lte-enb.c 57.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/*******************************************************************************
    OpenAirInterface
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is
    included in this distribution in the file called "COPYING". If not,
    see <http://www.gnu.org/licenses/>.

   Contact Information
   OpenAirInterface Admin: openair_admin@eurecom.fr
   OpenAirInterface Tech : openair_tech@eurecom.fr
   OpenAirInterface Dev  : openair4g-devel@lists.eurecom.fr

   Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE

*******************************************************************************/

/*! \file lte-enb.c
 * \brief Top-level threads for eNodeB
 * \author R. Knopp, F. Kaltenberger, Navid Nikaein
 * \date 2012
 * \version 0.1
 * \company Eurecom
 * \email: knopp@eurecom.fr,florian.kaltenberger@eurecom.fr, navid.nikaein@eurecom.fr
 * \note
 * \warning
 */
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sched.h>
#include <linux/sched.h>
#include <signal.h>
#include <execinfo.h>
#include <getopt.h>
#include <sys/sysinfo.h>
#include "rt_wrapper.h"

#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all

#include "assertions.h"
#include "msc.h"

#include "PHY/types.h"

#include "PHY/defs.h"
#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all
//#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all

#include "../../ARCH/COMMON/common_lib.h"

//#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all

71
#include "PHY/LTE_TRANSPORT/if4_tools.h"
72
#include "PHY/LTE_TRANSPORT/if5_tools.h"
73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
#include "PHY/extern.h"
#include "SCHED/extern.h"
#include "LAYER2/MAC/extern.h"

#include "../../SIMU/USER/init_lte.h"

#include "LAYER2/MAC/defs.h"
#include "LAYER2/MAC/extern.h"
#include "LAYER2/MAC/proto.h"
#include "RRC/LITE/extern.h"
#include "PHY_INTERFACE/extern.h"

#ifdef SMBV
#include "PHY/TOOLS/smbv.h"
unsigned short config_frames[4] = {2,9,11,13};
#endif
#include "UTIL/LOG/log_extern.h"
#include "UTIL/OTG/otg_tx.h"
#include "UTIL/OTG/otg_externs.h"
#include "UTIL/MATH/oml.h"
#include "UTIL/LOG/vcd_signal_dumper.h"
#include "UTIL/OPT/opt.h"
#include "enb_config.h"
//#include "PHY/TOOLS/time_meas.h"

#ifndef OPENAIR2
#include "UTIL/OTG/otg_extern.h"
#endif

#if defined(ENABLE_ITTI)
# if defined(ENABLE_USE_MME)
#   include "s1ap_eNB.h"
#ifdef PDCP_USE_NETLINK
#   include "SIMULATION/ETH_TRANSPORT/proto.h"
#endif
# endif
#endif

Rohit Gupta's avatar
Rohit Gupta committed
112 113
#include "T.h"

114 115 116 117 118 119 120 121 122 123
//#define DEBUG_THREADS 1

//#define USRP_DEBUG 1
struct timing_info_t {
  //unsigned int frame, hw_slot, last_slot, next_slot;
  RTIME time_min, time_max, time_avg, time_last, time_now;
  //unsigned int mbox0, mbox1, mbox2, mbox_target;
  unsigned int n_samples;
} timing_info;

124 125
// Fix per CC openair rf/if device update
// extern openair0_device openair0;
126 127 128 129 130 131 132 133 134 135 136 137 138

#if defined(ENABLE_ITTI)
extern volatile int             start_eNB;
extern volatile int             start_UE;
#endif
extern volatile int                    oai_exit;

extern openair0_config_t openair0_cfg[MAX_CARDS];

extern pthread_cond_t sync_cond;
extern pthread_mutex_t sync_mutex;
extern int sync_var;

139
//pthread_t                       main_eNB_thread;
140 141 142

time_stats_t softmodem_stats_mt; // main thread
time_stats_t softmodem_stats_hw; //  hw acquisition
knopp's avatar
knopp committed
143
time_stats_t softmodem_stats_rxtx_sf; // total tx time
144
time_stats_t softmodem_stats_rx_sf; // total rx time
145 146 147 148 149 150 151 152 153 154 155 156 157
int32_t **rxdata;
int32_t **txdata;

static int                      time_offset[4] = {0,0,0,0};

/* mutex, cond and variable to serialize phy proc TX calls
 * (this mechanism may be relaxed in the future for better
 * performances)
 */
static struct {
  pthread_mutex_t  mutex_phy_proc_tx;
  pthread_cond_t   cond_phy_proc_tx;
  volatile uint8_t phy_proc_CC_id;
158
} sync_phy_proc;
159 160 161

void exit_fun(const char* s);

knopp's avatar
knopp committed
162
void init_eNB(eNB_func_t node_function[], eNB_timing_t node_timing[],int nb_inst,eth_params_t *,int);
163
void stop_eNB(int nb_inst);
164 165


knopp's avatar
knopp committed
166
static inline void thread_top_init(char *thread_name,
167
				   int affinity,
knopp's avatar
knopp committed
168 169 170
				   uint64_t runtime,
				   uint64_t deadline,
				   uint64_t period) {
knopp's avatar
knopp committed
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

  MSC_START_USE();

#ifdef DEADLINE_SCHEDULER
  struct sched_attr attr;

  unsigned int flags = 0;

  attr.size = sizeof(attr);
  attr.sched_flags = 0;
  attr.sched_nice = 0;
  attr.sched_priority = 0;

  attr.sched_policy   = SCHED_DEADLINE;
  attr.sched_runtime  = runtime;
  attr.sched_deadline = deadline;
  attr.sched_period   = period; 

  if (sched_setattr(0, &attr, flags) < 0 ) {
    perror("[SCHED] eNB tx thread: sched_setattr failed\n");
    return &eNB_thread_rxtx_status;
  }

194
  LOG_I( HW, "[SCHED] eNB %s deadline thread (TID %ld) started on CPU %d\n", gettid(), thread_name,sched_getcpu() );
knopp's avatar
knopp committed
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

#else //LOW_LATENCY
  int policy, s, j;
  struct sched_param sparam;
  char cpu_affinity[1024];
  cpu_set_t cpuset;

  /* Set affinity mask to include CPUs 1 to MAX_CPUS */
  /* CPU 0 is reserved for UHD threads */
  /* CPU 1 is reserved for all RX_TX threads */
  /* Enable CPU Affinity only if number of CPUs >2 */
  CPU_ZERO(&cpuset);

#ifdef CPU_AFFINITY
  if (get_nprocs() > 2)
  {
211 212 213 214
    if (affinity == 0)
      CPU_SET(0,&cpuset);
    else
      for (j = 1; j < get_nprocs(); j++)
knopp's avatar
knopp committed
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        CPU_SET(j, &cpuset);
    s = pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
    if (s != 0)
    {
      perror( "pthread_setaffinity_np");
      exit_fun("Error setting processor affinity");
    }
  }
#endif //CPU_AFFINITY

  /* Check the actual affinity mask assigned to the thread */
  s = pthread_getaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
  if (s != 0) {
    perror( "pthread_getaffinity_np");
    exit_fun("Error getting processor affinity ");
  }
  memset(cpu_affinity,0,sizeof(cpu_affinity));
  for (j = 0; j < CPU_SETSIZE; j++)
    if (CPU_ISSET(j, &cpuset)) {  
      char temp[1024];
      sprintf (temp, " CPU_%d", j);
      strcat(cpu_affinity, temp);
    }

  memset(&sparam, 0, sizeof(sparam));
  sparam.sched_priority = sched_get_priority_max(SCHED_FIFO)-1;
  policy = SCHED_FIFO ; 
  
  s = pthread_setschedparam(pthread_self(), policy, &sparam);
  if (s != 0) {
    perror("pthread_setschedparam : ");
    exit_fun("Error setting thread priority");
  }
  
  s = pthread_getschedparam(pthread_self(), &policy, &sparam);
  if (s != 0) {
    perror("pthread_getschedparam : ");
    exit_fun("Error getting thread priority");
  }

  LOG_I(HW, "[SCHED][eNB] %s started on CPU %d TID %ld, sched_policy = %s , priority = %d, CPU Affinity=%s \n",thread_name,sched_getcpu(),gettid(),
                   (policy == SCHED_FIFO)  ? "SCHED_FIFO" :
                   (policy == SCHED_RR)    ? "SCHED_RR" :
                   (policy == SCHED_OTHER) ? "SCHED_OTHER" :
                   "???",
                   sparam.sched_priority, cpu_affinity );

