/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see .
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@lists.eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
#include "defs.h"
#include "SCHED/defs.h"
#include "PHY/extern.h"
#include "SIMULATION/TOOLS/defs.h"
#include "RadioResourceConfigCommonSIB.h"
#include "RadioResourceConfigDedicated.h"
#include "TDD-Config.h"
#include "LAYER2/MAC/extern.h"
#include "MBSFN-SubframeConfigList.h"
#include "UTIL/LOG/vcd_signal_dumper.h"
//#define DEBUG_PHY
#include "assertions.h"
#include
extern uint16_t prach_root_sequence_map0_3[838];
extern uint16_t prach_root_sequence_map4[138];
uint8_t dmrs1_tab[8] = {0,2,3,4,6,8,9,10};
// FIXME not used anywhere
void phy_config_mib(LTE_DL_FRAME_PARMS *fp,
uint8_t N_RB_DL,
uint8_t Nid_cell,
uint8_t Ncp,
uint8_t frame_type,
uint8_t p_eNB,
PHICH_CONFIG_COMMON *phich_config)
{
fp->N_RB_DL = N_RB_DL;
fp->Nid_cell = Nid_cell;
fp->nushift = Nid_cell%6;
fp->Ncp = Ncp;
fp->frame_type = frame_type;
fp->nb_antennas_tx_eNB = p_eNB;
fp->phich_config_common.phich_resource = phich_config->phich_resource;
fp->phich_config_common.phich_duration = phich_config->phich_duration;
}
void phy_config_sib1_eNB(uint8_t Mod_id,
int CC_id,
TDD_Config_t *tdd_Config,
uint8_t SIwindowsize,
uint16_t SIPeriod)
{
LTE_DL_FRAME_PARMS *fp = &PHY_vars_eNB_g[Mod_id][CC_id]->frame_parms;
if (tdd_Config) {
fp->tdd_config = tdd_Config->subframeAssignment;
fp->tdd_config_S = tdd_Config->specialSubframePatterns;
}
fp->SIwindowsize = SIwindowsize;
fp->SIPeriod = SIPeriod;
}
void phy_config_sib1_ue(uint8_t Mod_id,int CC_id,
uint8_t eNB_id,
TDD_Config_t *tdd_Config,
uint8_t SIwindowsize,
uint16_t SIperiod)
{
LTE_DL_FRAME_PARMS *fp = &PHY_vars_UE_g[Mod_id][CC_id]->frame_parms;
if (tdd_Config) {
fp->tdd_config = tdd_Config->subframeAssignment;
fp->tdd_config_S = tdd_Config->specialSubframePatterns;
}
fp->SIwindowsize = SIwindowsize;
fp->SIPeriod = SIperiod;
}
void phy_config_sib2_eNB(uint8_t Mod_id,
int CC_id,
RadioResourceConfigCommonSIB_t *radioResourceConfigCommon,
ARFCN_ValueEUTRA_t *ul_CArrierFreq,
long *ul_Bandwidth,
AdditionalSpectrumEmission_t *additionalSpectrumEmission,
struct MBSFN_SubframeConfigList *mbsfn_SubframeConfigList)
{
LTE_DL_FRAME_PARMS *fp = &PHY_vars_eNB_g[Mod_id][CC_id]->frame_parms;
//LTE_eNB_UE_stats *eNB_UE_stats = PHY_vars_eNB_g[Mod_id][CC_id]->eNB_UE_stats;
//int32_t rx_total_gain_eNB_dB = PHY_vars_eNB_g[Mod_id][CC_id]->rx_total_gain_eNB_dB;
int i;
LOG_D(PHY,"[eNB%d] CCid %d: Applying radioResourceConfigCommon\n",Mod_id,CC_id);
fp->prach_config_common.rootSequenceIndex =radioResourceConfigCommon->prach_Config.rootSequenceIndex;
LOG_D(PHY,"prach_config_common.rootSequenceIndex = %d\n",fp->prach_config_common.rootSequenceIndex );
fp->prach_config_common.prach_Config_enabled=1;
fp->prach_config_common.prach_ConfigInfo.prach_ConfigIndex =radioResourceConfigCommon->prach_Config.prach_ConfigInfo.prach_ConfigIndex;
LOG_D(PHY,"prach_config_common.prach_ConfigInfo.prach_ConfigIndex = %d\n",fp->prach_config_common.prach_ConfigInfo.prach_ConfigIndex);
fp->prach_config_common.prach_ConfigInfo.highSpeedFlag =radioResourceConfigCommon->prach_Config.prach_ConfigInfo.highSpeedFlag;
LOG_D(PHY,"prach_config_common.prach_ConfigInfo.highSpeedFlag = %d\n",fp->prach_config_common.prach_ConfigInfo.highSpeedFlag);
fp->prach_config_common.prach_ConfigInfo.zeroCorrelationZoneConfig =radioResourceConfigCommon->prach_Config.prach_ConfigInfo.zeroCorrelationZoneConfig;
LOG_D(PHY,"prach_config_common.prach_ConfigInfo.zeroCorrelationZoneConfig = %d\n",fp->prach_config_common.prach_ConfigInfo.zeroCorrelationZoneConfig);
fp->prach_config_common.prach_ConfigInfo.prach_FreqOffset =radioResourceConfigCommon->prach_Config.prach_ConfigInfo.prach_FreqOffset;
LOG_D(PHY,"prach_config_common.prach_ConfigInfo.prach_FreqOffset = %d\n",fp->prach_config_common.prach_ConfigInfo.prach_FreqOffset);
compute_prach_seq(&fp->prach_config_common,fp->frame_type,
PHY_vars_eNB_g[Mod_id][CC_id]->X_u);
fp->pucch_config_common.deltaPUCCH_Shift = 1+radioResourceConfigCommon->pucch_ConfigCommon.deltaPUCCH_Shift;
fp->pucch_config_common.nRB_CQI = radioResourceConfigCommon->pucch_ConfigCommon.nRB_CQI;
fp->pucch_config_common.nCS_AN = radioResourceConfigCommon->pucch_ConfigCommon.nCS_AN;
fp->pucch_config_common.n1PUCCH_AN = radioResourceConfigCommon->pucch_ConfigCommon.n1PUCCH_AN;
fp->pdsch_config_common.referenceSignalPower = radioResourceConfigCommon->pdsch_ConfigCommon.referenceSignalPower;
fp->pdsch_config_common.p_b = radioResourceConfigCommon->pdsch_ConfigCommon.p_b;
fp->pusch_config_common.n_SB = radioResourceConfigCommon->pusch_ConfigCommon.pusch_ConfigBasic.n_SB;
LOG_D(PHY,"pusch_config_common.n_SB = %d\n",fp->pusch_config_common.n_SB );
fp->pusch_config_common.hoppingMode = radioResourceConfigCommon->pusch_ConfigCommon.pusch_ConfigBasic.hoppingMode;
LOG_D(PHY,"pusch_config_common.hoppingMode = %d\n",fp->pusch_config_common.hoppingMode);
fp->pusch_config_common.pusch_HoppingOffset = radioResourceConfigCommon->pusch_ConfigCommon.pusch_ConfigBasic.pusch_HoppingOffset;
LOG_D(PHY,"pusch_config_common.pusch_HoppingOffset = %d\n",fp->pusch_config_common.pusch_HoppingOffset);
fp->pusch_config_common.enable64QAM = radioResourceConfigCommon->pusch_ConfigCommon.pusch_ConfigBasic.enable64QAM;
LOG_D(PHY,"pusch_config_common.enable64QAM = %d\n",fp->pusch_config_common.enable64QAM );
fp->pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = radioResourceConfigCommon->pusch_ConfigCommon.ul_ReferenceSignalsPUSCH.groupHoppingEnabled;
LOG_D(PHY,"pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = %d\n",fp->pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled);
fp->pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = radioResourceConfigCommon->pusch_ConfigCommon.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH;
LOG_D(PHY,"pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = %d\n",fp->pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH);
fp->pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = radioResourceConfigCommon->pusch_ConfigCommon.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled;
LOG_D(PHY,"pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = %d\n",fp->pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled);
fp->pusch_config_common.ul_ReferenceSignalsPUSCH.cyclicShift = dmrs1_tab[radioResourceConfigCommon->pusch_ConfigCommon.ul_ReferenceSignalsPUSCH.cyclicShift];
LOG_D(PHY,"pusch_config_common.ul_ReferenceSignalsPUSCH.cyclicShift = %d\n",fp->pusch_config_common.ul_ReferenceSignalsPUSCH.cyclicShift);
init_ul_hopping(fp);
fp->soundingrs_ul_config_common.enabled_flag = 0;
if (radioResourceConfigCommon->soundingRS_UL_ConfigCommon.present==SoundingRS_UL_ConfigCommon_PR_setup) {
fp->soundingrs_ul_config_common.enabled_flag = 1;
fp->soundingrs_ul_config_common.srs_BandwidthConfig = radioResourceConfigCommon->soundingRS_UL_ConfigCommon.choice.setup.srs_BandwidthConfig;
fp->soundingrs_ul_config_common.srs_SubframeConfig = radioResourceConfigCommon->soundingRS_UL_ConfigCommon.choice.setup.srs_SubframeConfig;
fp->soundingrs_ul_config_common.ackNackSRS_SimultaneousTransmission = radioResourceConfigCommon->soundingRS_UL_ConfigCommon.choice.setup.ackNackSRS_SimultaneousTransmission;
if (radioResourceConfigCommon->soundingRS_UL_ConfigCommon.choice.setup.srs_MaxUpPts)
fp->soundingrs_ul_config_common.srs_MaxUpPts = 1;
else
fp->soundingrs_ul_config_common.srs_MaxUpPts = 0;
}
fp->ul_power_control_config_common.p0_NominalPUSCH = radioResourceConfigCommon->uplinkPowerControlCommon.p0_NominalPUSCH;
fp->ul_power_control_config_common.alpha = radioResourceConfigCommon->uplinkPowerControlCommon.alpha;
fp->ul_power_control_config_common.p0_NominalPUCCH = radioResourceConfigCommon->uplinkPowerControlCommon.p0_NominalPUCCH;
fp->ul_power_control_config_common.deltaPreambleMsg3 = radioResourceConfigCommon->uplinkPowerControlCommon.deltaPreambleMsg3;
fp->ul_power_control_config_common.deltaF_PUCCH_Format1 = radioResourceConfigCommon->uplinkPowerControlCommon.deltaFList_PUCCH.deltaF_PUCCH_Format1;
fp->ul_power_control_config_common.deltaF_PUCCH_Format1b = radioResourceConfigCommon->uplinkPowerControlCommon.deltaFList_PUCCH.deltaF_PUCCH_Format1b;
fp->ul_power_control_config_common.deltaF_PUCCH_Format2 = radioResourceConfigCommon->uplinkPowerControlCommon.deltaFList_PUCCH.deltaF_PUCCH_Format2;
fp->ul_power_control_config_common.deltaF_PUCCH_Format2a = radioResourceConfigCommon->uplinkPowerControlCommon.deltaFList_PUCCH.deltaF_PUCCH_Format2a;
fp->ul_power_control_config_common.deltaF_PUCCH_Format2b = radioResourceConfigCommon->uplinkPowerControlCommon.deltaFList_PUCCH.deltaF_PUCCH_Format2b;
fp->maxHARQ_Msg3Tx = radioResourceConfigCommon->rach_ConfigCommon.maxHARQ_Msg3Tx;
// Now configure some of the Physical Channels
// PUCCH
