id]->lte_eNB_common_vars.txdata[0][i]);
}
#endif
}
return(0);
}