#endif //LOW_LATENCY

  mlockall(MCL_CURRENT | MCL_FUTURE);

}

knopp's avatar
knopp committed
268
static inline void wait_sync(char *thread_name) {
knopp's avatar
knopp committed
269 270 271 272 273 274 275 276 277 278 279 280 281

  printf( "waiting for sync (%s)\n",thread_name);
  pthread_mutex_lock( &sync_mutex );
  
  while (sync_var<0)
    pthread_cond_wait( &sync_cond, &sync_mutex );
  
  pthread_mutex_unlock(&sync_mutex);
  
  printf( "got sync (%s)\n", thread_name);

}

knopp's avatar
knopp committed
282
static inline int wait_on_condition(pthread_mutex_t *mutex,pthread_cond_t *cond,int *instance_cnt,char *name) {
knopp's avatar
knopp committed
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

  struct timespec wait;
  
  wait.tv_sec=0;
  wait.tv_nsec=5000000L;

  if (pthread_mutex_timedlock(mutex,&wait) != 0) {
    LOG_E( PHY, "[SCHED][eNB] error locking mutex for %s\n",name);
    exit_fun("nothing to add");
    return(-1);
  }
  
  while (*instance_cnt < 0) {
    // most of the time the thread is waiting here
    // proc->instance_cnt_rxtx is -1
    pthread_cond_wait(cond,mutex); // this unlocks mutex_rxtx while waiting and then locks it again
  }

  if (pthread_mutex_unlock(mutex) != 0) {
    LOG_E(PHY,"[SCHED][eNB] error unlocking mutex for %s\n",name);
    exit_fun("nothing to add");
    return(-1);
  }
  return(0);
}

knopp's avatar
knopp committed
309
static inline int release_thread(pthread_mutex_t *mutex,int *instance_cnt,char *name) {
knopp's avatar
knopp committed
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

  if (pthread_mutex_lock(mutex) != 0) {
    LOG_E( PHY, "[SCHED][eNB] error locking mutex for %s\n",name);
    exit_fun("nothing to add");
    return(-1);
  }
  
  *instance_cnt=*instance_cnt-1;
  
  if (pthread_mutex_unlock(mutex) != 0) {
    LOG_E( PHY, "[SCHED][eNB] error unlocking mutex for %s\n",name);
    exit_fun("nothing to add");
    return(-1);
  }
  return(0);
}

327 328
void do_OFDM_mod_rt(int subframe,PHY_VARS_eNB *phy_vars_eNB) {
     
329 330
  unsigned int aa,slot_offset, slot_offset_F;
  int dummy_tx_b[7680*4] __attribute__((aligned(32)));
knopp's avatar
knopp committed
331
  int i,j, tx_offset;
332 333
  int slot_sizeF = (phy_vars_eNB->frame_parms.ofdm_symbol_size)*
                   ((phy_vars_eNB->frame_parms.Ncp==1) ? 6 : 7);
knopp's avatar
knopp committed
334 335
  int len,len2;
  int16_t *txdata;
336

337 338
  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_ENB_SFGEN , 1 );

339 340
  slot_offset_F = (subframe<<1)*slot_sizeF;

341
  slot_offset = subframe*phy_vars_eNB->frame_parms.samples_per_tti;
342

343 344
  if ((subframe_select(&phy_vars_eNB->frame_parms,subframe)==SF_DL)||
      ((subframe_select(&phy_vars_eNB->frame_parms,subframe)==SF_S))) {
345 346
    //    LOG_D(HW,"Frame %d: Generating slot %d\n",frame,next_slot);

347 348 349
    for (aa=0; aa<phy_vars_eNB->frame_parms.nb_antennas_tx; aa++) {
      if (phy_vars_eNB->frame_parms.Ncp == EXTENDED) {
        PHY_ofdm_mod(&phy_vars_eNB->common_vars.txdataF[0][aa][slot_offset_F],
350
                     dummy_tx_b,
351
                     phy_vars_eNB->frame_parms.ofdm_symbol_size,
352
                     6,
353
                     phy_vars_eNB->frame_parms.nb_prefix_samples,
354
                     CYCLIC_PREFIX);
355 356 357
        PHY_ofdm_mod(&phy_vars_eNB->common_vars.txdataF[0][aa][slot_offset_F+slot_sizeF],
                     dummy_tx_b+(phy_vars_eNB->frame_parms.samples_per_tti>>1),
                     phy_vars_eNB->frame_parms.ofdm_symbol_size,
358
                     6,
359
                     phy_vars_eNB->frame_parms.nb_prefix_samples,
360 361
                     CYCLIC_PREFIX);
      } else {
362
        normal_prefix_mod(&phy_vars_eNB->common_vars.txdataF[0][aa][slot_offset_F],
363 364
                          dummy_tx_b,
                          7,
365
                          &(phy_vars_eNB->frame_parms));
366
	// if S-subframe generate first slot only
367
	if (subframe_select(&phy_vars_eNB->frame_parms,subframe) == SF_DL) 
368 369
	  normal_prefix_mod(&phy_vars_eNB->common_vars.txdataF[0][aa][slot_offset_F+slot_sizeF],
			    dummy_tx_b+(phy_vars_eNB->frame_parms.samples_per_tti>>1),
370
			    7,
371
			    &(phy_vars_eNB->frame_parms));
372 373 374
      }

      // if S-subframe generate first slot only
375 376
      if (subframe_select(&phy_vars_eNB->frame_parms,subframe) == SF_S)
	len = phy_vars_eNB->frame_parms.samples_per_tti>>1;
377
      else
378
	len = phy_vars_eNB->frame_parms.samples_per_tti;
379 380 381 382 383 384 385
      /*
      for (i=0;i<len;i+=4) {
	dummy_tx_b[i] = 0x100;
	dummy_tx_b[i+1] = 0x01000000;
	dummy_tx_b[i+2] = 0xff00;
	dummy_tx_b[i+3] = 0xff000000;
	}*/
knopp's avatar
knopp committed
386 387 388 389 390 391 392 393 394 395 396 397 398 399
      
      if (slot_offset+time_offset[aa]<0) {
	txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti)+tx_offset];
        len2 = -(slot_offset+time_offset[aa]);
	len2 = (len2>len) ? len : len2;
	for (i=0; i<(len2<<1); i++) {
	  txdata[i] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
	}
	if (len2<len) {
	  txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][0];
	  for (j=0; i<(len<<1); i++,j++) {
	    txdata[j++] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
	  }
	}
400
      }  
knopp's avatar
knopp committed
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
      else if ((slot_offset+time_offset[aa]+len)>(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti)) {
	tx_offset = (int)slot_offset+time_offset[aa];
	txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][tx_offset];
	len2 = -tx_offset+LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti;
	for (i=0; i<(len2<<1); i++) {
	  txdata[i] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
	}
	txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][0];
	for (j=0; i<(len<<1); i++,j++) {
	  txdata[j++] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
	}
      }
      else {
	tx_offset = (int)slot_offset+time_offset[aa];
	txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][tx_offset];
416

knopp's avatar
knopp committed
417 418 419 420 421
	for (i=0; i<(len<<1); i++) {
	  txdata[i] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
	}
      }
      
422
     // if S-subframe switch to RX in second subframe
knopp's avatar
knopp committed
423
      /*
424
     if (subframe_select(&phy_vars_eNB->frame_parms,subframe) == SF_S) {
425
       for (i=0; i<len; i++) {
426
	 phy_vars_eNB->common_vars.txdata[0][aa][tx_offset++] = 0x00010001;
427 428
       }
     }
knopp's avatar
knopp committed
429
      */
430
     if ((((phy_vars_eNB->frame_parms.tdd_config==0) ||
431 432 433 434
	   (phy_vars_eNB->frame_parms.tdd_config==1) ||
	   (phy_vars_eNB->frame_parms.tdd_config==2) ||
	   (phy_vars_eNB->frame_parms.tdd_config==6)) && 
	   (subframe==0)) || (subframe==5)) {
435 436 437
       // turn on tx switch N_TA_offset before
       //LOG_D(HW,"subframe %d, time to switch to tx (N_TA_offset %d, slot_offset %d) \n",subframe,phy_vars_eNB->N_TA_offset,slot_offset);
       for (i=0; i<phy_vars_eNB->N_TA_offset; i++) {
438 439 440
         tx_offset = (int)slot_offset+time_offset[aa]+i-phy_vars_eNB->N_TA_offset/2;
         if (tx_offset<0)
           tx_offset += LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti;
441
	 
442 443
         if (tx_offset>=(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti))
           tx_offset -= LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti;
444
	 