init_ncs_cell(fp,PHY_vars_eNB_g[Mod_id][CC_id]->ncs_cell);
init_ul_hopping(fp);
// MBSFN
if (mbsfn_SubframeConfigList != NULL) {
fp->num_MBSFN_config = mbsfn_SubframeConfigList->list.count;
for (i=0; ilist.count; i++) {
fp->MBSFN_config[i].radioframeAllocationPeriod = mbsfn_SubframeConfigList->list.array[i]->radioframeAllocationPeriod;
fp->MBSFN_config[i].radioframeAllocationOffset = mbsfn_SubframeConfigList->list.array[i]->radioframeAllocationOffset;
if (mbsfn_SubframeConfigList->list.array[i]->subframeAllocation.present == MBSFN_SubframeConfig__subframeAllocation_PR_oneFrame) {
fp->MBSFN_config[i].fourFrames_flag = 0;
fp->MBSFN_config[i].mbsfn_SubframeConfig = mbsfn_SubframeConfigList->list.array[i]->subframeAllocation.choice.oneFrame.buf[0]; // 6-bit subframe configuration
LOG_I(PHY, "[CONFIG] MBSFN_SubframeConfig[%d] pattern is %ld\n", i,
fp->MBSFN_config[i].mbsfn_SubframeConfig);
} else if (mbsfn_SubframeConfigList->list.array[i]->subframeAllocation.present == MBSFN_SubframeConfig__subframeAllocation_PR_fourFrames) { // 24-bit subframe configuration
fp->MBSFN_config[i].fourFrames_flag = 1;
fp->MBSFN_config[i].mbsfn_SubframeConfig =
mbsfn_SubframeConfigList->list.array[i]->subframeAllocation.choice.oneFrame.buf[0]|
(mbsfn_SubframeConfigList->list.array[i]->subframeAllocation.choice.oneFrame.buf[1]<<8)|
(mbsfn_SubframeConfigList->list.array[i]->subframeAllocation.choice.oneFrame.buf[2]<<16);
LOG_I(PHY, "[CONFIG] MBSFN_SubframeConfig[%d] pattern is %ld\n", i,
fp->MBSFN_config[i].mbsfn_SubframeConfig);
}
}
} else
fp->num_MBSFN_config = 0;
}
void phy_config_sib2_ue(uint8_t Mod_id,int CC_id,
uint8_t eNB_id,
RadioResourceConfigCommonSIB_t *radioResourceConfigCommon,
ARFCN_ValueEUTRA_t *ul_CarrierFreq,
long *ul_Bandwidth,
AdditionalSpectrumEmission_t *additionalSpectrumEmission,
struct MBSFN_SubframeConfigList *mbsfn_SubframeConfigList)
{
PHY_VARS_UE *ue = PHY_vars_UE_g[Mod_id][CC_id];
LTE_DL_FRAME_PARMS *fp = &ue->frame_parms;
int i;
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_UE_CONFIG_SIB2, VCD_FUNCTION_IN);
LOG_I(PHY,"[UE%d] Applying radioResourceConfigCommon from eNB%d\n",Mod_id,eNB_id);
fp->prach_config_common.rootSequenceIndex =radioResourceConfigCommon->prach_Config.rootSequenceIndex;
fp->prach_config_common.prach_Config_enabled=1;
fp->prach_config_common.prach_ConfigInfo.prach_ConfigIndex =radioResourceConfigCommon->prach_Config.prach_ConfigInfo.prach_ConfigIndex;
fp->prach_config_common.prach_ConfigInfo.highSpeedFlag =radioResourceConfigCommon->prach_Config.prach_ConfigInfo.highSpeedFlag;
fp->prach_config_common.prach_ConfigInfo.zeroCorrelationZoneConfig =radioResourceConfigCommon->prach_Config.prach_ConfigInfo.zeroCorrelationZoneConfig;
fp->prach_config_common.prach_ConfigInfo.prach_FreqOffset =radioResourceConfigCommon->prach_Config.prach_ConfigInfo.prach_FreqOffset;
compute_prach_seq(&fp->prach_config_common,fp->frame_type,ue->X_u);
fp->pucch_config_common.deltaPUCCH_Shift = 1+radioResourceConfigCommon->pucch_ConfigCommon.deltaPUCCH_Shift;
fp->pucch_config_common.nRB_CQI = radioResourceConfigCommon->pucch_ConfigCommon.nRB_CQI;
fp->pucch_config_common.nCS_AN = radioResourceConfigCommon->pucch_ConfigCommon.nCS_AN;
fp->pucch_config_common.n1PUCCH_AN = radioResourceConfigCommon->pucch_ConfigCommon.n1PUCCH_AN;
fp->pdsch_config_common.referenceSignalPower = radioResourceConfigCommon->pdsch_ConfigCommon.referenceSignalPower;
fp->pdsch_config_common.p_b = radioResourceConfigCommon->pdsch_ConfigCommon.p_b;
fp->pusch_config_common.n_SB = radioResourceConfigCommon->pusch_ConfigCommon.pusch_ConfigBasic.n_SB;
fp->pusch_config_common.hoppingMode = radioResourceConfigCommon->pusch_ConfigCommon.pusch_ConfigBasic.hoppingMode;
fp->pusch_config_common.pusch_HoppingOffset = radioResourceConfigCommon->pusch_ConfigCommon.pusch_ConfigBasic.pusch_HoppingOffset;
fp->pusch_config_common.enable64QAM = radioResourceConfigCommon->pusch_ConfigCommon.pusch_ConfigBasic.enable64QAM;
fp->pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = radioResourceConfigCommon->pusch_ConfigCommon.ul_ReferenceSignalsPUSCH.groupHoppingEnabled;
fp->pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = radioResourceConfigCommon->pusch_ConfigCommon.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH;
fp->pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = radioResourceConfigCommon->pusch_ConfigCommon.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled;
fp->pusch_config_common.ul_ReferenceSignalsPUSCH.cyclicShift = dmrs1_tab[radioResourceConfigCommon->pusch_ConfigCommon.ul_ReferenceSignalsPUSCH.cyclicShift];
init_ul_hopping(fp);
fp->soundingrs_ul_config_common.enabled_flag = 0;
if (radioResourceConfigCommon->soundingRS_UL_ConfigCommon.present==SoundingRS_UL_ConfigCommon_PR_setup) {
fp->soundingrs_ul_config_common.enabled_flag = 1;
fp->soundingrs_ul_config_common.srs_BandwidthConfig = radioResourceConfigCommon->soundingRS_UL_ConfigCommon.choice.setup.srs_BandwidthConfig;
fp->soundingrs_ul_config_common.srs_SubframeConfig = radioResourceConfigCommon->soundingRS_UL_ConfigCommon.choice.setup.srs_SubframeConfig;
fp->soundingrs_ul_config_common.ackNackSRS_SimultaneousTransmission = radioResourceConfigCommon->soundingRS_UL_ConfigCommon.choice.setup.ackNackSRS_SimultaneousTransmission;
if (radioResourceConfigCommon->soundingRS_UL_ConfigCommon.choice.setup.srs_MaxUpPts)
fp->soundingrs_ul_config_common.srs_MaxUpPts = 1;
else
fp->soundingrs_ul_config_common.srs_MaxUpPts = 0;
}
fp->ul_power_control_config_common.p0_NominalPUSCH = radioResourceConfigCommon->uplinkPowerControlCommon.p0_NominalPUSCH;
fp->ul_power_control_config_common.alpha = radioResourceConfigCommon->uplinkPowerControlCommon.alpha;
fp->ul_power_control_config_common.p0_NominalPUCCH = radioResourceConfigCommon->uplinkPowerControlCommon.p0_NominalPUCCH;
fp->ul_power_control_config_common.deltaPreambleMsg3 = radioResourceConfigCommon->uplinkPowerControlCommon.deltaPreambleMsg3;
fp->ul_power_control_config_common.deltaF_PUCCH_Format1 = radioResourceConfigCommon->uplinkPowerControlCommon.deltaFList_PUCCH.deltaF_PUCCH_Format1;
fp->ul_power_control_config_common.deltaF_PUCCH_Format1b = radioResourceConfigCommon->uplinkPowerControlCommon.deltaFList_PUCCH.deltaF_PUCCH_Format1b;
fp->ul_power_control_config_common.deltaF_PUCCH_Format2 = radioResourceConfigCommon->uplinkPowerControlCommon.deltaFList_PUCCH.deltaF_PUCCH_Format2;
fp->ul_power_control_config_common.deltaF_PUCCH_Format2a = radioResourceConfigCommon->uplinkPowerControlCommon.deltaFList_PUCCH.deltaF_PUCCH_Format2a;
fp->ul_power_control_config_common.deltaF_PUCCH_Format2b = radioResourceConfigCommon->uplinkPowerControlCommon.deltaFList_PUCCH.deltaF_PUCCH_Format2b;
fp->maxHARQ_Msg3Tx = radioResourceConfigCommon->rach_ConfigCommon.maxHARQ_Msg3Tx;
// Now configure some of the Physical Channels
// PUCCH
init_ncs_cell(fp,ue->ncs_cell);
init_ul_hopping(fp);
// PCH
init_ue_paging_info(ue,radioResourceConfigCommon->pcch_Config.defaultPagingCycle,radioResourceConfigCommon->pcch_Config.nB);
// MBSFN
if (mbsfn_SubframeConfigList != NULL) {
fp->num_MBSFN_config = mbsfn_SubframeConfigList->list.count;
for (i=0; ilist.count; i++) {
fp->MBSFN_config[i].radioframeAllocationPeriod = mbsfn_SubframeConfigList->list.array[i]->radioframeAllocationPeriod;
fp->MBSFN_config[i].radioframeAllocationOffset = mbsfn_SubframeConfigList->list.array[i]->radioframeAllocationOffset;
if (mbsfn_SubframeConfigList->list.array[i]->subframeAllocation.present == MBSFN_SubframeConfig__subframeAllocation_PR_oneFrame) {
fp->MBSFN_config[i].fourFrames_flag = 0;
fp->MBSFN_config[i].mbsfn_SubframeConfig = mbsfn_SubframeConfigList->list.array[i]->subframeAllocation.choice.oneFrame.buf[0]; // 6-bit subframe configuration
LOG_I(PHY, "[CONFIG] MBSFN_SubframeConfig[%d] pattern is %ld\n", i,
fp->MBSFN_config[i].mbsfn_SubframeConfig);
} else if (mbsfn_SubframeConfigList->list.array[i]->subframeAllocation.present == MBSFN_SubframeConfig__subframeAllocation_PR_fourFrames) { // 24-bit subframe configuration
fp->MBSFN_config[i].fourFrames_flag = 1;
fp->MBSFN_config[i].mbsfn_SubframeConfig =
mbsfn_SubframeConfigList->list.array[i]->subframeAllocation.choice.oneFrame.buf[0]|
(mbsfn_SubframeConfigList->list.array[i]->subframeAllocation.choice.oneFrame.buf[1]<<8)|
(mbsfn_SubframeConfigList->list.array[i]->subframeAllocation.choice.oneFrame.buf[2]<<16);
LOG_I(PHY, "[CONFIG] MBSFN_SubframeConfig[%d] pattern is %ld\n", i,
fp->MBSFN_config[i].mbsfn_SubframeConfig);
}
}
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_UE_CONFIG_SIB2, VCD_FUNCTION_OUT);
}
void phy_config_sib13_ue(uint8_t Mod_id,int CC_id,uint8_t eNB_id,int mbsfn_Area_idx,
long mbsfn_AreaId_r9)
{
LTE_DL_FRAME_PARMS *fp = &PHY_vars_UE_g[Mod_id][CC_id]->frame_parms;
LOG_I(PHY,"[UE%d] Applying MBSFN_Area_id %d for index %d\n",Mod_id,mbsfn_AreaId_r9,mbsfn_Area_idx);
if (mbsfn_Area_idx == 0) {
