/* * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The OpenAirInterface Software Alliance licenses this file to You under * the OAI Public License, Version 1.0 (the "License"); you may not use this file * except in compliance with the License. * You may obtain a copy of the License at * * http://www.openairinterface.org/?page_id=698 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *------------------------------------------------------------------------------- * For more information about the OpenAirInterface (OAI) Software Alliance: * contact@openairinterface.org */ /*! \file PHY/LTE_TRANSPORT/pbch.c * \brief Top-level routines for generating and decoding the PBCH/BCH physical/transport channel V8.6 2009-03 * \author R. Knopp, F. Kaltenberger * \date 2011 * \version 0.1 * \company Eurecom * \email: knopp@eurecom.fr,florian.kaltenberger.fr * \note * \warning */ #include "PHY/defs_nr_UE.h" #include "PHY/CODING/coding_extern.h" #include "PHY/phy_extern_nr_ue.h" #include "PHY/sse_intrin.h" #include "PHY/LTE_REFSIG/lte_refsig.h" //#define DEBUG_PBCH 1 //#define DEBUG_PBCH_ENCODING #ifdef OPENAIR2 //#include "PHY_INTERFACE/defs.h" #endif #define PBCH_A 24 #define print_shorts(s,x) printf("%s : %d,%d,%d,%d,%d,%d,%d,%d\n",s,((int16_t*)x)[0],((int16_t*)x)[1],((int16_t*)x)[2],((int16_t*)x)[3],((int16_t*)x)[4],((int16_t*)x)[5],((int16_t*)x)[6],((int16_t*)x)[7]) uint16_t nr_pbch_extract(int **rxdataF, int **dl_ch_estimates, int **rxdataF_ext, int **dl_ch_estimates_ext, uint32_t symbol, uint32_t high_speed_flag, int is_synchronized, NR_DL_FRAME_PARMS *frame_parms) { uint16_t rb; uint8_t i,j,aarx; int32_t *dl_ch0,*dl_ch0_ext,*rxF,*rxF_ext; int nushiftmod4 = frame_parms->nushift; unsigned int rx_offset = frame_parms->first_carrier_offset + frame_parms->ssb_start_subcarrier; //and if (rx_offset>= frame_parms->ofdm_symbol_size) rx_offset-=frame_parms->ofdm_symbol_size; int s_offset=0; AssertFatal(symbol>=1 && symbol<5, "symbol %d illegal for PBCH extraction\n", symbol); if (is_synchronized==1) s_offset=4; for (aarx=0; aarxnb_antennas_rx; aarx++) { rxF = &rxdataF[aarx][(symbol+s_offset)*frame_parms->ofdm_symbol_size]; rxF_ext = &rxdataF_ext[aarx][(symbol+s_offset)*(20*12)]; #ifdef DEBUG_PBCH printf("extract_rbs (nushift %d): rx_offset=%d, symbol %d\n",frame_parms->nushift, (rx_offset + ((symbol+s_offset)*(frame_parms->ofdm_symbol_size))),symbol); int16_t *p = (int16_t *)rxF; for (int i =0; i<8;i++){ printf("rxF [%d]= %d\n",i,rxF[i]); printf("pbch extract rxF %d %d addr %p\n", p[2*i], p[2*i+1], &p[2*i]); printf("rxF ext addr %p\n", &rxF_ext[i]); } #endif for (rb=0; rb<20; rb++) { j=0; if (symbol==1 || symbol==3) { for (i=0; i<12; i++) { if ((i!