445
         phy_vars_eNB->common_vars.txdata[0][aa][tx_offset] = 0x00000000;
446 447 448 449
       }
     }
    }
  }
450 451 452 453 454
  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_ENB_SFGEN , 0 );
}

void tx_fh_if5(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc) {
  uint8_t seqno;
455
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TST, proc->timestamp_tx&0xffffffff );
456 457 458 459 460 461 462
  send_IF5(eNB, proc->timestamp_tx, proc->subframe_tx, &seqno, IF5_RRH_GW_DL);
}

void tx_fh_if4p5(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc) {    
  send_IF4p5(eNB,proc->frame_tx, proc->subframe_tx, IF4p5_PDLFFT, 0);
}

463 464 465 466
void proc_tx_high0(PHY_VARS_eNB *eNB,
		   eNB_rxtx_proc_t *proc,
		   relaying_type_t r_type,
		   PHY_VARS_RN *rn) {
467

knopp's avatar
knopp committed
468 469 470
  int offset = proc == &eNB->proc.proc_rxtx[0] ? 0 : 1;

  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_TX0_ENB+offset, proc->frame_tx );
471
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_TX0_ENB+offset, proc->subframe_tx );
knopp's avatar
knopp committed
472

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
  phy_procedures_eNB_TX(eNB,proc,r_type,rn);

  /* we're done, let the next one proceed */
  if (pthread_mutex_lock(&sync_phy_proc.mutex_phy_proc_tx) != 0) {
    LOG_E(PHY, "[SCHED][eNB] error locking PHY proc mutex for eNB TX proc\n");
    exit_fun("nothing to add");
  }	
  sync_phy_proc.phy_proc_CC_id++;
  sync_phy_proc.phy_proc_CC_id %= MAX_NUM_CCs;
  pthread_cond_broadcast(&sync_phy_proc.cond_phy_proc_tx);
  if (pthread_mutex_unlock(&sync_phy_proc.mutex_phy_proc_tx) != 0) {
    LOG_E(PHY, "[SCHED][eNB] error unlocking PHY proc mutex for eNB TX proc\n");
    exit_fun("nothing to add");
  }

488 489 490 491 492 493
}

void proc_tx_high(PHY_VARS_eNB *eNB,
		  eNB_rxtx_proc_t *proc,
		  relaying_type_t r_type,
		  PHY_VARS_RN *rn) {
494

knopp's avatar
knopp committed
495

496 497 498 499 500 501 502 503 504 505 506 507
  // do PHY high
  proc_tx_high0(eNB,proc,r_type,rn);

  // if TX fronthaul go ahead 
  if (eNB->tx_fh) eNB->tx_fh(eNB,proc);

}

void proc_tx_full(PHY_VARS_eNB *eNB,
		  eNB_rxtx_proc_t *proc,
		  relaying_type_t r_type,
		  PHY_VARS_RN *rn) {
508

509 510 511 512 513 514

  // do PHY high
  proc_tx_high0(eNB,proc,r_type,rn);
  // do OFDM modulation
  do_OFDM_mod_rt(proc->subframe_tx,eNB);
  // if TX fronthaul go ahead 
515 516 517 518 519 520
  if (eNB->tx_fh) eNB->tx_fh(eNB,proc);



}

521 522 523 524
void proc_tx_rru_if4p5(PHY_VARS_eNB *eNB,
		       eNB_rxtx_proc_t *proc,
		       relaying_type_t r_type,
		       PHY_VARS_RN *rn) {
525 526 527 528 529

  uint32_t symbol_number=0;
  uint32_t symbol_mask, symbol_mask_full;
  uint16_t packet_type;

knopp's avatar
knopp committed
530 531 532
  int offset = proc == &eNB->proc.proc_rxtx[0] ? 0 : 1;

  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_TX0_ENB+offset, proc->frame_tx );
533
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_TX0_ENB+offset, proc->subframe_tx );
knopp's avatar
knopp committed
534

535 536 537 538 539
  /// **** recv_IF4 of txdataF from RCC **** ///             
  symbol_number = 0;
  symbol_mask = 0;
  symbol_mask_full = (1<<eNB->frame_parms.symbols_per_tti)-1;
  
knopp's avatar
knopp committed
540

541 542 543 544 545 546 547 548 549
  do { 
    recv_IF4p5(eNB, &proc->frame_tx, &proc->subframe_tx, &packet_type, &symbol_number);
    symbol_mask = symbol_mask | (1<<symbol_number);
  } while (symbol_mask != symbol_mask_full); 

  do_OFDM_mod_rt(proc->subframe_tx, eNB);
}

void proc_tx_rru_if5(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc) {
knopp's avatar
knopp committed
550 551 552
  int offset = proc == &eNB->proc.proc_rxtx[0] ? 0 : 1;

  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_TX0_ENB+offset, proc->frame_tx );
553
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_TX0_ENB+offset, proc->subframe_tx );
554 555
  /// **** recv_IF5 of txdata from BBU **** ///       
  recv_IF5(eNB, &proc->timestamp_tx, proc->subframe_tx, IF5_RRH_GW_DL);
556 557
}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
int wait_CCs(eNB_rxtx_proc_t *proc) {

  struct timespec wait;

  wait.tv_sec=0;
  wait.tv_nsec=5000000L;

  if (pthread_mutex_timedlock(&sync_phy_proc.mutex_phy_proc_tx,&wait) != 0) {
    LOG_E(PHY, "[SCHED][eNB] error locking PHY proc mutex for eNB TX\n");
    exit_fun("nothing to add");
    return(-1);
  }
  
  // wait for our turn or oai_exit
  while (sync_phy_proc.phy_proc_CC_id != proc->CC_id && !oai_exit) {
    pthread_cond_wait(&sync_phy_proc.cond_phy_proc_tx,
		      &sync_phy_proc.mutex_phy_proc_tx);
  }
  
  if (pthread_mutex_unlock(&sync_phy_proc.mutex_phy_proc_tx) != 0) {
    LOG_E(PHY, "[SCHED][eNB] error unlocking PHY proc mutex for eNB TX\n");
    exit_fun("nothing to add");
    return(-1);
  }
  return(0);
}
584

knopp's avatar
knopp committed
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
static inline int rxtx(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc, char *thread_name) {

  start_meas(&softmodem_stats_rxtx_sf);
  // ****************************************
  // Common RX procedures subframe n
  phy_procedures_eNB_common_RX(eNB);
  
  // UE-specific RX processing for subframe n
  if (eNB->proc_uespec_rx) eNB->proc_uespec_rx(eNB, proc, no_relay );
  
  // *****************************************
  // TX processing for subframe n+4
  // run PHY TX procedures the one after the other for all CCs to avoid race conditions
  // (may be relaxed in the future for performance reasons)
  // *****************************************
  if (wait_CCs(proc)<0) return(-1);
  
  if (oai_exit) return(-1);
  
  if (eNB->proc_tx)	eNB->proc_tx(eNB, proc, no_relay, NULL );
  
  if (release_thread(&proc->mutex_rxtx,&proc->instance_cnt_rxtx,thread_name)<0) return(-1);

  stop_meas( &softmodem_stats_rxtx_sf );
  
  return(0);
}

613
/*!
knopp's avatar
knopp committed
614
 * \brief The RX UE-specific and TX thread of eNB.
615 616 617
 * \param param is a \ref eNB_proc_t structure which contains the info what to process.
 * \returns a pointer to an int. The storage is not on the heap and must not be freed.
 */
618 619
static void* eNB_thread_rxtx( void* param ) {

knopp's avatar
knopp committed
620
  static int eNB_thread_rxtx_status;
621

knopp's avatar
knopp committed
622
  eNB_rxtx_proc_t *proc = (eNB_rxtx_proc_t*)param;
623 624
  PHY_VARS_eNB *eNB = PHY_vars_eNB_g[0][proc->CC_id];

knopp's avatar
knopp committed
625 626
  char thread_name[100];