fp->Nid_cell_mbsfn = (uint16_t)mbsfn_AreaId_r9;
LOG_N(PHY,"Fix me: only called when mbsfn_Area_idx == 0)\n");
}
lte_gold_mbsfn(fp,PHY_vars_UE_g[Mod_id][CC_id]->lte_gold_mbsfn_table,fp->Nid_cell_mbsfn);
}
void phy_config_sib13_eNB(uint8_t Mod_id,int CC_id,int mbsfn_Area_idx,
long mbsfn_AreaId_r9)
{
LTE_DL_FRAME_PARMS *fp = &PHY_vars_eNB_g[Mod_id][CC_id]->frame_parms;
LOG_I(PHY,"[eNB%d] Applying MBSFN_Area_id %d for index %d\n",Mod_id,mbsfn_AreaId_r9,mbsfn_Area_idx);
if (mbsfn_Area_idx == 0) {
fp->Nid_cell_mbsfn = (uint16_t)mbsfn_AreaId_r9;
LOG_N(PHY,"Fix me: only called when mbsfn_Area_idx == 0)\n");
}
lte_gold_mbsfn(fp,PHY_vars_eNB_g[Mod_id][CC_id]->lte_gold_mbsfn_table,fp->Nid_cell_mbsfn);
}
void phy_config_dedicated_eNB_step2(PHY_VARS_eNB *eNB)
{
uint8_t UE_id;
struct PhysicalConfigDedicated *physicalConfigDedicated;
LTE_DL_FRAME_PARMS *fp=&eNB->frame_parms;
for (UE_id=0; UE_idphysicalConfigDedicated[UE_id];
if (physicalConfigDedicated != NULL) {
LOG_I(PHY,"[eNB %d] Frame %d: Sent physicalConfigDedicated=%p for UE %d\n",eNB->Mod_id,physicalConfigDedicated,UE_id);
LOG_D(PHY,"------------------------------------------------------------------------\n");
if (physicalConfigDedicated->pdsch_ConfigDedicated) {
eNB->pdsch_config_dedicated[UE_id].p_a=physicalConfigDedicated->pdsch_ConfigDedicated->p_a;
LOG_D(PHY,"pdsch_config_dedicated.p_a %d\n",eNB->pdsch_config_dedicated[UE_id].p_a);
LOG_D(PHY,"\n");
}
if (physicalConfigDedicated->pucch_ConfigDedicated) {
if (physicalConfigDedicated->pucch_ConfigDedicated->ackNackRepetition.present==PUCCH_ConfigDedicated__ackNackRepetition_PR_release)
eNB->pucch_config_dedicated[UE_id].ackNackRepetition=0;
else {
eNB->pucch_config_dedicated[UE_id].ackNackRepetition=1;
}
if (fp->frame_type == FDD) {
eNB->pucch_config_dedicated[UE_id].tdd_AckNackFeedbackMode = multiplexing;
} else {
if (physicalConfigDedicated->pucch_ConfigDedicated->tdd_AckNackFeedbackMode)
eNB->pucch_config_dedicated[UE_id].tdd_AckNackFeedbackMode = *physicalConfigDedicated->pucch_ConfigDedicated->tdd_AckNackFeedbackMode;
else
eNB->pucch_config_dedicated[UE_id].tdd_AckNackFeedbackMode = bundling;
}
if ( eNB->pucch_config_dedicated[UE_id].tdd_AckNackFeedbackMode == multiplexing)
LOG_D(PHY,"pucch_config_dedicated.tdd_AckNackFeedbackMode = multiplexing\n");
else
LOG_D(PHY,"pucch_config_dedicated.tdd_AckNackFeedbackMode = bundling\n");
}
if (physicalConfigDedicated->pusch_ConfigDedicated) {
eNB->pusch_config_dedicated[UE_id].betaOffset_ACK_Index = physicalConfigDedicated->pusch_ConfigDedicated->betaOffset_ACK_Index;
eNB->pusch_config_dedicated[UE_id].betaOffset_RI_Index = physicalConfigDedicated->pusch_ConfigDedicated->betaOffset_RI_Index;
eNB->pusch_config_dedicated[UE_id].betaOffset_CQI_Index = physicalConfigDedicated->pusch_ConfigDedicated->betaOffset_CQI_Index;
LOG_D(PHY,"pusch_config_dedicated.betaOffset_ACK_Index %d\n",eNB->pusch_config_dedicated[UE_id].betaOffset_ACK_Index);
LOG_D(PHY,"pusch_config_dedicated.betaOffset_RI_Index %d\n",eNB->pusch_config_dedicated[UE_id].betaOffset_RI_Index);
LOG_D(PHY,"pusch_config_dedicated.betaOffset_CQI_Index %d\n",eNB->pusch_config_dedicated[UE_id].betaOffset_CQI_Index);
LOG_D(PHY,"\n");
}
if (physicalConfigDedicated->uplinkPowerControlDedicated) {
eNB->ul_power_control_dedicated[UE_id].p0_UE_PUSCH = physicalConfigDedicated->uplinkPowerControlDedicated->p0_UE_PUSCH;
eNB->ul_power_control_dedicated[UE_id].deltaMCS_Enabled= physicalConfigDedicated->uplinkPowerControlDedicated->deltaMCS_Enabled;
eNB->ul_power_control_dedicated[UE_id].accumulationEnabled= physicalConfigDedicated->uplinkPowerControlDedicated->accumulationEnabled;
eNB->ul_power_control_dedicated[UE_id].p0_UE_PUCCH= physicalConfigDedicated->uplinkPowerControlDedicated->p0_UE_PUCCH;
eNB->ul_power_control_dedicated[UE_id].pSRS_Offset= physicalConfigDedicated->uplinkPowerControlDedicated->pSRS_Offset;
eNB->ul_power_control_dedicated[UE_id].filterCoefficient= *physicalConfigDedicated->uplinkPowerControlDedicated->filterCoefficient;
LOG_D(PHY,"ul_power_control_dedicated.p0_UE_PUSCH %d\n",eNB->ul_power_control_dedicated[UE_id].p0_UE_PUSCH);
LOG_D(PHY,"ul_power_control_dedicated.deltaMCS_Enabled %d\n",eNB->ul_power_control_dedicated[UE_id].deltaMCS_Enabled);
LOG_D(PHY,"ul_power_control_dedicated.accumulationEnabled %d\n",eNB->ul_power_control_dedicated[UE_id].accumulationEnabled);
LOG_D(PHY,"ul_power_control_dedicated.p0_UE_PUCCH %d\n",eNB->ul_power_control_dedicated[UE_id].p0_UE_PUCCH);
LOG_D(PHY,"ul_power_control_dedicated.pSRS_Offset %d\n",eNB->ul_power_control_dedicated[UE_id].pSRS_Offset);
LOG_D(PHY,"ul_power_control_dedicated.filterCoefficient %d\n",eNB->ul_power_control_dedicated[UE_id].filterCoefficient);
LOG_D(PHY,"\n");
}
if (physicalConfigDedicated->antennaInfo) {
eNB->transmission_mode[UE_id] = 1+(physicalConfigDedicated->antennaInfo->choice.explicitValue.transmissionMode);
LOG_D(PHY,"Transmission Mode (phy_config_dedicated_eNB_step2) %d\n",eNB->transmission_mode[UE_id]);
LOG_D(PHY,"\n");
}
if (physicalConfigDedicated->schedulingRequestConfig) {
if (physicalConfigDedicated->schedulingRequestConfig->present == SchedulingRequestConfig_PR_setup) {
eNB->scheduling_request_config[UE_id].sr_PUCCH_ResourceIndex = physicalConfigDedicated->schedulingRequestConfig->choice.setup.sr_PUCCH_ResourceIndex;
eNB->scheduling_request_config[UE_id].sr_ConfigIndex=physicalConfigDedicated->schedulingRequestConfig->choice.setup.sr_ConfigIndex;
eNB->scheduling_request_config[UE_id].dsr_TransMax=physicalConfigDedicated->schedulingRequestConfig->choice.setup.dsr_TransMax;
LOG_D(PHY,"scheduling_request_config.sr_PUCCH_ResourceIndex %d\n",eNB->scheduling_request_config[UE_id].sr_PUCCH_ResourceIndex);
LOG_D(PHY,"scheduling_request_config.sr_ConfigIndex %d\n",eNB->scheduling_request_config[UE_id].sr_ConfigIndex);
LOG_D(PHY,"scheduling_request_config.dsr_TransMax %d\n",eNB->scheduling_request_config[UE_id].dsr_TransMax);
}
LOG_D(PHY,"------------------------------------------------------------\n");
}
eNB->physicalConfigDedicated[UE_id] = NULL;
}
}
}
/*
* Configures UE MAC and PHY with radioResourceCommon received in mobilityControlInfo IE during Handover
*/
void phy_config_afterHO_ue(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_id, MobilityControlInfo_t *mobilityControlInfo, uint8_t ho_failed)
{
if(mobilityControlInfo!=NULL) {
RadioResourceConfigCommon_t *radioResourceConfigCommon = &mobilityControlInfo->radioResourceConfigCommon;
LOG_I(PHY,"radioResourceConfigCommon %p\n", radioResourceConfigCommon);
memcpy((void *)&PHY_vars_UE_g[Mod_id][CC_id]->frame_parms_before_ho,
(void *)&PHY_vars_UE_g[Mod_id][CC_id]->frame_parms,
sizeof(LTE_DL_FRAME_PARMS));
PHY_vars_UE_g[Mod_id][CC_id]->ho_triggered = 1;
//PHY_vars_UE_g[UE_id]->UE_mode[0] = PRACH;
LTE_DL_FRAME_PARMS *fp = &PHY_vars_UE_g[Mod_id][CC_id]->frame_parms;
// int N_ZC;
// uint8_t prach_fmt;
// int u;
LOG_I(PHY,"[UE%d] Handover triggered: Applying radioResourceConfigCommon from eNB %d\n",
Mod_id,eNB_id);
fp->prach_config_common.rootSequenceIndex =radioResourceConfigCommon->prach_Config.rootSequenceIndex;
fp->prach_config_common.prach_Config_enabled=1;
fp->prach_config_common.prach_ConfigInfo.prach_ConfigIndex =radioResourceConfigCommon->prach_Config.prach_ConfigInfo->prach_ConfigIndex;
fp->prach_config_common.prach_ConfigInfo.highSpeedFlag =radioResourceConfigCommon->prach_Config.prach_ConfigInfo->highSpeedFlag;
fp->prach_config_common.prach_ConfigInfo.zeroCorrelationZoneConfig =radioResourceConfigCommon->prach_Config.prach_ConfigInfo->zeroCorrelationZoneConfig;
fp->prach_config_common.prach_ConfigInfo.prach_FreqOffset =radioResourceConfigCommon->prach_Config.prach_ConfigInfo->prach_FreqOffset;
// prach_fmt = get_prach_fmt(radioResourceConfigCommon->prach_Config.prach_ConfigInfo->prach_ConfigIndex,fp->frame_type);
// N_ZC = (prach_fmt <4)?839:139;
// u = (prach_fmt < 4) ? prach_root_sequence_map0_3[fp->prach_config_common.rootSequenceIndex] :
// prach_root_sequence_map4[fp->prach_config_common.rootSequenceIndex];
//compute_prach_seq(u,N_ZC, PHY_vars_UE_g[Mod_id]->X_u);
compute_prach_seq(&PHY_vars_UE_g[Mod_id][CC_id]->frame_parms.prach_config_common,
fp->frame_type,
PHY_vars_UE_g[Mod_id][CC_id]->X_u);
fp->pucch_config_common.deltaPUCCH_Shift = 1+radioResourceConfigCommon->pucch_ConfigCommon->deltaPUCCH_Shift;
fp->pucch_config_common.nRB_CQI = radioResourceConfigCommon->pucch_ConfigCommon->nRB_CQI;
fp->pucch_config_common.nCS_AN = radioResourceConfigCommon->pucch_ConfigCommon->nCS_AN;
fp->pucch_config_common.n1PUCCH_AN = radioResourceConfigCommon->pucch_ConfigCommon->n1PUCCH_AN;
fp->pdsch_config_common.referenceSignalPower = radioResourceConfigCommon->pdsch_ConfigCommon->referenceSignalPower;
fp->pdsch_config_common.p_b = radioResourceConfigCommon->pdsch_ConfigCommon->p_b;
fp->pusch_config_common.n_SB = radioResourceConfigCommon->pusch_ConfigCommon.pusch_ConfigBasic.n_SB;