=nushiftmod4) && (i!=(nushiftmod4+4)) && (i!=(nushiftmod4+8))) { rxF_ext[j]=rxF[rx_offset]; #ifdef DEBUG_PBCH printf("rxF ext[%d] = (%d,%d) rxF [%d]= (%d,%d)\n",(9*rb) + j, ((int16_t*)&rxF_ext[j])[0], ((int16_t*)&rxF_ext[j])[1], rx_offset, ((int16_t*)&rxF[rx_offset])[0], ((int16_t*)&rxF[rx_offset])[1]); #endif j++; } rx_offset=(rx_offset+1)&(frame_parms->ofdm_symbol_size-1); } rxF_ext+=9; } else { //symbol 2 if ((rb < 4) || (rb >15)){ for (i=0; i<12; i++) { if ((i!=nushiftmod4) && (i!=(nushiftmod4+4)) && (i!=(nushiftmod4+8))) { rxF_ext[j]=rxF[rx_offset]; #ifdef DEBUG_PBCH printf("rxF ext[%d] = (%d,%d) rxF [%d]= (%d,%d)\n",(rb<4) ? (9*rb) + j : (9*(rb-12))+j, ((int16_t*)&rxF_ext[j])[0], ((int16_t*)&rxF_ext[j])[1], rx_offset, ((int16_t*)&rxF[rx_offset])[0], ((int16_t*)&rxF[rx_offset])[1]); #endif j++; } rx_offset=(rx_offset+1)&(frame_parms->ofdm_symbol_size-1); } rxF_ext+=9; } else rx_offset = (rx_offset+12)&(frame_parms->ofdm_symbol_size-1); } } if (high_speed_flag == 1) dl_ch0 = &dl_ch_estimates[aarx][((symbol+s_offset)*(frame_parms->ofdm_symbol_size))]; else dl_ch0 = &dl_ch_estimates[aarx][0]; //printf("dl_ch0 addr %p\n",dl_ch0); dl_ch0_ext = &dl_ch_estimates_ext[aarx][(symbol+s_offset)*(20*12)]; for (rb=0; rb<20; rb++) { j=0; if (symbol==1 || symbol==3) { for (i=0; i<12; i++) { if ((i!=nushiftmod4) && (i!=(nushiftmod4+4)) && (i!=(nushiftmod4+8))) { dl_ch0_ext[j]=dl_ch0[i]; #ifdef DEBUG_PBCH if ((rb==0) && (i<2)) printf("dl ch0 ext[%d] = (%d,%d) dl_ch0 [%d]= (%d,%d)\n",j, ((int16_t*)&dl_ch0_ext[j])[0], ((int16_t*)&dl_ch0_ext[j])[1], i, ((int16_t*)&dl_ch0[i])[0], ((int16_t*)&dl_ch0[i])[1]); #endif j++; } } dl_ch0+=12; dl_ch0_ext+=9; } else { if ((rb < 4) || (rb >15)){ for (i=0; i<12; i++) { if ((i!=nushiftmod4) && (i!=(nushiftmod4+4)) && (i!=(nushiftmod4+8))) { dl_ch0_ext[j]=dl_ch0[i]; #ifdef DEBUG_PBCH printf("dl ch0 ext[%d] = (%d,%d) dl_ch0 [%d]= (%d,%d)\n",j, ((int16_t*)&dl_ch0_ext[j])[0], ((int16_t*)&dl_ch0_ext[j])[1], i, ((int16_t*)&dl_ch0[i])[0], ((int16_t*)&dl_ch0[i])[1]); #endif j++; } } dl_ch0_ext+=9; } dl_ch0+=12; } } } return(0); } //__m128i avg128; //compute average channel_level on each (TX,RX) antenna pair int nr_pbch_channel_level(int **dl_ch_estimates_ext, NR_DL_FRAME_PARMS *frame_parms, uint32_t symbol) { int16_t rb, nb_rb=20; uint8_t aarx; #if defined(__x86_64__) || defined(__i386__) __m128i avg128; __m128i *dl_ch128; #elif defined(__arm__) int32x4_t avg128; int16x8_t *dl_ch128; #endif int avg1=0,avg2=0; for (aarx=0; aarxnb_antennas_rx; aarx++) { //clear average level #if defined(__x86_64__) || defined(__i386__) avg128 = _mm_setzero_si128(); dl_ch128=(__m128i *)&dl_ch_estimates_ext[aarx][symbol*20*12]; #elif defined(__arm__) avg128 = vdupq_n_s32(0); dl_ch128=(int16x8_t *)&dl_ch_estimates_ext[aarx][symbol*20*12]; #endif for (rb=0; rbavg2) avg2 = avg1; //LOG_I(PHY,"Channel level : %d, %d\n",avg1, avg2); } #if defined(__x86_64__) || defined(__i386__) _mm_empty(); _m_empty(); #endif return(avg2); } void nr_pbch_channel_compensation(int **rxdataF_ext, int **dl_ch_estimates_ext, int **rxdataF_comp, NR_DL_FRAME_PARMS *frame_parms, uint8_t symbol, int is_synchronized, uint8_t output_shift) { short conjugate[8]__attribute__((aligned(16))) = {-1,1,-1,1,-1,1,-1,1}; //short conjugate2[8]__attribute__((aligned(16))) = {1,-1,1,-1,1,-1,1,-1}; #if defined(__x86_64__) || defined(__i386__) __m128i mmtmpP0,mmtmpP1,mmtmpP2,mmtmpP3; #elif defined(__arm__) int16x8_t mmtmpP0,mmtmpP1,mmtmpP2,mmtmpP3; #endif uint16_t nb_re=180; uint8_t aarx; #if defined(__x86_64__) || defined(__i386__) __m128i *dl_ch128,*rxdataF128,*rxdataF_comp128; #elif defined(__arm__) #endif AssertFatal((symbol > 0 && symbol < 4 && is_synchronized == 0) || (symbol > 4 && symbol < 8 && is_synchronized == 1), "symbol %d is illegal for PBCH DM-RS (is_synchronized %d)\n", symbol,is_synchronized); if (symbol == 2 || symbol == 6) nb_re = 72; // printf("comp: symbol %d : nb_re %d\n",symbol,nb_re); for (aarx=0; aarxnb_antennas_rx; aarx++) { #if defined(__x86_64__) || defined(__i386__) dl_ch128 = (__m128i *)&dl_ch_estimates_ext[aarx][symbol*20*12]; rxdataF128 = (__m128i *)&rxdataF_ext[aarx][symbol*20*12]; rxdataF_comp128 = (__m128i *)&rxdataF_comp[aarx][symbol*20*12]; /* printf("ch compensation dl_ch ext addr %p \n", &dl_ch_estimates_ext[aarx][symbol*20*12]); printf("rxdataf ext addr %p symbol %d\n", &rxdataF_ext[aarx][symbol*20*12], symbol); printf("rxdataf_comp addr %p\n",&rxdataF_comp[aarx][symbol*20*12]); */ #elif defined(__arm__) // to be filled in #endif for (int re=0; re=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol; if (frame_parms->nb_antennas_rx>1) { #if defined(__x86_64__) || defined(__i386__) rxdataF_comp128_0 = (__m128i *)&rxdataF_comp[0][symbol_mod*6*12]; rxdataF_comp128_1 = (__m128i *)&rxdataF_comp[1][symbol_mod*6*12]; #elif defined(__arm__) rxdataF_comp128_0 = (int16x8_t *)&rxdataF_comp[0][symbol_mod*6*12]; rxdataF_comp128_1 = (int16x8_t *)&rxdataF_comp[1][symbol_mod*6*12]; #endif // MRC on each re of rb, both on MF output and magnitude (for 16QAM/64QAM llr computation) for (i=0; illr; uint32_t