627

628
  // set default return value
knopp's avatar
knopp committed
629
  eNB_thread_rxtx_status = 0;
630

knopp's avatar
knopp committed
631
  sprintf(thread_name,"RXn_TXnp4_%d\n",&eNB->proc.proc_rxtx[0] == proc ? 0 : 1);
632
  thread_top_init(thread_name,1,850000L,1000000L,2000000L);
633 634

  while (!oai_exit) {
knopp's avatar
knopp committed
635
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RXTX0+(proc->subframe_rx&1), 0 );
636

knopp's avatar
knopp committed
637
    if (wait_on_condition(&proc->mutex_rxtx,&proc->cond_rxtx,&proc->instance_cnt_rxtx,thread_name)<0) break;
638

knopp's avatar
knopp committed
639
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RXTX0+(proc->subframe_rx&1), 1 );
640

knopp's avatar
knopp committed
641
    
642
  
643 644
    if (oai_exit) break;

knopp's avatar
knopp committed
645
    if (rxtx(eNB,proc,thread_name) < 0) break;
646

knopp's avatar
knopp committed
647
  } // while !oai_exit
648

knopp's avatar
knopp committed
649
  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RXTX0+(proc->subframe_rx&1), 0 );
650

Raymond Knopp's avatar
Raymond Knopp committed
651
  printf( "Exiting eNB thread RXn_TXnp4\n");
652

knopp's avatar
knopp committed
653 654
  eNB_thread_rxtx_status = 0;
  return &eNB_thread_rxtx_status;
655 656
}

657
#if defined(ENABLE_ITTI) && defined(ENABLE_USE_MME)
658 659 660
/* Wait for eNB application initialization to be complete (eNB registration to MME) */
static void wait_system_ready (char *message, volatile int *start_flag) {
  
661
  static char *indicator[] = {".    ", "..   ", "...  ", ".... ", ".....",
662
			      " ....", "  ...", "   ..", "    .", "     "};
663 664 665 666 667 668 669
  int i = 0;
  
  while ((!oai_exit) && (*start_flag == 0)) {
    LOG_N(EMU, message, indicator[i]);
    fflush(stdout);
    i = (i + 1) % (sizeof(indicator) / sizeof(indicator[0]));
    usleep(200000);
670
  }
671 672
  
  LOG_D(EMU,"\n");
673 674
}
#endif
675

knopp's avatar
knopp committed
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820

// asynchronous UL with IF4p5 (RCC,RAU,eNodeB_BBU)
void fh_if5_asynch_UL(PHY_VARS_eNB *eNB,int *frame,int *subframe) {

  eNB_proc_t *proc       = &eNB->proc;
  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;

  recv_IF5(eNB, &proc->timestamp_rx, *subframe, IF5_RRH_GW_UL); 

  proc->subframe_rx = (proc->timestamp_rx/fp->samples_per_tti)%10;
  proc->frame_rx    = (proc->timestamp_rx/(10*fp->samples_per_tti))&1023;

  if (proc->first_rx != 0) {
    proc->first_rx = 0;
    *subframe = proc->subframe_rx;
    *frame    = proc->frame_rx; 
  }
  else {
    if (proc->subframe_rx != *subframe) {
      LOG_E(PHY,"subframe_rx %d is not what we expect %d\n",proc->subframe_rx,*subframe);
      exit_fun("Exiting");
    }
    if (proc->frame_rx != *frame) {
      LOG_E(PHY,"subframe_rx %d is not what we expect %d\n",proc->frame_rx,*frame);  
      exit_fun("Exiting");
    }
  }
} // eNodeB_3GPP_BBU 

// asynchronous UL with IF4p5 (RCC,RAU,eNodeB_BBU)
void fh_if4p5_asynch_UL(PHY_VARS_eNB *eNB,int *frame,int *subframe) {

  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
  eNB_proc_t *proc       = &eNB->proc;

  uint16_t packet_type;
  uint32_t symbol_number,symbol_mask,symbol_mask_full,prach_rx;


  symbol_number = 0;
  symbol_mask = 0;
  symbol_mask_full = (1<<fp->symbols_per_tti)-1;
  prach_rx = 0;

  do {   // Blocking, we need a timeout on this !!!!!!!!!!!!!!!!!!!!!!!
    recv_IF4p5(eNB, &proc->frame_rx, &proc->subframe_rx, &packet_type, &symbol_number);
    if (proc->first_rx != 0) {
      *frame = proc->frame_rx;
      *subframe = proc->subframe_rx;
      proc->first_rx = 0;
    }
    else {
      if (proc->frame_rx != *frame) {
	LOG_E(PHY,"frame_rx %d is not what we expect %d\n",proc->frame_rx,*frame);
	exit_fun("Exiting");
      }
      if (proc->subframe_rx != *subframe) {
	LOG_E(PHY,"subframe_rx %d is not what we expect %d\n",proc->subframe_rx,*subframe);
	exit_fun("Exiting");
      }
    }
    if (packet_type == IF4p5_PULFFT) {
      symbol_mask = symbol_mask | (1<<symbol_number);
      prach_rx = (is_prach_subframe(fp, proc->frame_rx, proc->subframe_rx)>0) ? 1 : 0;                            
    } else if (packet_type == IF4p5_PRACH) {
      prach_rx = 0;
    }
  } while( (symbol_mask != symbol_mask_full) || (prach_rx == 1));    
  

} 


void fh_if5_asynch_DL(PHY_VARS_eNB *eNB,int *frame,int *subframe) {

  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
  eNB_proc_t *proc       = &eNB->proc;
  int subframe_tx,frame_tx;
  openair0_timestamp timestamp_tx;

  recv_IF5(eNB, &timestamp_tx, *subframe, IF5_RRH_GW_DL); 
      //      printf("Received subframe %d (TS %llu) from RCC\n",subframe_tx,timestamp_tx);

  subframe_tx = (timestamp_tx/fp->samples_per_tti)%10;
  frame_tx    = (timestamp_tx/(fp->samples_per_tti*10))&1023;

  if (proc->first_tx != 0) {
    *subframe = subframe_tx;
    *frame    = frame_tx;
    proc->first_tx = 0;
  }
  else {
    if (subframe_tx != *subframe) {
      LOG_E(PHY,"subframe_tx %d is not what we expect %d\n",subframe_tx,*subframe);
      exit_fun("Exiting");
    }
    if (frame_tx != *frame) { 
      LOG_E(PHY,"frame_tx %d is not what we expect %d\n",frame_tx,*frame);
      exit_fun("Exiting");
    }
  }
}

void fh_if4p5_asynch_DL(PHY_VARS_eNB *eNB,int *frame,int *subframe) {

  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
  eNB_proc_t *proc       = &eNB->proc;

  uint16_t packet_type;
  uint32_t symbol_number,symbol_mask,symbol_mask_full;
  int subframe_tx,frame_tx;

  symbol_number = 0;
  symbol_mask = 0;
  symbol_mask_full = (1<<fp->symbols_per_tti)-1;

  do {   // Blocking, we need a timeout on this !!!!!!!!!!!!!!!!!!!!!!!
    recv_IF4p5(eNB, &frame_tx, &subframe_tx, &packet_type, &symbol_number);
    if (proc->first_tx != 0) {
      *frame    = frame_tx;
      *subframe = subframe_tx;
      proc->first_tx = 0;
    }
    else {
      if (frame_tx != *frame) {
	LOG_E(PHY,"frame_tx %d is not what we expect %d\n",frame_tx,*frame);
	exit_fun("Exiting");
      }
      if (subframe_tx != *subframe) {
	LOG_E(PHY,"subframe_tx %d is not what we expect %d\n",subframe_tx,*subframe);
	exit_fun("Exiting");
      }
    }
    if (packet_type == IF4p5_PDLFFT) {
      symbol_mask = symbol_mask | (1<<symbol_number);
    }
    else {
      LOG_E(PHY,"Illegal IF4p5 packet type (should only be IF4p5_PDLFFT%d\n",packet_type);
      exit_fun("Exiting");
    }
  } while (symbol_mask != symbol_mask_full);    
  
  do_OFDM_mod_rt(subframe_tx, eNB);
} 

821
/*!
822
 * \brief The Asynchronous RX/TX FH thread of RAU/RCC/eNB/RRU.
823 824 825 826
 * This handles the RX FH for an asynchronous RRU/UE
 * \param param is a \ref eNB_proc_t structure which contains the info what to process.
 * \returns a pointer to an int. The storage is not on the heap and must not be freed.
 */
827
static void* eNB_thread_asynch_rxtx( void* param ) {
828

829
  static int eNB_thread_asynch_rxtx_status;
830

831 832
  eNB_proc_t *proc = (eNB_proc_t*)param;
  PHY_VARS_eNB *eNB = PHY_vars_eNB_g[0][proc->CC_id];
knopp's avatar
knopp committed
833 834


knopp's avatar
knopp committed
835
  int subframe=0, frame=0; 
836

837
  thread_top_init("thread_asynch",1,870000L,1000000L,1000000L);
838 839 840

  // wait for top-level synchronization and do one acquisition to get timestamp for setting frame/subframe

knopp's avatar
knopp committed
841
  wait_sync("thread_asynch");
842

843 844
  // wait for top-level synchronization and do one acquisition to get timestamp for setting frame/subframe
  printf( "waiting for devices (eNB_thread_asynch_rx)\n");
845

knopp's avatar
knopp committed
846
  wait_on_condition(&proc->mutex_asynch_rxtx,&proc->cond_asynch_rxtx,&proc->instance_cnt_asynch_rxtx,"thread_asynch");
847