fp->pusch_config_common.hoppingMode = radioResourceConfigCommon->pusch_ConfigCommon.pusch_ConfigBasic.hoppingMode;
fp->pusch_config_common.pusch_HoppingOffset = radioResourceConfigCommon->pusch_ConfigCommon.pusch_ConfigBasic.pusch_HoppingOffset;
fp->pusch_config_common.enable64QAM = radioResourceConfigCommon->pusch_ConfigCommon.pusch_ConfigBasic.enable64QAM;
fp->pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = radioResourceConfigCommon->pusch_ConfigCommon.ul_ReferenceSignalsPUSCH.groupHoppingEnabled;
fp->pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = radioResourceConfigCommon->pusch_ConfigCommon.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH;
fp->pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = radioResourceConfigCommon->pusch_ConfigCommon.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled;
fp->pusch_config_common.ul_ReferenceSignalsPUSCH.cyclicShift = radioResourceConfigCommon->pusch_ConfigCommon.ul_ReferenceSignalsPUSCH.cyclicShift;
init_ul_hopping(fp);
fp->soundingrs_ul_config_common.enabled_flag = 0;
if (radioResourceConfigCommon->soundingRS_UL_ConfigCommon->present==SoundingRS_UL_ConfigCommon_PR_setup) {
fp->soundingrs_ul_config_common.enabled_flag = 1;
fp->soundingrs_ul_config_common.srs_BandwidthConfig = radioResourceConfigCommon->soundingRS_UL_ConfigCommon->choice.setup.srs_BandwidthConfig;
fp->soundingrs_ul_config_common.srs_SubframeConfig = radioResourceConfigCommon->soundingRS_UL_ConfigCommon->choice.setup.srs_SubframeConfig;
fp->soundingrs_ul_config_common.ackNackSRS_SimultaneousTransmission = radioResourceConfigCommon->soundingRS_UL_ConfigCommon->choice.setup.ackNackSRS_SimultaneousTransmission;
if (radioResourceConfigCommon->soundingRS_UL_ConfigCommon->choice.setup.srs_MaxUpPts)
fp->soundingrs_ul_config_common.srs_MaxUpPts = 1;
else
fp->soundingrs_ul_config_common.srs_MaxUpPts = 0;
}
fp->ul_power_control_config_common.p0_NominalPUSCH = radioResourceConfigCommon->uplinkPowerControlCommon->p0_NominalPUSCH;
fp->ul_power_control_config_common.alpha = radioResourceConfigCommon->uplinkPowerControlCommon->alpha;
fp->ul_power_control_config_common.p0_NominalPUCCH = radioResourceConfigCommon->uplinkPowerControlCommon->p0_NominalPUCCH;
fp->ul_power_control_config_common.deltaPreambleMsg3 = radioResourceConfigCommon->uplinkPowerControlCommon->deltaPreambleMsg3;
fp->ul_power_control_config_common.deltaF_PUCCH_Format1 = radioResourceConfigCommon->uplinkPowerControlCommon->deltaFList_PUCCH.deltaF_PUCCH_Format1;
fp->ul_power_control_config_common.deltaF_PUCCH_Format1b = radioResourceConfigCommon->uplinkPowerControlCommon->deltaFList_PUCCH.deltaF_PUCCH_Format1b;
fp->ul_power_control_config_common.deltaF_PUCCH_Format2 = radioResourceConfigCommon->uplinkPowerControlCommon->deltaFList_PUCCH.deltaF_PUCCH_Format2;
fp->ul_power_control_config_common.deltaF_PUCCH_Format2a = radioResourceConfigCommon->uplinkPowerControlCommon->deltaFList_PUCCH.deltaF_PUCCH_Format2a;
fp->ul_power_control_config_common.deltaF_PUCCH_Format2b = radioResourceConfigCommon->uplinkPowerControlCommon->deltaFList_PUCCH.deltaF_PUCCH_Format2b;
fp->maxHARQ_Msg3Tx = radioResourceConfigCommon->rach_ConfigCommon->maxHARQ_Msg3Tx;
// Now configure some of the Physical Channels
if (radioResourceConfigCommon->antennaInfoCommon)
fp->nb_antennas_tx = (1<antennaInfoCommon->antennaPortsCount);
else
fp->nb_antennas_tx = 1;
//PHICH
if (radioResourceConfigCommon->antennaInfoCommon) {
fp->phich_config_common.phich_resource = radioResourceConfigCommon->phich_Config->phich_Resource;
fp->phich_config_common.phich_duration = radioResourceConfigCommon->phich_Config->phich_Duration;
}
//Target CellId
fp->Nid_cell = mobilityControlInfo->targetPhysCellId;
fp->nushift = fp->Nid_cell%6;
// PUCCH
init_ncs_cell(fp,PHY_vars_UE_g[Mod_id][CC_id]->ncs_cell);
init_ul_hopping(fp);
// RNTI
PHY_vars_UE_g[Mod_id][CC_id]->pdcch_vars[eNB_id]->crnti = mobilityControlInfo->newUE_Identity.buf[0]|(mobilityControlInfo->newUE_Identity.buf[1]<<8);
}
if(ho_failed) {
LOG_D(PHY,"[UE%d] Handover failed, triggering RACH procedure\n",Mod_id);
memcpy((void *)&PHY_vars_UE_g[Mod_id][CC_id]->frame_parms,(void *)&PHY_vars_UE_g[Mod_id][CC_id]->frame_parms_before_ho, sizeof(LTE_DL_FRAME_PARMS));
PHY_vars_UE_g[Mod_id][CC_id]->UE_mode[eNB_id] = PRACH;
}
}
void phy_config_meas_ue(uint8_t Mod_id,uint8_t CC_id,uint8_t eNB_index,uint8_t n_adj_cells,unsigned int *adj_cell_id)
{
PHY_MEASUREMENTS *phy_meas = &PHY_vars_UE_g[Mod_id][CC_id]->measurements;
int i;
LOG_I(PHY,"Configuring inter-cell measurements for %d cells, ids: \n",n_adj_cells);
for (i=0; iframe_parms,PHY_vars_UE_g[Mod_id][CC_id]->lte_gold_table[i+1],adj_cell_id[i]);
}
phy_meas->n_adj_cells = n_adj_cells;
memcpy((void*)phy_meas->adj_cell_id,(void *)adj_cell_id,n_adj_cells*sizeof(unsigned int));
}
void phy_config_dedicated_eNB(uint8_t Mod_id,
int CC_id,
uint16_t rnti,
struct PhysicalConfigDedicated *physicalConfigDedicated)
{
PHY_VARS_eNB *eNB = PHY_vars_eNB_g[Mod_id][CC_id];
int8_t UE_id = find_ue(rnti,eNB);
if (UE_id == -1) {
LOG_E( PHY, "[eNB %"PRIu8"] find_ue() returns -1\n");
return;
}
if (physicalConfigDedicated) {
eNB->physicalConfigDedicated[UE_id] = physicalConfigDedicated;
LOG_I(PHY,"phy_config_dedicated_eNB: physicalConfigDedicated=%p\n",physicalConfigDedicated);
if (physicalConfigDedicated->antennaInfo) {
switch(physicalConfigDedicated->antennaInfo->choice.explicitValue.transmissionMode) {
case AntennaInfoDedicated__transmissionMode_tm1:
eNB->transmission_mode[UE_id] = 1;
break;
case AntennaInfoDedicated__transmissionMode_tm2:
eNB->transmission_mode[UE_id] = 2;
break;
case AntennaInfoDedicated__transmissionMode_tm3:
eNB->transmission_mode[UE_id] = 3;
break;
case AntennaInfoDedicated__transmissionMode_tm4:
eNB->transmission_mode[UE_id] = 4;
break;
case AntennaInfoDedicated__transmissionMode_tm5:
eNB->transmission_mode[UE_id] = 5;
break;
case AntennaInfoDedicated__transmissionMode_tm6:
eNB->transmission_mode[UE_id] = 6;
break;
case AntennaInfoDedicated__transmissionMode_tm7:
eNB->transmission_mode[UE_id] = 7;
break;
default:
LOG_E(PHY,"Unknown transmission mode!\n");
break;
}
LOG_I(PHY,"Transmission Mode (phy_config_dedicated_eNB) %d\n",eNB->transmission_mode[UE_id]);
} else {
LOG_D(PHY,"[eNB %d] : Received NULL radioResourceConfigDedicated->antennaInfo from eNB %d\n",Mod_id,UE_id);
}
} else {
LOG_E(PHY,"[eNB %d] Received NULL radioResourceConfigDedicated from eNB %d\n",Mod_id, UE_id);
return;
}
}
#ifdef Rel10
void phy_config_dedicated_scell_ue(uint8_t Mod_id,
uint8_t eNB_index,
SCellToAddMod_r10_t *sCellToAddMod_r10,
int CC_id)
{
}
void phy_config_dedicated_scell_eNB(uint8_t Mod_id,
uint16_t rnti,
SCellToAddMod_r10_t *sCellToAddMod_r10,
int CC_id)
{
uint8_t UE_id = find_ue(rnti,PHY_vars_eNB_g[Mod_id][0]);
struct PhysicalConfigDedicatedSCell_r10 *physicalConfigDedicatedSCell_r10 = sCellToAddMod_r10->radioResourceConfigDedicatedSCell_r10->physicalConfigDedicatedSCell_r10;
//struct RadioResourceConfigCommonSCell_r10 *physicalConfigCommonSCell_r10 = sCellToAddMod_r10->radioResourceConfigCommonSCell_r10;
//PhysCellId_t physCellId_r10 = sCellToAddMod_r10->cellIdentification_r10->physCellId_r10;
ARFCN_ValueEUTRA_t dl_CarrierFreq_r10 = sCellToAddMod_r10->cellIdentification_r10->dl_CarrierFreq_r10;
uint32_t carrier_freq_local;
if ((dl_CarrierFreq_r10>=36000) && (dl_CarrierFreq_r10<=36199)) {
carrier_freq_local = 1900000000 + (dl_CarrierFreq_r10-36000)*100000; //band 33 from 3GPP 36.101 v 10.9 Table 5.7.3-1
LOG_I(PHY,"[eNB %d] Frame %d: Configured SCell %d to frequency %d (ARFCN %d) for UE %d\n",Mod_id,/*eNB->frame*/0,CC_id,carrier_freq_local,dl_CarrierFreq_r10,UE_id);
} else if ((dl_CarrierFreq_r10>=6150) && (dl_CarrierFreq_r10<=6449)) {
carrier_freq_local = 832000000 + (dl_CarrierFreq_r10-6150)*100000; //band 20 from 3GPP 36.101 v 10.9 Table 5.7.3-1
// this is actually for the UL only, but we use it for DL too, since there is no TDD mode for this band
LOG_I(PHY,"[eNB %d] Frame %d: Configured SCell %d to frequency %d (ARFCN %d) for UE %d\n",Mod_id,/*eNB->frame*/0,CC_id,carrier_freq_local,dl_CarrierFreq_r10,UE_id);
} else {
LOG_E(PHY,"[eNB %d] Frame %d: ARFCN %d of SCell %d for UE %d not supported\n",Mod_id,/*eNB->frame*/0,dl_CarrierFreq_r10,CC_id,UE_id);
}
if (physicalConfigDedicatedSCell_r10) {
//#warning " eNB->physicalConfigDedicatedSCell_r10 does not exist in eNB"
// eNB->physicalConfigDedicatedSCell_r10[UE_id] = physicalConfigDedicatedSCell_r10;
LOG_I(PHY,"[eNB %d] Frame %d: Configured phyConfigDedicatedSCell with CC_id %d for UE %d\n",Mod_id,/*eNB->frame*/0,CC_id,UE_id);
} else {
LOG_E(PHY,"[eNB %d] Frame %d: Received NULL radioResourceConfigDedicated (CC_id %d, UE %d)\n",Mod_id, /*eNB->frame*/0,CC_id,UE_id);
return;
}
}
#endif
void phy_config_dedicated_ue(uint8_t Mod_id,int CC_id,uint8_t eNB_id,