unscrambling_mask = 0x100006D; reset = 1; // x1 is set in first call to lte_gold_generic x2 = Nid; //this is c_init // The Gold sequence is shifted by nushift* M, so we skip (nushift*M /32) double words for (int i=0; i<(uint16_t)ceil(((float)nushift*M)/32); i++) { s = lte_gold_generic(&x1, &x2, reset); reset = 0; } // Scrambling is now done with offset (nushift*M)%32 offset = (nushift*M)&0x1f; for (int i=0; ipbch_a_interleaved); #endif if (bitwise) { (pbch->pbch_a_interleaved) ^= ((unscrambling_mask>>i)&1)? ((pbch->pbch_a_prime>>i)&1)<pbch_a_prime>>i)&1) ^ ((s>>((i+offset)&0x1f))&1))<>((i+offset)&0x1f))&1)==1) demod_pbch_e[i] = -demod_pbch_e[i]; #ifdef DEBUG_PBCH_ENCODING if (i<8) printf("s %d demod_pbch_e[i] %d\n", ((s>>((i+offset)&0x1f))&1), demod_pbch_e[i]); #endif } } } void nr_pbch_quantize(int16_t *pbch_llr8, int16_t *pbch_llr, uint16_t len) { uint16_t i; for (i=0; i31) pbch_llr8[i]=32; else if (pbch_llr[i]<-31) pbch_llr8[i]=-32; else pbch_llr8[i] = (char)(pbch_llr[i]); } } /* unsigned char sign(int8_t x) { return (unsigned char)x >> 7; } */ uint8_t pbch_deinterleaving_pattern[32] = {28,0,31,30,1,29,25,27,22,2,24,3,4,5,6,7,18,21,20,8,9,10,11,19,26,12,13,14,15,16,23,17}; int nr_rx_pbch( PHY_VARS_NR_UE *ue, UE_nr_rxtx_proc_t *proc, NR_UE_PBCH *nr_ue_pbch_vars, NR_DL_FRAME_PARMS *frame_parms, uint8_t eNB_id, MIMO_mode_t mimo_mode, uint32_t high_speed_flag) { NR_UE_COMMON *nr_ue_common_vars = &ue->common_vars; int max_h=0; int symbol,i; //uint8_t pbch_a[64]; uint8_t *pbch_a = malloc(sizeof(uint8_t) * 32); uint32_t pbch_a_prime; int16_t *pbch_e_rx; uint8_t *decoded_output = nr_ue_pbch_vars->decoded_output; uint8_t nushift; uint16_t M; uint8_t Lmax=8; //to update uint8_t ssb_index=0; //uint16_t crc; unsigned short idx_demod =0; int8_t decoderState=0; uint8_t decoderListSize = 8, pathMetricAppr = 0; time_stats_t polar_decoder_init,polar_rate_matching,decoding,bit_extraction,deinterleaving; time_stats_t path_metric,sorting,update_LLR; memset(&pbch_a[0], 0, sizeof(uint8_t) * NR_POLAR_PBCH_PAYLOAD_BITS); //printf("nr_pbch_ue nid_cell %d\n",frame_parms->Nid_cell); int subframe_rx = proc->subframe_rx; pbch_e_rx = &nr_ue_pbch_vars->llr[0]; // clear LLR buffer memset(nr_ue_pbch_vars->llr,0,NR_POLAR_PBCH_E); int first_symbol=1; if (ue->is_synchronized > 0) first_symbol+=4; #ifdef DEBUG_PBCH //printf("address dataf %p",nr_ue_common_vars->common_vars_rx_data_per_thread[ue->current_thread_id[subframe_rx]].rxdataF); write_output("rxdataF0_pbch.m","rxF0pbch", &nr_ue_common_vars->common_vars_rx_data_per_thread[ue->current_thread_id[subframe_rx]].rxdataF[0][first_symbol*frame_parms->ofdm_symbol_size],frame_parms->ofdm_symbol_size*3,1,1); #endif