848 849 850
  printf( "devices ok (eNB_thread_asynch_rx)\n");


knopp's avatar
knopp committed
851 852 853
  while (!oai_exit) { 
   
    if (oai_exit) break;   
854

knopp's avatar
knopp committed
855 856 857 858 859 860 861
    if (subframe==9) { 
      subframe=0;
      frame++;
      frame&=1023;
    } else {
      subframe++;
    }      
862

knopp's avatar
knopp committed
863 864 865
    if (eNB->fh_asynch) eNB->fh_asynch(eNB,&frame,&subframe);
    else AssertFatal(1==0, "Unknown eNB->node_function %d",eNB->node_function);
    
866
  }
867

868 869
  eNB_thread_asynch_rxtx_status=0;
  return(&eNB_thread_asynch_rxtx_status);
870
}
871

872

knopp's avatar
knopp committed
873 874 875 876 877 878



void rx_rf(PHY_VARS_eNB *eNB,int *frame,int *subframe) {

  eNB_proc_t *proc = &eNB->proc;
879 880 881 882
  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
  void *rxp[fp->nb_antennas_rx],*txp[fp->nb_antennas_tx]; 
  unsigned int rxs,txs;
  int i;
883
  int tx_sfoffset = (eNB->single_thread_flag == 1) ? 3 : 3;
884 885
  if (proc->first_rx==0) {
    
886
    // Transmit TX buffer based on timestamp from RX
887
    //    printf("trx_write -> USRP TS %llu (sf %d)\n", (proc->timestamp_rx+(3*fp->samples_per_tti)),(proc->subframe_rx+2)%10);
888
    VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TST, (proc->timestamp_rx+(tx_sfoffset*fp->samples_per_tti)-openair0_cfg[0].tx_sample_advance)&0xffffffff );
889 890 891 892
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE, 1 );
    // prepare tx buffer pointers
	
    for (i=0; i<fp->nb_antennas_tx; i++)
893
      txp[i] = (void*)&eNB->common_vars.txdata[0][i][((proc->subframe_rx+tx_sfoffset)%10)*fp->samples_per_tti];
894 895
    
    txs = eNB->rfdevice.trx_write_func(&eNB->rfdevice,
896
				       proc->timestamp_rx+(tx_sfoffset*fp->samples_per_tti)-openair0_cfg[0].tx_sample_advance,
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
				       txp,
				       fp->samples_per_tti,
				       fp->nb_antennas_tx,
				       1);
    
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE, 0 );
    
    
    
    if (txs !=  fp->samples_per_tti) {
      LOG_E(PHY,"TX : Timeout (sent %d/%d)\n",txs, fp->samples_per_tti);
      exit_fun( "problem transmitting samples" );
    }	
  }
  
  for (i=0; i<fp->nb_antennas_rx; i++)
    rxp[i] = (void*)&eNB->common_vars.rxdata[0][i][*subframe*fp->samples_per_tti];
  
  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ, 1 );
916

917 918 919 920 921
  rxs = eNB->rfdevice.trx_read_func(&eNB->rfdevice,
				    &(proc->timestamp_rx),
				    rxp,
				    fp->samples_per_tti,
				    fp->nb_antennas_rx);
922 923

  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ, 0 );
924 925 926
  
  proc->frame_rx    = (proc->timestamp_rx / (fp->samples_per_tti*10))&1023;
  proc->subframe_rx = (proc->timestamp_rx / fp->samples_per_tti)%10;
927
  //  printf("trx_read <- USRP TS %llu (sf %d, first_rx %d)\n", proc->timestamp_rx,proc->subframe_rx,proc->first_rx);  
928 929 930
  
  if (proc->first_rx == 0) {
    if (proc->subframe_rx != *subframe){
931
      LOG_E(PHY,"Received Timestamp doesn't correspond to the time we think it is (proc->subframe_rx %d, subframe %d)\n",proc->subframe_rx,*subframe);
932 933 934 935
      exit_fun("Exiting");
    }
    
    if (proc->frame_rx != *frame) {
936
      LOG_E(PHY,"Received Timestamp doesn't correspond to the time we think it is (proc->frame_rx %d frame %d)\n",proc->frame_rx,*frame);
937 938 939 940 941 942 943 944 945 946 947 948
      exit_fun("Exiting");
    }
  } else {
    proc->first_rx = 0;
    *frame = proc->frame_rx;
    *subframe = proc->subframe_rx;        
  }
  
  //printf("timestamp_rx %lu, frame %d(%d), subframe %d(%d)\n",proc->timestamp_rx,proc->frame_rx,frame,proc->subframe_rx,subframe);
  
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TS, proc->timestamp_rx&0xffffffff );
  
949 950 951 952 953
  if (rxs != fp->samples_per_tti)
    exit_fun( "problem receiving samples" );
  

  
954 955
}

knopp's avatar
knopp committed
956
void rx_fh_if5(PHY_VARS_eNB *eNB,int *frame, int *subframe) {
957 958

  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
knopp's avatar
knopp committed
959
  eNB_proc_t *proc = &eNB->proc;
960 961 962 963 964 965 966

  recv_IF5(eNB, &proc->timestamp_rx, *subframe, IF5_RRH_GW_UL); 

  proc->frame_rx    = (proc->timestamp_rx / (fp->samples_per_tti*10))&1023;
  proc->subframe_rx = (proc->timestamp_rx / fp->samples_per_tti)%10;
  
  if (proc->first_rx == 0) {
967
    if (proc->subframe_rx != *subframe){
968 969 970 971
      LOG_E(PHY,"Received Timestamp doesn't correspond to the time we think it is (proc->subframe_rx %d, subframe %d)\n",proc->subframe_rx,subframe);
      exit_fun("Exiting");
    }
    
972
    if (proc->frame_rx != *frame) {
973 974 975 976 977
      LOG_E(PHY,"Received Timestamp doesn't correspond to the time we think it is (proc->frame_rx %d frame %d)\n",proc->frame_rx,frame);
      exit_fun("Exiting");
    }
  } else {
    proc->first_rx = 0;
978 979
    *frame = proc->frame_rx;
    *subframe = proc->subframe_rx;        
980 981 982 983 984 985
  }      
  
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TS, proc->timestamp_rx&0xffffffff );

}

knopp's avatar
knopp committed
986

987
void rx_fh_if4p5(PHY_VARS_eNB *eNB,int *frame,int *subframe) {
988 989

  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
990
  eNB_proc_t *proc = &eNB->proc;
991 992 993 994 995 996 997 998 999 1000

  int prach_rx;

  uint16_t packet_type;
  uint32_t symbol_number=0;
  uint32_t symbol_mask, symbol_mask_full;

  symbol_mask = 0;
  symbol_mask_full = (1<<fp->symbols_per_tti)-1;
  prach_rx = 0;
1001

1002 1003
  do {   // Blocking, we need a timeout on this !!!!!!!!!!!!!!!!!!!!!!!
    recv_IF4p5(eNB, &proc->frame_rx, &proc->subframe_rx, &packet_type, &symbol_number);
1004

1005 1006 1007 1008 1009 1010
    if (packet_type == IF4p5_PULFFT) {
      symbol_mask = symbol_mask | (1<<symbol_number);
      prach_rx = (is_prach_subframe(fp, proc->frame_rx, proc->subframe_rx)>0) ? 1 : 0;                            
    } else if (packet_type == IF4p5_PRACH) {
      prach_rx = 0;
    }
1011

1012 1013 1014 1015
  } while( (symbol_mask != symbol_mask_full) || (prach_rx == 1));    
  
  if (proc->first_rx == 0) {
    if (proc->subframe_rx != *subframe){
1016
      LOG_E(PHY,"Received Timestamp doesn't correspond to the time we think it is (proc->subframe_rx %d, subframe %d)\n",proc->subframe_rx,*subframe);
1017 1018 1019
      exit_fun("Exiting");
    }
    if (proc->frame_rx != *frame) {
1020
      LOG_E(PHY,"Received Timestamp doesn't correspond to the time we think it is (proc->frame_rx %d frame %d)\n",proc->frame_rx,*frame);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
      exit_fun("Exiting");
    }
  } else {
    proc->first_rx = 0;
    *frame = proc->frame_rx;
    *subframe = proc->subframe_rx;        
  }
  