struct PhysicalConfigDedicated *physicalConfigDedicated )
{
PHY_VARS_UE *phy_vars_ue = PHY_vars_UE_g[Mod_id][CC_id];
phy_vars_ue->total_TBS[eNB_id]=0;
phy_vars_ue->total_TBS_last[eNB_id]=0;
phy_vars_ue->bitrate[eNB_id]=0;
phy_vars_ue->total_received_bits[eNB_id]=0;
phy_vars_ue->dlsch_errors[eNB_id]=0;
phy_vars_ue->dlsch_errors_last[eNB_id]=0;
phy_vars_ue->dlsch_received[eNB_id]=0;
phy_vars_ue->dlsch_received_last[eNB_id]=0;
phy_vars_ue->dlsch_fer[eNB_id]=0;
if (physicalConfigDedicated) {
LOG_D(PHY,"[UE %d] Received physicalConfigDedicated from eNB %d\n",Mod_id, eNB_id);
LOG_D(PHY,"------------------------------------------------------------------------\n");
if (physicalConfigDedicated->pdsch_ConfigDedicated) {
phy_vars_ue->pdsch_config_dedicated[eNB_id].p_a=physicalConfigDedicated->pdsch_ConfigDedicated->p_a;
LOG_D(PHY,"pdsch_config_dedicated.p_a %d\n",phy_vars_ue->pdsch_config_dedicated[eNB_id].p_a);
LOG_D(PHY,"\n");
}
if (physicalConfigDedicated->pucch_ConfigDedicated) {
if (physicalConfigDedicated->pucch_ConfigDedicated->ackNackRepetition.present==PUCCH_ConfigDedicated__ackNackRepetition_PR_release)
phy_vars_ue->pucch_config_dedicated[eNB_id].ackNackRepetition=0;
else {
phy_vars_ue->pucch_config_dedicated[eNB_id].ackNackRepetition=1;
}
if (physicalConfigDedicated->pucch_ConfigDedicated->tdd_AckNackFeedbackMode)
phy_vars_ue->pucch_config_dedicated[eNB_id].tdd_AckNackFeedbackMode = *physicalConfigDedicated->pucch_ConfigDedicated->tdd_AckNackFeedbackMode;
else
phy_vars_ue->pucch_config_dedicated[eNB_id].tdd_AckNackFeedbackMode = bundling;
if ( phy_vars_ue->pucch_config_dedicated[eNB_id].tdd_AckNackFeedbackMode == multiplexing)
LOG_D(PHY,"pucch_config_dedicated.tdd_AckNackFeedbackMode = multiplexing\n");
else
LOG_D(PHY,"pucch_config_dedicated.tdd_AckNackFeedbackMode = bundling\n");
}
if (physicalConfigDedicated->pusch_ConfigDedicated) {
phy_vars_ue->pusch_config_dedicated[eNB_id].betaOffset_ACK_Index = physicalConfigDedicated->pusch_ConfigDedicated->betaOffset_ACK_Index;
phy_vars_ue->pusch_config_dedicated[eNB_id].betaOffset_RI_Index = physicalConfigDedicated->pusch_ConfigDedicated->betaOffset_RI_Index;
phy_vars_ue->pusch_config_dedicated[eNB_id].betaOffset_CQI_Index = physicalConfigDedicated->pusch_ConfigDedicated->betaOffset_CQI_Index;
LOG_D(PHY,"pusch_config_dedicated.betaOffset_ACK_Index %d\n",phy_vars_ue->pusch_config_dedicated[eNB_id].betaOffset_ACK_Index);
LOG_D(PHY,"pusch_config_dedicated.betaOffset_RI_Index %d\n",phy_vars_ue->pusch_config_dedicated[eNB_id].betaOffset_RI_Index);
LOG_D(PHY,"pusch_config_dedicated.betaOffset_CQI_Index %d\n",phy_vars_ue->pusch_config_dedicated[eNB_id].betaOffset_CQI_Index);
LOG_D(PHY,"\n");
}
if (physicalConfigDedicated->uplinkPowerControlDedicated) {
phy_vars_ue->ul_power_control_dedicated[eNB_id].p0_UE_PUSCH = physicalConfigDedicated->uplinkPowerControlDedicated->p0_UE_PUSCH;
phy_vars_ue->ul_power_control_dedicated[eNB_id].deltaMCS_Enabled= physicalConfigDedicated->uplinkPowerControlDedicated->deltaMCS_Enabled;
phy_vars_ue->ul_power_control_dedicated[eNB_id].accumulationEnabled= physicalConfigDedicated->uplinkPowerControlDedicated->accumulationEnabled;
phy_vars_ue->ul_power_control_dedicated[eNB_id].p0_UE_PUCCH= physicalConfigDedicated->uplinkPowerControlDedicated->p0_UE_PUCCH;
phy_vars_ue->ul_power_control_dedicated[eNB_id].pSRS_Offset= physicalConfigDedicated->uplinkPowerControlDedicated->pSRS_Offset;
phy_vars_ue->ul_power_control_dedicated[eNB_id].filterCoefficient= *physicalConfigDedicated->uplinkPowerControlDedicated->filterCoefficient;
LOG_D(PHY,"ul_power_control_dedicated.p0_UE_PUSCH %d\n",phy_vars_ue->ul_power_control_dedicated[eNB_id].p0_UE_PUSCH);
LOG_D(PHY,"ul_power_control_dedicated.deltaMCS_Enabled %d\n",phy_vars_ue->ul_power_control_dedicated[eNB_id].deltaMCS_Enabled);
LOG_D(PHY,"ul_power_control_dedicated.accumulationEnabled %d\n",phy_vars_ue->ul_power_control_dedicated[eNB_id].accumulationEnabled);
LOG_D(PHY,"ul_power_control_dedicated.p0_UE_PUCCH %d\n",phy_vars_ue->ul_power_control_dedicated[eNB_id].p0_UE_PUCCH);
LOG_D(PHY,"ul_power_control_dedicated.pSRS_Offset %d\n",phy_vars_ue->ul_power_control_dedicated[eNB_id].pSRS_Offset);
LOG_D(PHY,"ul_power_control_dedicated.filterCoefficient %d\n",phy_vars_ue->ul_power_control_dedicated[eNB_id].filterCoefficient);
LOG_D(PHY,"\n");
}
if (physicalConfigDedicated->antennaInfo) {
phy_vars_ue->transmission_mode[eNB_id] = 1+(physicalConfigDedicated->antennaInfo->choice.explicitValue.transmissionMode);
LOG_D(PHY,"Transmission Mode %d\n",phy_vars_ue->transmission_mode[eNB_id]);
LOG_D(PHY,"\n");
switch(physicalConfigDedicated->antennaInfo->choice.explicitValue.transmissionMode) {
case AntennaInfoDedicated__transmissionMode_tm1:
phy_vars_ue->transmission_mode[eNB_id] = 1;
break;
case AntennaInfoDedicated__transmissionMode_tm2:
phy_vars_ue->transmission_mode[eNB_id] = 2;
break;
case AntennaInfoDedicated__transmissionMode_tm3:
phy_vars_ue->transmission_mode[eNB_id] = 3;
break;
case AntennaInfoDedicated__transmissionMode_tm4:
phy_vars_ue->transmission_mode[eNB_id] = 4;
break;
case AntennaInfoDedicated__transmissionMode_tm5:
phy_vars_ue->transmission_mode[eNB_id] = 5;
break;
case AntennaInfoDedicated__transmissionMode_tm6:
phy_vars_ue->transmission_mode[eNB_id] = 6;
break;
case AntennaInfoDedicated__transmissionMode_tm7:
phy_vars_ue->transmission_mode[eNB_id] = 7;
break;
default:
LOG_E(PHY,"Unknown transmission mode!\n");
break;
}
} else {
LOG_D(PHY,"[UE %d] Received NULL physicalConfigDedicated->antennaInfo from eNB %d\n",Mod_id, eNB_id);
}
if (physicalConfigDedicated->schedulingRequestConfig) {
if (physicalConfigDedicated->schedulingRequestConfig->present == SchedulingRequestConfig_PR_setup) {
phy_vars_ue->scheduling_request_config[eNB_id].sr_PUCCH_ResourceIndex = physicalConfigDedicated->schedulingRequestConfig->choice.setup.sr_PUCCH_ResourceIndex;
phy_vars_ue->scheduling_request_config[eNB_id].sr_ConfigIndex=physicalConfigDedicated->schedulingRequestConfig->choice.setup.sr_ConfigIndex;
phy_vars_ue->scheduling_request_config[eNB_id].dsr_TransMax=physicalConfigDedicated->schedulingRequestConfig->choice.setup.dsr_TransMax;
LOG_D(PHY,"scheduling_request_config.sr_PUCCH_ResourceIndex %d\n",phy_vars_ue->scheduling_request_config[eNB_id].sr_PUCCH_ResourceIndex);
LOG_D(PHY,"scheduling_request_config.sr_ConfigIndex %d\n",phy_vars_ue->scheduling_request_config[eNB_id].sr_ConfigIndex);
LOG_D(PHY,"scheduling_request_config.dsr_TransMax %d\n",phy_vars_ue->scheduling_request_config[eNB_id].dsr_TransMax);
}
LOG_D(PHY,"------------------------------------------------------------\n");
}
#ifdef CBA
if (physicalConfigDedicated->pusch_CBAConfigDedicated_vlola) {
phy_vars_ue->pusch_ca_config_dedicated[eNB_id].betaOffset_CA_Index = (uint16_t) *physicalConfigDedicated->pusch_CBAConfigDedicated_vlola->betaOffset_CBA_Index;
phy_vars_ue->pusch_ca_config_dedicated[eNB_id].cShift = (uint16_t) *physicalConfigDedicated->pusch_CBAConfigDedicated_vlola->cShift_CBA;
LOG_D(PHY,"[UE %d ] physicalConfigDedicated pusch CBA config dedicated: beta offset %d cshift %d \n",Mod_id,
phy_vars_ue->pusch_ca_config_dedicated[eNB_id].betaOffset_CA_Index,
phy_vars_ue->pusch_ca_config_dedicated[eNB_id].cShift);
}
#endif
} else {
LOG_D(PHY,"[PHY][UE %d] Received NULL radioResourceConfigDedicated from eNB %d\n",Mod_id,eNB_id);
return;
}
}
void phy_config_cba_rnti (module_id_t Mod_id,int CC_id,eNB_flag_t eNB_flag, uint8_t index, rnti_t cba_rnti, uint8_t cba_group_id, uint8_t num_active_cba_groups)
{
// uint8_t i;
if (eNB_flag == 0 ) {
//LOG_D(PHY,"[UE %d] configure cba group %d with rnti %x, num active cba grp %d\n", index, index, cba_rnti, num_active_cba_groups);
PHY_vars_UE_g[Mod_id][CC_id]->ulsch[index]->num_active_cba_groups=num_active_cba_groups;
PHY_vars_UE_g[Mod_id][CC_id]->ulsch[index]->cba_rnti[cba_group_id]=cba_rnti;
} else {
//for (i=index; i < NUMBER_OF_UE_MAX; i+=num_active_cba_groups){
// LOG_D(PHY,"[eNB %d] configure cba group %d with rnti %x for UE %d, num active cba grp %d\n",Mod_id, i%num_active_cba_groups, cba_rnti, i, num_active_cba_groups);
PHY_vars_eNB_g[Mod_id][CC_id]->ulsch[index]->num_active_cba_groups=num_active_cba_groups;
PHY_vars_eNB_g[Mod_id][CC_id]->ulsch[index]->cba_rnti[cba_group_id] = cba_rnti;
//}
}
}
void phy_init_lte_top(LTE_DL_FRAME_PARMS *frame_parms)
{
crcTableInit();
ccodedot11_init();
ccodedot11_init_inv();
ccodelte_init();
ccodelte_init_inv();
treillis_table_init();
phy_generate_viterbi_tables();
phy_generate_viterbi_tables_lte();
init_td8();
init_td16();
#ifdef __AVX2__
init_td16avx2();
#endif
lte_sync_time_init(frame_parms);
generate_ul_ref_sigs();
generate_ul_ref_sigs_rx();
generate_64qam_table();
generate_16qam_table();
generate_RIV_tables();
init_unscrambling_lut();
init_scrambling_lut();
//set_taus_seed(1328);
}
/*! \brief Helper function to allocate memory for DLSCH data structures.