for (symbol=first_symbol; symbol<(first_symbol+3); symbol++) { nr_pbch_extract(nr_ue_common_vars->common_vars_rx_data_per_thread[ue->current_thread_id[subframe_rx]].rxdataF, nr_ue_common_vars->common_vars_rx_data_per_thread[ue->current_thread_id[subframe_rx]].dl_ch_estimates[eNB_id], nr_ue_pbch_vars->rxdataF_ext, nr_ue_pbch_vars->dl_ch_estimates_ext, symbol-first_symbol+1, high_speed_flag, ue->is_synchronized, frame_parms); #ifdef DEBUG_PBCH LOG_I(PHY,"[PHY] PBCH Symbol %d ofdm size %d\n",symbol, frame_parms->ofdm_symbol_size ); LOG_I(PHY,"[PHY] PBCH starting channel_level\n"); #endif if (symbol == 1 || symbol == 5) { max_h = nr_pbch_channel_level(nr_ue_pbch_vars->dl_ch_estimates_ext, frame_parms, symbol); nr_ue_pbch_vars->log2_maxh = 3+(log2_approx(max_h)/2); } #ifdef DEBUG_PBCH LOG_I(PHY,"[PHY] PBCH log2_maxh = %d (%d)\n",nr_ue_pbch_vars->log2_maxh,max_h); #endif nr_pbch_channel_compensation(nr_ue_pbch_vars->rxdataF_ext, nr_ue_pbch_vars->dl_ch_estimates_ext, nr_ue_pbch_vars->rxdataF_comp, frame_parms, symbol, ue->is_synchronized, nr_ue_pbch_vars->log2_maxh); // log2_maxh+I0_shift /*if (frame_parms->nb_antennas_rx > 1) pbch_detection_mrc(frame_parms, nr_ue_pbch_vars->rxdataF_comp, symbol);*/ /* if (mimo_mode == ALAMOUTI) { nr_pbch_alamouti(frame_parms,nr_ue_pbch_vars->rxdataF_comp,symbol); } else if (mimo_mode != SISO) { LOG_I(PHY,"[PBCH][RX] Unsupported MIMO mode\n"); return(-1); } */ if (symbol==(first_symbol+1)) { nr_pbch_quantize(pbch_e_rx, (short*)&(nr_ue_pbch_vars->rxdataF_comp[0][symbol*240]), 144); pbch_e_rx+=144; } else { nr_pbch_quantize(pbch_e_rx, (short*)&(nr_ue_pbch_vars->rxdataF_comp[0][symbol*240]), 360); pbch_e_rx+=360; } } #ifdef DEBUG_PBCH write_output("rxdataF_comp.m","rxFcomp",&nr_ue_pbch_vars->rxdataF_comp[0][240*first_symbol],240*3,1,1); #endif pbch_e_rx = nr_ue_pbch_vars->llr; //demod_pbch_e = nr_ue_pbch_vars->demod_pbch_e; pbch_a = nr_ue_pbch_vars->pbch_a; #ifdef DEBUG_PBCH //pbch_e_rx = &nr_ue_pbch_vars->llr[0]; short *p = (short *)&(nr_ue_pbch_vars->rxdataF_comp[0][first_symbol*20*12]); for (int cnt = 0; cnt < 864 ; cnt++) printf("pbch rx llr %d\n",*(pbch_e_rx+cnt)); #endif //un-scrambling M = NR_POLAR_PBCH_E; nushift = (Lmax==4)? ssb_index&3 : ssb_index&7; nr_pbch_unscrambling(nr_ue_pbch_vars,frame_parms->Nid_cell,nushift,M,NR_POLAR_PBCH_E,0); //polar decoding de-rate matching nr_ue_pbch_vars->nrPolar_params = NULL; nr_polar_init(&nr_ue_pbch_vars->nrPolar_params, NR_POLAR_PBCH_MESSAGE_TYPE, NR_POLAR_PBCH_PAYLOAD_BITS, NR_POLAR_PBCH_AGGREGATION_LEVEL); AssertFatal(nr_ue_pbch_vars->nrPolar_params != NULL,"nr_ue_pbch_vars->nrPolar_params is null\n"); t_nrPolar_params *currentPtr = nr_polar_params(nr_ue_pbch_vars->nrPolar_params, NR_POLAR_PBCH_MESSAGE_TYPE, NR_POLAR_PBCH_PAYLOAD_BITS, NR_POLAR_PBCH_AGGREGATION_LEVEL); decoderState = polar_decoder_int16(pbch_e_rx,(uint8_t*)&nr_ue_pbch_vars->pbch_a_prime,currentPtr); if(decoderState > 0) return(decoderState); //printf("polar decoder output 0x%08x\n",nr_ue_pbch_vars->pbch_a_prime); //payload un-scrambling memset(&nr_ue_pbch_vars->pbch_a_interleaved, 0, sizeof(uint32_t) ); M = (Lmax == 64)? (NR_POLAR_PBCH_PAYLOAD_BITS - 6) : (NR_POLAR_PBCH_PAYLOAD_BITS - 3); nushift = ((nr_ue_pbch_vars->pbch_a_prime>>6)&1) ^ (((nr_ue_pbch_vars->pbch_a_prime>>24)&1)<<1); nr_pbch_unscrambling(nr_ue_pbch_vars,frame_parms->Nid_cell,nushift,M,NR_POLAR_PBCH_PAYLOAD_BITS,1); //payload deinterleaving //uint32_t in=0; uint32_t out=0; for (int i=0; i<32; i++) { out |= ((nr_ue_pbch_vars->pbch_a_interleaved>>i)&1)<<(pbch_deinterleaving_pattern[i]); #ifdef DEBUG_PBCH printf("i %d in 0x%08x out 0x%08x ilv %d (in>>i)&1) 0x%08x\n", i, nr_ue_pbch_vars->pbch_a_interleaved, out, pbch_deinterleaving_pattern[i], (nr_ue_pbch_vars->pbch_a_interleaved>>i)&1); #endif } for (int i=0; i>3; i++) decoded_output[i] = (uint8_t)((out>>(i<<3))&0xff); // Fix byte endian // for (i=0; i<(NR_POLAR_PBCH_PAYLOAD_BITS>>3); i++) // decoded_output[(NR_POLAR_PBCH_PAYLOAD_BITS>>3)-i-1] = pbch_a[i]; #ifdef DEBUG_PBCH for (i=0; i<(NR_POLAR_PBCH_PAYLOAD_BITS>>3); i++){ // printf("unscrambling pbch_a[%d] = %x \n", i,pbch_a[i]); printf("[PBCH] decoder payload[%d] = %x\n",i,decoded_output[i]); } #endif ue->dl_indication.rx_ind = &ue->rx_ind; // hang on rx_ind instance //ue->rx_ind.sfn_slot = 0; //should be set by higher-1-layer, i.e. clean_and_set_if_instance() ue->rx_ind.number_pdus = ue->rx_ind.number_pdus + 1; ue->rx_ind.rx_indication_body = (fapi_nr_rx_indication_body_t *)malloc(sizeof(fapi_nr_rx_indication_body_t)); ue->rx_ind.rx_indication_body->pdu_type = FAPI_NR_RX_PDU_TYPE_MIB; ue->rx_ind.rx_indication_body->mib_pdu.pdu = &decoded_output[0]; ue->rx_ind.rx_indication_body->mib_pdu.additional_bits = decoded_output[3]; ue->rx_ind.rx_indication_body->mib_pdu.ssb_index = ssb_index; // confirm with TCL ue->rx_ind.rx_indication_body->mib_pdu.ssb_length = Lmax; // confirm with TCL ue->rx_ind.rx_indication_body->mib_pdu.cell_id = frame_parms->Nid_cell; // confirm with TCL if (ue->if_inst && ue->if_inst->dl_indication) ue->if_inst->dl_indication(&ue->dl_indication); return 0; }