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TS, proc->timestamp_rx&0xffffffff );
  
}

knopp's avatar
knopp committed
1033 1034
void rx_fh_slave(PHY_VARS_eNB *eNB,int *frame,int *subframe) {
  // This case is for synchronization to another thread
1035
  // it just waits for an external event.  The actual rx_fh is handle by the asynchronous RX thread
knopp's avatar
knopp committed
1036 1037
  eNB_proc_t *proc=&eNB->proc;

knopp's avatar
knopp committed
1038 1039 1040 1041 1042
  if (wait_on_condition(&proc->mutex_FH,&proc->cond_FH,&proc->instance_cnt_FH,"rx_fh_slave") < 0)
    return;

  release_thread(&proc->mutex_FH,&proc->instance_cnt_FH,"rx_fh_slave");

knopp's avatar
knopp committed
1043 1044 1045 1046
  
}


1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
int wakeup_rxtx(eNB_proc_t *proc,eNB_rxtx_proc_t *proc_rxtx,LTE_DL_FRAME_PARMS *fp) {

  int i;
  struct timespec wait;
  
  wait.tv_sec=0;
  wait.tv_nsec=5000000L;

  /* accept some delay in processing - up to 5ms */
  for (i = 0; i < 10 && proc_rxtx->instance_cnt_rxtx == 0; i++) {
    LOG_W( PHY,"[eNB] Frame %d, eNB RXn-TXnp4 thread busy!! (cnt_rxtx %i)\n", proc_rxtx->frame_tx, proc_rxtx->instance_cnt_rxtx);
    usleep(500);
  }
  if (proc_rxtx->instance_cnt_rxtx == 0) {
    exit_fun( "TX thread busy" );
    return(-1);
  }

  // wake up TX for subframe n+4
  // lock the TX mutex and make sure the thread is ready
  if (pthread_mutex_timedlock(&proc_rxtx->mutex_rxtx,&wait) != 0) {
    LOG_E( PHY, "[eNB] ERROR pthread_mutex_lock for eNB RXTX thread %d (IC %d)\n", proc_rxtx->subframe_rx&1,proc_rxtx->instance_cnt_rxtx );
    exit_fun( "error locking mutex_rxtx" );
    return(-1);
  }
  
  ++proc_rxtx->instance_cnt_rxtx;
  
  // We have just received and processed the common part of a subframe, say n. 
  // TS_rx is the last received timestamp (start of 1st slot), TS_tx is the desired 
  // transmitted timestamp of the next TX slot (first).
  // The last (TS_rx mod samples_per_frame) was n*samples_per_tti, 
  // we want to generate subframe (n+3), so TS_tx = TX_rx+3*samples_per_tti,
  // and proc->subframe_tx = proc->subframe_rx+3
  proc_rxtx->timestamp_tx = proc->timestamp_rx + (4*fp->samples_per_tti);
  proc_rxtx->frame_rx     = proc->frame_rx;
  proc_rxtx->subframe_rx  = proc->subframe_rx;
  proc_rxtx->frame_tx     = (proc_rxtx->subframe_rx > 5) ? (proc_rxtx->frame_rx+1)&1023 : proc_rxtx->frame_rx;
  proc_rxtx->subframe_tx  = (proc_rxtx->subframe_rx + 4)%10;
  
  // the thread can now be woken up
  if (pthread_cond_signal(&proc_rxtx->cond_rxtx) != 0) {
    LOG_E( PHY, "[eNB] ERROR pthread_cond_signal for eNB RXn-TXnp4 thread\n");
    exit_fun( "ERROR pthread_cond_signal" );
    return(-1);
  }
  
  pthread_mutex_unlock( &proc_rxtx->mutex_rxtx );

  return(0);
}

void wakeup_slaves(eNB_proc_t *proc) {

  int i;
  struct timespec wait;
  
  wait.tv_sec=0;
  wait.tv_nsec=5000000L;
  
  for (i=0;i<proc->num_slaves;i++) {
    eNB_proc_t *slave_proc = proc->slave_proc[i];
    // wake up slave FH thread
    // lock the FH mutex and make sure the thread is ready
    if (pthread_mutex_timedlock(&slave_proc->mutex_FH,&wait) != 0) {
      LOG_E( PHY, "[eNB] ERROR pthread_mutex_lock for eNB CCid %d slave CCid %d (IC %d)\n",proc->CC_id,slave_proc->CC_id);
      exit_fun( "error locking mutex_rxtx" );
      break;
    }
    
    int cnt_slave            = ++slave_proc->instance_cnt_FH;
    slave_proc->frame_rx     = proc->frame_rx;
    slave_proc->subframe_rx  = proc->subframe_rx;
    slave_proc->timestamp_rx = proc->timestamp_rx;
    
    pthread_mutex_unlock( &slave_proc->mutex_FH );
    
    if (cnt_slave == 0) {
      // the thread was presumably waiting where it should and can now be woken up
      if (pthread_cond_signal(&slave_proc->cond_FH) != 0) {
	LOG_E( PHY, "[eNB] ERROR pthread_cond_signal for eNB CCid %d, slave CCid %d\n",proc->CC_id,slave_proc->CC_id);
          exit_fun( "ERROR pthread_cond_signal" );
	  break;
      }
    } else {
1132
      LOG_W( PHY,"[eNB] Frame %d, slave CC_id %d thread busy!! (cnt_FH %i)\n",slave_proc->frame_rx,slave_proc->CC_id, cnt_slave);
1133 1134 1135 1136 1137 1138
      exit_fun( "FH thread busy" );
      break;
    }             
  }
}

1139
/*!
1140 1141 1142
 * \brief The Fronthaul thread of RRU/RAU/RCC/eNB
 * In the case of RRU/eNB, handles interface with external RF
 * In the case of RAU/RCC, handles fronthaul interface with RRU/RAU
1143 1144 1145
 * \param param is a \ref eNB_proc_t structure which contains the info what to process.
 * \returns a pointer to an int. The storage is not on the heap and must not be freed.
 */
knopp's avatar
knopp committed
1146

1147
static void* eNB_thread_FH( void* param ) {
1148
  
1149
  static int eNB_thread_FH_status;
1150 1151

  eNB_proc_t *proc = (eNB_proc_t*)param;
1152 1153
  PHY_VARS_eNB *eNB = PHY_vars_eNB_g[0][proc->CC_id];
  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
1154

Sandeep Kumar's avatar
Sandeep Kumar committed
1155
  int subframe=0, frame=0; 
1156

1157
  // set default return value
1158
  eNB_thread_FH_status = 0;
1159

1160
  thread_top_init("eNB_thread_FH",0,870000,1000000,1000000);
1161

knopp's avatar
knopp committed
1162
  wait_sync("eNB_thread_FH");
1163

1164
#if defined(ENABLE_ITTI) && defined(ENABLE_USE_MME)
knopp's avatar
knopp committed
1165 1166
  if (eNB->node_function < NGFI_RRU_IF5)
    wait_system_ready ("Waiting for eNB application to be ready %s\r", &start_eNB);
1167
#endif 
1168

1169 1170 1171
  // Start IF device if any
  if (eNB->start_if) 
    if (eNB->start_if(eNB) != 0)
1172
      LOG_E(HW,"Could not start the IF device\n");
1173

knopp's avatar
knopp committed
1174 1175 1176 1177 1178
  // Start RF device if any
  if (eNB->start_rf)
    if (eNB->start_rf(eNB) != 0)
      LOG_E(HW,"Could not start the RF device\n");

knopp's avatar
knopp committed
1179
  // wakeup asnych_rxtx thread because the devices are ready at this point
1180 1181 1182 1183 1184
  pthread_mutex_lock(&proc->mutex_asynch_rxtx);
  proc->instance_cnt_asynch_rxtx=0;
  pthread_mutex_unlock(&proc->mutex_asynch_rxtx);
  pthread_cond_signal(&proc->cond_asynch_rxtx);

1185 1186
  // This is a forever while loop, it loops over subframes which are scheduled by incoming samples from HW devices
  while (!oai_exit) {
1187

knopp's avatar
knopp committed
1188 1189
    // these are local subframe/frame counters to check that we are in synch with the fronthaul timing.
    // They are set on the first rx/tx in the underly FH routines.
1190 1191 1192 1193 1194 1195 1196 1197
    if (subframe==9) { 
      subframe=0;
      frame++;
      frame&=1023;
    } else {
      subframe++;
    }      

knopp's avatar
knopp committed
1198 1199 1200 1201
 
    // synchronization on FH interface, acquire signals/data and block
    if (eNB->rx_fh) eNB->rx_fh(eNB,&frame,&subframe);
    else AssertFatal(1==0, "No fronthaul interface : eNB->node_function %d",eNB->node_function);
1202