* \param[out] pdsch Pointer to the LTE_UE_PDSCH structure to initialize.
* \param[in] frame_parms LTE_DL_FRAME_PARMS structure.
* \note This function is optimistic in that it expects malloc() to succeed.
*/
void phy_init_lte_ue__PDSCH( LTE_UE_PDSCH* const pdsch, const LTE_DL_FRAME_PARMS* const fp )
{
AssertFatal( pdsch, "pdsch==0" );
pdsch->pmi_ext = (uint8_t*)malloc16_clear( fp->N_RB_DL );
pdsch->llr[0] = (int16_t*)malloc16_clear( (8*((3*8*6144)+12))*sizeof(int16_t) );
pdsch->llr128 = (int16_t**)malloc16_clear( sizeof(int16_t*) );
// FIXME! no further allocation for (int16_t*)pdsch->llr128 !!! expect SIGSEGV
// FK, 11-3-2015: this is only as a temporary pointer, no memory is stored there
pdsch->rxdataF_ext = (int32_t**)malloc16_clear( 8*sizeof(int32_t*) );
pdsch->rxdataF_comp0 = (int32_t**)malloc16_clear( 8*sizeof(int32_t*) );
pdsch->rho = (int32_t**)malloc16_clear( fp->nb_antennas_rx*sizeof(int32_t*) );
pdsch->dl_ch_estimates_ext = (int32_t**)malloc16_clear( 8*sizeof(int32_t*) );
pdsch->dl_ch_mag0 = (int32_t**)malloc16_clear( 8*sizeof(int32_t*) );
pdsch->dl_ch_magb0 = (int32_t**)malloc16_clear( 8*sizeof(int32_t*) );
//pdsch->dl_ch_mag1 = (int32_t**)malloc16_clear( 8*sizeof(int32_t*) );
//pdsch->dl_ch_magb1 = (int32_t**)malloc16_clear( 8*sizeof(int32_t*) );
// the allocated memory size is fixed:
AssertFatal( fp->nb_antennas_rx <= 2, "nb_antennas_rx > 2" );
for (int i=0; inb_antennas_rx; i++) {
pdsch->rho[i] = (int32_t*)malloc16_clear( sizeof(int32_t)*(fp->N_RB_DL*12*7*2) );
for (int j=0; j<4; j++) { //fp->nb_antennas_tx; j++)
const int idx = (j<<1)+i;
const size_t num = 7*2*fp->N_RB_DL*12;
pdsch->rxdataF_ext[idx] = (int32_t*)malloc16_clear( sizeof(int32_t) * num );
pdsch->rxdataF_comp0[idx] = (int32_t*)malloc16_clear( sizeof(int32_t) * num );
pdsch->dl_ch_estimates_ext[idx] = (int32_t*)malloc16_clear( sizeof(int32_t) * num );
pdsch->dl_ch_mag0[idx] = (int32_t*)malloc16_clear( sizeof(int32_t) * num );
pdsch->dl_ch_magb0[idx] = (int32_t*)malloc16_clear( sizeof(int32_t) * num );
//pdsch->dl_ch_mag1[idx] = (int32_t*)malloc16_clear( sizeof(int32_t) * num );
//pdsch->dl_ch_magb1[idx] = (int32_t*)malloc16_clear( sizeof(int32_t) * num );
}
}
}
int phy_init_lte_ue(PHY_VARS_UE *ue,
int nb_connected_eNB,
uint8_t abstraction_flag)
{
// create shortcuts
LTE_DL_FRAME_PARMS* const fp = &ue->frame_parms;
LTE_UE_COMMON* const common_vars = &ue->common_vars;
LTE_UE_PDSCH** const pdsch_vars = ue->pdsch_vars;
LTE_UE_PDSCH** const pdsch_vars_SI = ue->pdsch_vars_SI;
LTE_UE_PDSCH** const pdsch_vars_ra = ue->pdsch_vars_ra;
LTE_UE_PDSCH** const pdsch_vars_mch = ue->pdsch_vars_MCH;
LTE_UE_PBCH** const pbch_vars = ue->pbch_vars;
LTE_UE_PDCCH** const pdcch_vars = ue->pdcch_vars;
LTE_UE_PRACH** const prach_vars = ue->prach_vars;
int i,j,k,l;
int eNB_id;
printf("Initializing UE vars (abstraction %"PRIu8") for eNB TXant %"PRIu8", UE RXant %"PRIu8"\n",abstraction_flag,fp->nb_antennas_tx,fp->nb_antennas_rx);
LOG_D(PHY,"[MSC_NEW][FRAME 00000][PHY_UE][MOD %02u][]\n", ue->Mod_id+NB_eNB_INST);
// many memory allocation sizes are hard coded
AssertFatal( fp->nb_antennas_rx <= 2, "hard coded allocation for ue_common_vars->dl_ch_estimates[eNB_id]" );
AssertFatal( ue->n_connected_eNB <= NUMBER_OF_CONNECTED_eNB_MAX, "n_connected_eNB is too large" );
// init phy_vars_ue
for (i=0; i<4; i++) {
ue->rx_gain_max[i] = 135;
ue->rx_gain_med[i] = 128;
ue->rx_gain_byp[i] = 120;
}
ue->n_connected_eNB = nb_connected_eNB;
for(eNB_id = 0; eNB_id < ue->n_connected_eNB; eNB_id++) {
ue->total_TBS[eNB_id] = 0;
ue->total_TBS_last[eNB_id] = 0;
ue->bitrate[eNB_id] = 0;
ue->total_received_bits[eNB_id] = 0;
}
for (i=0;i<10;i++)
ue->tx_power_dBm[i]=-127;
if (abstraction_flag == 0) {
// init TX buffers
common_vars->txdata = (int32_t**)malloc16( fp->nb_antennas_tx*sizeof(int32_t*) );
common_vars->txdataF = (int32_t **)malloc16( fp->nb_antennas_tx*sizeof(int32_t*) );
for (i=0; inb_antennas_tx; i++) {
common_vars->txdata[i] = (int32_t*)malloc16_clear( fp->samples_per_tti*10*sizeof(int32_t) );
common_vars->txdataF[i] = (int32_t *)malloc16_clear( fp->ofdm_symbol_size*fp->symbols_per_tti*10*sizeof(int32_t) );
}
// init RX buffers
common_vars->rxdata = (int32_t**)malloc16( fp->nb_antennas_rx*sizeof(int32_t*) );
common_vars->rxdataF = (int32_t**)malloc16( fp->nb_antennas_rx*sizeof(int32_t*) );
common_vars->rxdataF2 = (int32_t**)malloc16( fp->nb_antennas_rx*sizeof(int32_t*) );
for (i=0; inb_antennas_rx; i++) {
common_vars->rxdata[i] = (int32_t*) malloc16_clear( (fp->samples_per_tti*10+2048)*sizeof(int32_t) );
common_vars->rxdataF[i] = (int32_t*)malloc16_clear( sizeof(int32_t)*(fp->ofdm_symbol_size*14) );
common_vars->rxdataF2[i] = (int32_t*)malloc16_clear( sizeof(int32_t)*(fp->ofdm_symbol_size*fp->symbols_per_tti*10) );
}
}
// Channel estimates
for (eNB_id=0; eNB_id<7; eNB_id++) {
common_vars->dl_ch_estimates[eNB_id] = (int32_t**)malloc16_clear(8*sizeof(int32_t*));
common_vars->dl_ch_estimates_time[eNB_id] = (int32_t**)malloc16_clear(8*sizeof(int32_t*));
for (i=0; inb_antennas_rx; i++)
for (j=0; j<4; j++) {
int idx = (j<<1) + i;
common_vars->dl_ch_estimates[eNB_id][idx] = (int32_t*)malloc16_clear( sizeof(int32_t)*fp->symbols_per_tti*(fp->ofdm_symbol_size+LTE_CE_FILTER_LENGTH) );
common_vars->dl_ch_estimates_time[eNB_id][idx] = (int32_t*)malloc16_clear( sizeof(int32_t)*fp->ofdm_symbol_size*2 );
}
}
// DLSCH
for (eNB_id=0; eNB_idn_connected_eNB; eNB_id++) {
pdsch_vars[eNB_id] = (LTE_UE_PDSCH *)malloc16_clear(sizeof(LTE_UE_PDSCH));
pdsch_vars_SI[eNB_id] = (LTE_UE_PDSCH *)malloc16_clear(sizeof(LTE_UE_PDSCH));
pdsch_vars_ra[eNB_id] = (LTE_UE_PDSCH *)malloc16_clear(sizeof(LTE_UE_PDSCH));
pdsch_vars_mch[eNB_id] = (LTE_UE_PDSCH *)malloc16_clear(sizeof(LTE_UE_PDSCH));
pdcch_vars[eNB_id] = (LTE_UE_PDCCH *)malloc16_clear(sizeof(LTE_UE_PDCCH));
prach_vars[eNB_id] = (LTE_UE_PRACH *)malloc16_clear(sizeof(LTE_UE_PRACH));
pbch_vars[eNB_id] = (LTE_UE_PBCH *)malloc16_clear(sizeof(LTE_UE_PBCH));
if (abstraction_flag == 0) {
// init basic (common) variables
phy_init_lte_ue__PDSCH( pdsch_vars[eNB_id], fp );
// init variables only needed for standard PDSCH
pdsch_vars[eNB_id]->llr_shifts = (uint8_t*)malloc16_clear(7*2*fp->N_RB_DL*12);
pdsch_vars[eNB_id]->llr_shifts_p = pdsch_vars[eNB_id]->llr_shifts;
pdsch_vars[eNB_id]->llr[1] = (int16_t*)malloc16_clear( (8*((3*8*6144)+12))*sizeof(int16_t) );
pdsch_vars[eNB_id]->llr128_2ndstream = (int16_t**)malloc16_clear( sizeof(int16_t*) );
pdsch_vars[eNB_id]->rho = (int32_t**)malloc16_clear( fp->nb_antennas_rx*sizeof(int32_t*) );
for (int i=0; inb_antennas_rx; i++)
pdsch_vars[eNB_id]->rho[i] = (int32_t*)malloc16_clear( sizeof(int32_t)*(fp->N_RB_DL*12*7*2) );
pdsch_vars[eNB_id]->dl_ch_rho2_ext = (int32_t**)malloc16_clear( 8*sizeof(int32_t*) );
for (i=0; inb_antennas_rx; i++)
for (j=0; j<4; j++) {
const int idx = (j<<1)+i;
const size_t num = 7*2*fp->N_RB_DL*12+4;
pdsch_vars[eNB_id]->dl_ch_rho2_ext[idx] = (int32_t*)malloc16_clear( sizeof(int32_t) * num );
}
const size_t num = 7*2*fp->N_RB_DL*12+4;
for (k=0;k<8;k++) { //harq_pid
for (l=0;l<8;l++) { //round
pdsch_vars[eNB_id]->rxdataF_comp1[k][l] = (int32_t**)malloc16_clear( 8*sizeof(int32_t*) );
pdsch_vars[eNB_id]->dl_ch_rho_ext[k][l] = (int32_t**)malloc16_clear( 8*sizeof(int32_t*) );
pdsch_vars[eNB_id]->dl_ch_mag1[k][l] = (int32_t**)malloc16_clear( 8*sizeof(int32_t*) );
pdsch_vars[eNB_id]->dl_ch_magb1[k][l] = (int32_t**)malloc16_clear( 8*sizeof(int32_t*) );
for (int i=0; inb_antennas_rx; i++)
for (int j=0; j<4; j++) { //frame_parms->nb_antennas_tx; j++)
const int idx = (j<<1)+i;
pdsch_vars[eNB_id]->dl_ch_rho_ext[k][l][idx] = (int32_t*)malloc16_clear( sizeof(int32_t) * num );
pdsch_vars[eNB_id]->rxdataF_comp1[k][l][idx] = (int32_t*)malloc16_clear( sizeof(int32_t) * num );
pdsch_vars[eNB_id]->dl_ch_mag1[k][l][idx] = (int32_t*)malloc16_clear( sizeof(int32_t) * num );
pdsch_vars[eNB_id]->dl_ch_magb1[k][l][idx] = (int32_t*)malloc16_clear( sizeof(int32_t) * num );
}
}
}
phy_init_lte_ue__PDSCH( pdsch_vars_SI[eNB_id], fp );
phy_init_lte_ue__PDSCH( pdsch_vars_ra[eNB_id], fp );
phy_init_lte_ue__PDSCH( pdsch_vars_mch[eNB_id], fp );
// 100 PRBs * 12 REs/PRB * 4 PDCCH SYMBOLS * 2 LLRs/RE
pdcch_vars[eNB_id]->llr = (uint16_t*)malloc16_clear( 2*4*100*12*sizeof(uint16_t) );
pdcch_vars[eNB_id]->llr16 = (uint16_t*)malloc16_clear( 2*4*100*12*sizeof(uint16_t) );
pdcch_vars[eNB_id]->wbar = (uint16_t*)malloc16_clear( 2*4*100*12*sizeof(uint16_t) );
pdcch_vars[eNB_id]->e_rx = (int8_t*)malloc16_clear( 4*2*100*12 );
pdcch_vars[eNB_id]->rxdataF_comp = (int32_t**)malloc16_clear( 8*sizeof(int32_t*) );
pdcch_vars[eNB_id]->dl_ch_rho_ext = (int32_t**)malloc16_clear( 8*sizeof(int32_t*) );
pdcch_vars[eNB_id]->rho = (int32_t**)malloc16( fp->nb_antennas_rx*sizeof(int32_t*) );
pdcch_vars[eNB_id]->rxdataF_ext = (int32_t**)malloc16_clear( 8*sizeof(int32_t*) );
pdcch_vars[eNB_id]->dl_ch_estimates_ext = (int32_t**)malloc16_clear( 8*sizeof(int32_t*) );
for (i=0; inb_antennas_rx; i++) {
//ue_pdcch_vars[eNB_id]->rho[i] = (int32_t*)malloc16_clear( sizeof(int32_t)*(fp->N_RB_DL*12*7*2) );
pdcch_vars[eNB_id]->rho[i] = (int32_t*)malloc16_clear( sizeof(int32_t)*(100*12*4) );
for (j=0; j<4; j++) { //fp->nb_antennas_tx; j++)
int idx = (j<<1)+i;
// size_t num = 7*2*fp->N_RB_DL*12;
size_t num = 4*100*12; // 4 symbols, 100 PRBs, 12 REs per PRB
pdcch_vars[eNB_id]->rxdataF_comp[idx] = (int32_t*)malloc16_clear( sizeof(int32_t) * num );
pdcch_vars[eNB_id]->dl_ch_rho_ext[idx] = (int32_t*)malloc16_clear( sizeof(int32_t) * num );
pdcch_vars[eNB_id]->rxdataF_ext[idx] = (int32_t*)malloc16_clear( sizeof(int32_t) * num );
pdcch_vars[eNB_id]->dl_ch_estimates_ext[idx] = (int32_t*)malloc16_clear( sizeof(int32_t) * num );
}
}
// PBCH
pbch_vars[eNB_id]->rxdataF_ext = (int32_t**)malloc16( fp->nb_antennas_rx*sizeof(int32_t*) );
pbch_vars[eNB_id]->rxdataF_comp = (int32_t**)malloc16_clear( 8*sizeof(int32_t*) );
pbch_vars[eNB_id]->dl_ch_estimates_ext = (int32_t**)malloc16_clear( 8*sizeof(int32_t*) );
pbch_vars[eNB_id]->llr = (int8_t*)malloc16_clear( 1920 );
prach_vars[eNB_id]->prachF = (int16_t*)malloc16_clear( sizeof(int)*(7*2*sizeof(int)*(fp->ofdm_symbol_size*12)) );
prach_vars[eNB_id]->prach = (int16_t*)malloc16_clear( sizeof(int)*(7*2*sizeof(int)*(fp->ofdm_symbol_size*12)) );
for (i=0; inb_antennas_rx; i++) {
pbch_vars[eNB_id]->rxdataF_ext[i] = (int32_t*)malloc16_clear( sizeof(int32_t)*6*12*4 );
for (j=0; j<4; j++) {//fp->nb_antennas_tx;j++) {
int idx = (j<<1)+i;
pbch_vars[eNB_id]->rxdataF_comp[idx] = (int32_t*)malloc16_clear( sizeof(int32_t)*6*12*4 );
pbch_vars[eNB_id]->dl_ch_estimates_ext[idx] = (int32_t*)malloc16_clear( sizeof(int32_t)*6*12*4 );
}
}
}
pbch_vars[eNB_id]->decoded_output = (uint8_t*)malloc16_clear( 64 );
}
// initialization for the last instance of pdsch_vars (used for MU-MIMO)
pdsch_vars[eNB_id] = (LTE_UE_PDSCH *)malloc16_clear( sizeof(LTE_UE_PDSCH) );
pdsch_vars_SI[eNB_id] = (LTE_UE_PDSCH *)malloc16_clear( sizeof(LTE_UE_PDSCH) );
pdsch_vars_ra[eNB_id] = (LTE_UE_PDSCH *)malloc16_clear( sizeof(LTE_UE_PDSCH) );
if (abstraction_flag == 0) {
phy_init_lte_ue__PDSCH( pdsch_vars[eNB_id], fp );
pdsch_vars[eNB_id]->llr[1] = (int16_t*)malloc16_clear( (8*((3*8*6144)+12))*sizeof(int16_t) );
} else { //abstraction == 1
ue->sinr_dB = (double*) malloc16_clear( fp->N_RB_DL*12*sizeof(double) );
}
ue->sinr_CQI_dB = (double*) malloc16_clear( fp->N_RB_DL*12*sizeof(double) );
ue->init_averaging = 1;
ue->pdsch_config_dedicated->p_a = dB0; // default value until overwritten by RRCConnectionReconfiguration
// set channel estimation to do linear interpolation in time
ue->high_speed_flag = 1;
ue->ch_est_alpha = 24576;
init_prach_tables(839);
return 0;
}
int phy_init_lte_eNB(PHY_VARS_eNB *eNB,
unsigned char is_secondary_eNB,
unsigned char abstraction_flag)
{
// shortcuts
LTE_DL_FRAME_PARMS* const fp = &eNB->frame_parms;
LTE_eNB_COMMON* const common_vars = &eNB->common_vars;
LTE_eNB_PUSCH** const pusch_vars = eNB->pusch_vars;
LTE_eNB_SRS* const srs_vars = eNB->srs_vars;
LTE_eNB_PRACH* const prach_vars = &eNB->prach_vars;
int i, j, eNB_id, UE_id;
eNB->total_dlsch_bitrate = 0;
eNB->total_transmitted_bits = 0;
eNB->total_system_throughput = 0;
eNB->check_for_MUMIMO_transmissions=0;
LOG_I(PHY,"[eNB %"PRIu8"] Initializing DL_FRAME_PARMS : N_RB_DL %"PRIu8", PHICH Resource %d, PHICH Duration %d\n",
eNB->Mod_id,
fp->N_RB_DL,fp->phich_config_common.phich_resource,
fp->phich_config_common.phich_duration);
LOG_D(PHY,"[MSC_NEW][FRAME 00000][PHY_eNB][MOD %02"PRIu8"][]\n", eNB->Mod_id);
if (eNB->node_function != NGFI_RRU_IF4p5) {
lte_gold(fp,eNB->lte_gold_table,fp->Nid_cell);
generate_pcfich_reg_mapping(fp);
generate_phich_reg_mapping(fp);
for (UE_id=0; UE_idfirst_run_timing_advance[UE_id] =
1; ///This flag used to be static. With multiple eNBs this does no longer work, hence we put it in the structure. However it has to be initialized with 1, which is performed here.