Cedric Roux's avatar
Cedric Roux committed
1203 1204
    T(T_ENB_MASTER_TICK, T_INT(0), T_INT(proc->frame_rx), T_INT(proc->subframe_rx));

1205 1206
    // At this point, all information for subframe has been received on FH interface
    // If this proc is to provide synchronization, do so
1207
    wakeup_slaves(proc);
1208 1209
      
    // wake up RXn_TXnp4 thread for the subframe
1210
    // choose even or odd thread for RXn-TXnp4 processing 
1211
    if (wakeup_rxtx(proc,&proc->proc_rxtx[proc->subframe_rx&1],fp) < 0)
1212
      break;
1213

knopp's avatar
knopp committed
1214
    // artifical sleep for very slow fronthaul
1215 1216
    if (eNB->frame_parms.N_RB_DL==6)
      rt_sleep_ns(800000LL);
1217 1218 1219
  }
    
  printf( "Exiting FH thread \n");
knopp's avatar
knopp committed
1220
 
1221 1222
  eNB_thread_FH_status = 0;
  return &eNB_thread_FH_status;
1223 1224 1225 1226 1227 1228 1229 1230
}


/*!
 * \brief The prach receive thread of eNB.
 * \param param is a \ref eNB_proc_t structure which contains the info what to process.
 * \returns a pointer to an int. The storage is not on the heap and must not be freed.
 */
1231
static void* eNB_thread_prach( void* param ) {
1232 1233 1234 1235
  static int eNB_thread_prach_status;

  eNB_proc_t *proc = (eNB_proc_t*)param;
  PHY_VARS_eNB *eNB= PHY_vars_eNB_g[0][proc->CC_id];
Raymond Knopp's avatar
Raymond Knopp committed
1236

1237 1238 1239
  // set default return value
  eNB_thread_prach_status = 0;

1240
  thread_top_init("eNB_thread_prach",1,500000L,1000000L,20000000L);
1241

1242 1243 1244 1245
  while (!oai_exit) {
    
    if (oai_exit) break;

knopp's avatar
knopp committed
1246
    if (wait_on_condition(&proc->mutex_prach,&proc->cond_prach,&proc->instance_cnt_prach,"eNB_prach_thread") < 0) break;
knopp's avatar
knopp committed
1247
    
1248
    prach_procedures(eNB);
1249
    
knopp's avatar
knopp committed
1250
    if (release_thread(&proc->mutex_prach,&proc->instance_cnt_prach,"eNB_prach_thread") < 0) break;
1251
  }
1252

1253
  printf( "Exiting eNB thread PRACH\n");
Raymond Knopp's avatar
Raymond Knopp committed
1254

1255 1256
  eNB_thread_prach_status = 0;
  return &eNB_thread_prach_status;
1257 1258
}

knopp's avatar
knopp committed
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
static void* eNB_thread_single( void* param ) {

  static int eNB_thread_single_status;

  eNB_proc_t *proc = (eNB_proc_t*)param;
  eNB_rxtx_proc_t *proc_rxtx = &proc->proc_rxtx[0];
  PHY_VARS_eNB *eNB = PHY_vars_eNB_g[0][proc->CC_id];

  int subframe=0, frame=0; 

  // set default return value
  eNB_thread_single_status = 0;

1272
  thread_top_init("eNB_thread_single",0,870000,1000000,1000000);
knopp's avatar
knopp committed
1273 1274 1275

  wait_sync("eNB_thread_single");

1276
#if defined(ENABLE_ITTI) && defined(ENABLE_USE_MME)
knopp's avatar
knopp committed
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
  if (eNB->node_function < NGFI_RRU_IF5)
    wait_system_ready ("Waiting for eNB application to be ready %s\r", &start_eNB);
#endif 

  // Start IF device if any
  if (eNB->start_if) 
    if (eNB->start_if(eNB) != 0)
      LOG_E(HW,"Could not start the IF device\n");

  // Start RF device if any
  if (eNB->start_rf)
    if (eNB->start_rf(eNB) != 0)
      LOG_E(HW,"Could not start the RF device\n");

  // wakeup asnych_rxtx thread because the devices are ready at this point
  pthread_mutex_lock(&proc->mutex_asynch_rxtx);
  proc->instance_cnt_asynch_rxtx=0;
  pthread_mutex_unlock(&proc->mutex_asynch_rxtx);
  pthread_cond_signal(&proc->cond_asynch_rxtx);

  // This is a forever while loop, it loops over subframes which are scheduled by incoming samples from HW devices
  while (!oai_exit) {

    // these are local subframe/frame counters to check that we are in synch with the fronthaul timing.
    // They are set on the first rx/tx in the underly FH routines.
    if (subframe==9) { 
      subframe=0;
      frame++;
      frame&=1023;
    } else {
      subframe++;
    }      

1310
    LOG_D(PHY,"eNB Fronthaul thread, frame %d, subframe %d\n",frame,subframe);
knopp's avatar
knopp committed
1311 1312 1313 1314 1315 1316 1317
 
    // synchronization on FH interface, acquire signals/data and block
    if (eNB->rx_fh) eNB->rx_fh(eNB,&frame,&subframe);
    else AssertFatal(1==0, "No fronthaul interface : eNB->node_function %d",eNB->node_function);

    T(T_ENB_MASTER_TICK, T_INT(0), T_INT(proc->frame_rx), T_INT(proc->subframe_rx));

1318

knopp's avatar
knopp committed
1319 1320 1321 1322 1323 1324 1325
    // At this point, all information for subframe has been received on FH interface
    // If this proc is to provide synchronization, do so
    wakeup_slaves(proc);

    proc_rxtx->subframe_rx = proc->subframe_rx;
    proc_rxtx->frame_rx    = proc->frame_rx;
    proc_rxtx->subframe_tx = (proc->subframe_rx+4)%10;
1326
    proc_rxtx->frame_tx    = (proc->subframe_rx < 6) ? proc->frame_rx : (proc->frame_rx+1)&1023; 
knopp's avatar
knopp committed
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
    if (rxtx(eNB,proc_rxtx,"eNB_thread_single") < 0) break;
  }
  

  printf( "Exiting eNB_single thread \n");
 
  eNB_thread_single_status = 0;
  return &eNB_thread_single_status;

}

1338
extern void init_fep_thread(PHY_VARS_eNB *, pthread_attr_t *);
1339

1340
void init_eNB_proc(int inst) {
1341
  
1342 1343
  int i;
  int CC_id;
1344 1345
  PHY_VARS_eNB *eNB;
  eNB_proc_t *proc;
knopp's avatar
knopp committed
1346
  eNB_rxtx_proc_t *proc_rxtx;
1347
  pthread_attr_t *attr0=NULL,*attr1=NULL,*attr_FH=NULL,*attr_prach=NULL,*attr_asynch=NULL,*attr_single=NULL,*attr_fep=NULL;
knopp's avatar
knopp committed
1348

1349 1350 1351 1352
  for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
    eNB = PHY_vars_eNB_g[inst][CC_id];
    LOG_I(PHY,"Initializing eNB %d CC_id %d (%s,%s),\n",inst,CC_id,eNB_functions[eNB->node_function],eNB_timing[eNB->node_timing]);
    proc = &eNB->proc;
knopp's avatar
knopp committed
1353

1354 1355 1356
    proc_rxtx = proc->proc_rxtx;
    proc_rxtx[0].instance_cnt_rxtx = -1;
    proc_rxtx[1].instance_cnt_rxtx = -1;
1357 1358
    proc->instance_cnt_prach       = -1;
    proc->instance_cnt_FH          = -1;
1359
    proc->instance_cnt_asynch_rxtx = -1;
1360
    proc->CC_id = CC_id;    
1361
    
knopp's avatar
knopp committed
1362 1363 1364
    proc->first_rx=1;
    proc->first_tx=1;

1365 1366 1367 1368
    pthread_mutex_init( &proc_rxtx[0].mutex_rxtx, NULL);
    pthread_mutex_init( &proc_rxtx[1].mutex_rxtx, NULL);
    pthread_cond_init( &proc_rxtx[0].cond_rxtx, NULL);
    pthread_cond_init( &proc_rxtx[1].cond_rxtx, NULL);
knopp's avatar
knopp committed
1369 1370 1371 1372

    pthread_mutex_init( &proc->mutex_prach, NULL);
    pthread_mutex_init( &proc->mutex_asynch_rxtx, NULL);