// clear whole structure
bzero( &eNB->UE_stats[UE_id], sizeof(LTE_eNB_UE_stats) );
eNB->physicalConfigDedicated[UE_id] = NULL;
}
eNB->first_run_I0_measurements =
1; ///This flag used to be static. With multiple eNBs this does no longer work, hence we put it in the structure. However it has to be initialized with 1, which is performed here.
}
// for (eNB_id=0; eNB_id<3; eNB_id++) {
{
eNB_id=0;
if (abstraction_flag==0) {
// TX vars
if (eNB->node_function != NGFI_RCC_IF4p5)
common_vars->txdata[eNB_id] = (int32_t**)malloc16( fp->nb_antennas_tx*sizeof(int32_t*) );
common_vars->txdataF[eNB_id] = (int32_t **)malloc16( fp->nb_antennas_tx*sizeof(int32_t*) );
for (i=0; inb_antennas_tx; i++) {
if (eNB->node_function != NGFI_RCC_IF4p5)
common_vars->txdata[eNB_id][i] = (int32_t*)malloc16_clear( fp->samples_per_tti*10*sizeof(int32_t) );
common_vars->txdataF[eNB_id][i] = (int32_t*)malloc16_clear( fp->ofdm_symbol_size*fp->symbols_per_tti*10*sizeof(int32_t) );
#ifdef DEBUG_PHY
printf("[openair][LTE_PHY][INIT] common_vars->txdata[%d][%d] = %p\n",eNB_id,i,common_vars->txdata[eNB_id][i]);
printf("[openair][LTE_PHY][INIT] common_vars->txdataF[%d][%d] = %p (%d bytes)\n",
eNB_id,i,common_vars->txdataF[eNB_id][i],
fp->ofdm_symbol_size*fp->symbols_per_tti*10*sizeof(int32_t));
#endif
}
// RX vars
if (eNB->node_function != NGFI_RCC_IF4p5) {
common_vars->rxdata[eNB_id] = (int32_t**)malloc16( fp->nb_antennas_rx*sizeof(int32_t*) );
common_vars->rxdata_7_5kHz[eNB_id] = (int32_t**)malloc16( fp->nb_antennas_rx*sizeof(int32_t*) );
}
common_vars->rxdataF[eNB_id] = (int32_t**)malloc16( fp->nb_antennas_rx*sizeof(int32_t*) );
for (i=0; inb_antennas_rx; i++) {
if (eNB->node_function != NGFI_RCC_IF4p5) {
common_vars->rxdata[eNB_id][i] = (int32_t*)malloc16_clear( fp->samples_per_tti*10*sizeof(int32_t) );
common_vars->rxdata_7_5kHz[eNB_id][i] = (int32_t*)malloc16_clear( fp->samples_per_tti*sizeof(int32_t) );
}
common_vars->rxdataF[eNB_id][i] = (int32_t*)malloc16_clear(sizeof(int32_t)*(fp->ofdm_symbol_size*fp->symbols_per_tti) );
#ifdef DEBUG_PHY
printf("[openair][LTE_PHY][INIT] common_vars->rxdata[%d][%d] = %p\n",eNB_id,i,common_vars->rxdata[eNB_id][i]);
printf("[openair][LTE_PHY][INIT] common_vars->rxdata_7_5kHz[%d][%d] = %p\n",eNB_id,i,common_vars->rxdata_7_5kHz[eNB_id][i]);
#endif
}
if (eNB->node_function != NGFI_RRU_IF4p5) {
// Channel estimates for SRS
for (UE_id=0; UE_idnb_antennas_rx*sizeof(int32_t*) );
srs_vars[UE_id].srs_ch_estimates_time[eNB_id] = (int32_t**)malloc16( fp->nb_antennas_rx*sizeof(int32_t*) );
for (i=0; inb_antennas_rx; i++) {
srs_vars[UE_id].srs_ch_estimates[eNB_id][i] = (int32_t*)malloc16_clear( sizeof(int32_t)*fp->ofdm_symbol_size );
srs_vars[UE_id].srs_ch_estimates_time[eNB_id][i] = (int32_t*)malloc16_clear( sizeof(int32_t)*fp->ofdm_symbol_size*2 );
}
} //UE_id
common_vars->sync_corr[eNB_id] = (uint32_t*)malloc16_clear( LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*sizeof(uint32_t)*fp->samples_per_tti );
}
} else { //UPLINK abstraction = 1
eNB->sinr_dB = (double*) malloc16_clear( fp->N_RB_DL*12*sizeof(double) );
}
} //eNB_id
if (abstraction_flag==0) {
if (eNB->node_function != NGFI_RRU_IF4p5) {
generate_ul_ref_sigs_rx();
// SRS
for (UE_id=0; UE_idofdm_symbol_size*sizeof(int32_t));
}
}
}
// ULSCH VARS, skip if NFGI_RRU_IF4
if (eNB->node_function!=NGFI_RRU_IF4p5)
prach_vars->prachF = (int16_t*)malloc16_clear( 1024*2*sizeof(int16_t) );
/* number of elements of an array X is computed as sizeof(X) / sizeof(X[0]) */
AssertFatal(fp->nb_antennas_rx <= sizeof(prach_vars->rxsigF) / sizeof(prach_vars->rxsigF[0]),
"nb_antennas_rx too large");
for (i=0; inb_antennas_rx; i++) {
prach_vars->rxsigF[i] = (int16_t*)malloc16_clear( fp->ofdm_symbol_size*12*2*sizeof(int16_t) );
#ifdef DEBUG_PHY
printf("[openair][LTE_PHY][INIT] prach_vars->rxsigF[%d] = %p\n",i,prach_vars->rxsigF[i]);
#endif
}
if (eNB->node_function != NGFI_RRU_IF4p5) {
AssertFatal(fp->nb_antennas_rx <= sizeof(prach_vars->prach_ifft) / sizeof(prach_vars->prach_ifft[0]),
"nb_antennas_rx too large");
for (i=0; inb_antennas_rx; i++) {
prach_vars->prach_ifft[i] = (int16_t*)malloc16_clear(1024*2*sizeof(int16_t));
#ifdef DEBUG_PHY
printf("[openair][LTE_PHY][INIT] prach_vars->prach_ifft[%d] = %p\n",i,prach_vars->prach_ifft[i]);
#endif
}
for (UE_id=0; UE_idrxdataF_ext[eNB_id] = (int32_t**)malloc16( fp->nb_antennas_rx*sizeof(int32_t*) );
pusch_vars[UE_id]->rxdataF_ext2[eNB_id] = (int32_t**)malloc16( fp->nb_antennas_rx*sizeof(int32_t*) );
pusch_vars[UE_id]->drs_ch_estimates[eNB_id] = (int32_t**)malloc16( fp->nb_antennas_rx*sizeof(int32_t*) );
pusch_vars[UE_id]->drs_ch_estimates_time[eNB_id] = (int32_t**)malloc16( fp->nb_antennas_rx*sizeof(int32_t*) );
pusch_vars[UE_id]->rxdataF_comp[eNB_id] = (int32_t**)malloc16( fp->nb_antennas_rx*sizeof(int32_t*) );
pusch_vars[UE_id]->ul_ch_mag[eNB_id] = (int32_t**)malloc16( fp->nb_antennas_rx*sizeof(int32_t*) );
pusch_vars[UE_id]->ul_ch_magb[eNB_id] = (int32_t**)malloc16( fp->nb_antennas_rx*sizeof(int32_t*) );
for (i=0; inb_antennas_rx; i++) {
// RK 2 times because of output format of FFT!
// FIXME We should get rid of this
pusch_vars[UE_id]->rxdataF_ext[eNB_id][i] = (int32_t*)malloc16_clear( 2*sizeof(int32_t)*fp->N_RB_UL*12*fp->symbols_per_tti );
pusch_vars[UE_id]->rxdataF_ext2[eNB_id][i] = (int32_t*)malloc16_clear( sizeof(int32_t)*fp->N_RB_UL*12*fp->symbols_per_tti );
pusch_vars[UE_id]->drs_ch_estimates[eNB_id][i] = (int32_t*)malloc16_clear( sizeof(int32_t)*fp->N_RB_UL*12*fp->symbols_per_tti );
pusch_vars[UE_id]->drs_ch_estimates_time[eNB_id][i] = (int32_t*)malloc16_clear( 2*2*sizeof(int32_t)*fp->ofdm_symbol_size );
pusch_vars[UE_id]->rxdataF_comp[eNB_id][i] = (int32_t*)malloc16_clear( sizeof(int32_t)*fp->N_RB_UL*12*fp->symbols_per_tti );
pusch_vars[UE_id]->ul_ch_mag[eNB_id][i] = (int32_t*)malloc16_clear( fp->symbols_per_tti*sizeof(int32_t)*fp->N_RB_UL*12 );
pusch_vars[UE_id]->ul_ch_magb[eNB_id][i] = (int32_t*)malloc16_clear( fp->symbols_per_tti*sizeof(int32_t)*fp->N_RB_UL*12 );
}
} //eNB_id
pusch_vars[UE_id]->llr = (int16_t*)malloc16_clear( (8*((3*8*6144)+12))*sizeof(int16_t) );
} // abstraction_flag
} //UE_id
if (abstraction_flag==0) {
if (is_secondary_eNB) {
for (eNB_id=0; eNB_id<3; eNB_id++) {
eNB->dl_precoder_SeNB[eNB_id] = (int **)malloc16(4*sizeof(int*));
if (eNB->dl_precoder_SeNB[eNB_id]) {
#ifdef DEBUG_PHY
printf("[openair][SECSYS_PHY][INIT] eNB->dl_precoder_SeNB[%d] allocated at %p\n",eNB_id,
eNB->dl_precoder_SeNB[eNB_id]);
#endif
} else {
printf("[openair][SECSYS_PHY][INIT] eNB->dl_precoder_SeNB[%d] not allocated\n",eNB_id);
return(-1);
}
for (j=0; jnb_antennas_tx; j++) {
eNB->dl_precoder_SeNB[eNB_id][j] = (int *)malloc16(2*sizeof(int)*(fp->ofdm_symbol_size)); // repeated format (hence the '2*')
if (eNB->dl_precoder_SeNB[eNB_id][j]) {
#ifdef DEBUG_PHY
printf("[openair][LTE_PHY][INIT] eNB->dl_precoder_SeNB[%d][%d] allocated at %p\n",eNB_id,j,
eNB->dl_precoder_SeNB[eNB_id][j]);
#endif
memset(eNB->dl_precoder_SeNB[eNB_id][j],0,2*sizeof(int)*(fp->ofdm_symbol_size));
} else {
printf("[openair][LTE_PHY][INIT] eNB->dl_precoder_SeNB[%d][%d] not allocated\n",eNB_id,j);
return(-1);
}
} //for(j=...nb_antennas_tx
} //for(eNB_id...
}
}
for (UE_id=0; UE_idUE_stats_ptr[UE_id] = &eNB->UE_stats[UE_id];
eNB->pdsch_config_dedicated->p_a = dB0; //defaul value until overwritten by RRCConnectionReconfiguration
init_prach_tables(839);
} // node_function != NGFI_RRU_IF4p5
return (0);
}