1373 1374
    pthread_cond_init( &proc->cond_prach, NULL);
    pthread_cond_init( &proc->cond_FH, NULL);
1375
    pthread_cond_init( &proc->cond_asynch_rxtx, NULL);
1376 1377 1378 1379 1380 1381 1382 1383

    pthread_attr_init( &proc->attr_FH);
    pthread_attr_init( &proc->attr_prach);
    pthread_attr_init( &proc->attr_asynch_rxtx);
    pthread_attr_init( &proc->attr_single);
    pthread_attr_init( &proc->attr_fep);
    pthread_attr_init( &proc_rxtx[0].attr_rxtx);
    pthread_attr_init( &proc_rxtx[1].attr_rxtx);
1384
#ifndef DEADLINE_SCHEDULER
knopp's avatar
knopp committed
1385 1386 1387 1388 1389 1390
    attr0       = &proc_rxtx[0].attr_rxtx;
    attr1       = &proc_rxtx[1].attr_rxtx;
    attr_FH     = &proc->attr_FH;
    attr_prach  = &proc->attr_prach;
    attr_asynch = &proc->attr_asynch_rxtx;
    attr_single = &proc->attr_single;
1391
    attr_fep    = &proc->attr_fep;
knopp's avatar
knopp committed
1392 1393 1394 1395 1396 1397 1398
#endif

    if (eNB->single_thread_flag==0) {
      pthread_create( &proc_rxtx[0].pthread_rxtx, attr0, eNB_thread_rxtx, &proc_rxtx[0] );
      pthread_create( &proc_rxtx[1].pthread_rxtx, attr1, eNB_thread_rxtx, &proc_rxtx[1] );
      pthread_create( &proc->pthread_FH, attr_FH, eNB_thread_FH, &eNB->proc );
    }
1399
    else {
knopp's avatar
knopp committed
1400
      pthread_create(&proc->pthread_single, attr_single, eNB_thread_single, &eNB->proc);
1401 1402
      init_fep_thread(eNB,attr_fep);
    }
knopp's avatar
knopp committed
1403
    pthread_create( &proc->pthread_prach, attr_prach, eNB_thread_prach, &eNB->proc );
1404
    if ((eNB->node_timing == synch_to_other) ||
knopp's avatar
knopp committed
1405 1406
	(eNB->node_function == NGFI_RRU_IF5) ||
	(eNB->node_function == NGFI_RRU_IF4p5))
knopp's avatar
knopp committed
1407 1408
      pthread_create( &proc->pthread_asynch_rxtx, attr_asynch, eNB_thread_asynch_rxtx, &eNB->proc );

1409
    char name[16];
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
    if (eNB->single_thread_flag == 0) {
      snprintf( name, sizeof(name), "RXTX0 %d", i );
      pthread_setname_np( proc_rxtx[0].pthread_rxtx, name );
      snprintf( name, sizeof(name), "RXTX1 %d", i );
      pthread_setname_np( proc_rxtx[1].pthread_rxtx, name );
      snprintf( name, sizeof(name), "FH %d", i );
      pthread_setname_np( proc->pthread_FH, name );
    }
    else {
      snprintf( name, sizeof(name), " %d", i );
      pthread_setname_np( proc->pthread_single, name );
    }
1422
  }
1423 1424 1425 1426 1427
  
  /* setup PHY proc TX sync mechanism */
  pthread_mutex_init(&sync_phy_proc.mutex_phy_proc_tx, NULL);
  pthread_cond_init(&sync_phy_proc.cond_phy_proc_tx, NULL);
  sync_phy_proc.phy_proc_CC_id = 0;
1428 1429
}

1430

1431

1432 1433 1434
/*!
 * \brief Terminate eNB TX and RX threads.
 */
1435
void kill_eNB_proc(int inst) {
1436

1437
  int *status;
1438 1439
  PHY_VARS_eNB *eNB;
  eNB_proc_t *proc;
knopp's avatar
knopp committed
1440
  eNB_rxtx_proc_t *proc_rxtx;
1441
  for (int CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
1442
    eNB=PHY_vars_eNB_g[inst][CC_id];
1443 1444
    
    proc = &eNB->proc;
knopp's avatar
knopp committed
1445
    proc_rxtx = &proc->proc_rxtx[0];
1446
    
1447
#ifdef DEBUG_THREADS
1448
    printf( "Killing TX CC_id %d thread %d\n", CC_id, i );
1449
#endif
1450
    
knopp's avatar
knopp committed
1451 1452
    proc_rxtx[0].instance_cnt_rxtx = 0; // FIXME data race!
    proc_rxtx[1].instance_cnt_rxtx = 0; // FIXME data race!
Raymond Knopp's avatar
Raymond Knopp committed
1453
    proc->instance_cnt_prach = 0;
1454
    proc->instance_cnt_FH = 0;
knopp's avatar
knopp committed
1455
    pthread_cond_signal( &proc_rxtx[0].cond_rxtx );    
Raymond Knopp's avatar
Raymond Knopp committed
1456 1457
    pthread_cond_signal( &proc_rxtx[1].cond_rxtx );
    pthread_cond_signal( &proc->cond_prach );
1458
    pthread_cond_signal( &proc->cond_FH );
1459
    pthread_cond_broadcast(&sync_phy_proc.cond_phy_proc_tx);
Raymond Knopp's avatar
Raymond Knopp committed
1460

1461 1462 1463 1464 1465 1466 1467
    pthread_join( proc->pthread_FH, (void**)&status ); 
    pthread_mutex_destroy( &proc->mutex_FH );
    pthread_cond_destroy( &proc->cond_FH );
            
    pthread_join( proc->pthread_prach, (void**)&status );    
    pthread_mutex_destroy( &proc->mutex_prach );
    pthread_cond_destroy( &proc->cond_prach );         
1468

1469
    int i;
Raymond Knopp's avatar
Raymond Knopp committed
1470
    for (i=0;i<2;i++) {
knopp's avatar
knopp committed
1471 1472 1473 1474
      pthread_join( proc_rxtx[i].pthread_rxtx, (void**)&status );
      pthread_mutex_destroy( &proc_rxtx[i].mutex_rxtx );
      pthread_cond_destroy( &proc_rxtx[i].cond_rxtx );
    }
1475
  }
1476 1477
}

1478

1479 1480 1481 1482
/* this function maps the phy_vars_eNB tx and rx buffers to the available rf chains.
   Each rf chain is is addressed by the card number and the chain on the card. The
   rf_map specifies for each CC, on which rf chain the mapping should start. Multiple
   antennas are mapped to successive RF chains on the same card. */
1483
int setup_eNB_buffers(PHY_VARS_eNB **phy_vars_eNB, openair0_config_t *openair0_cfg) {
1484 1485 1486 1487 1488

  int i, CC_id;
  int j;

  uint16_t N_TA_offset = 0;
1489

1490 1491 1492 1493
  LTE_DL_FRAME_PARMS *frame_parms;

  for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
    if (phy_vars_eNB[CC_id]) {
1494
      frame_parms = &(phy_vars_eNB[CC_id]->frame_parms);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
      printf("setup_eNB_buffers: frame_parms = %p\n",frame_parms);
    } else {
      printf("phy_vars_eNB[%d] not initialized\n", CC_id);
      return(-1);
    }

    if (frame_parms->frame_type == TDD) {
      if (frame_parms->N_RB_DL == 100)
        N_TA_offset = 624;
      else if (frame_parms->N_RB_DL == 50)
        N_TA_offset = 624/2;
      else if (frame_parms->N_RB_DL == 25)
        N_TA_offset = 624/4;
    }

Raymond Knopp's avatar
Raymond Knopp committed
1510
 
1511

Raymond Knopp's avatar
Raymond Knopp committed
1512
    if (openair0_cfg[CC_id].mmapped_dma == 1) {
1513
    // replace RX signal buffers with mmaped HW versions
Raymond Knopp's avatar
Raymond Knopp committed
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
      
      for (i=0; i<frame_parms->nb_antennas_rx; i++) {
	printf("Mapping eNB CC_id %d, rx_ant %d\n",CC_id,i);
	free(phy_vars_eNB[CC_id]->common_vars.rxdata[0][i]);
	phy_vars_eNB[CC_id]->common_vars.rxdata[0][i] = openair0_cfg[CC_id].rxbase[i];
	
	
	
	printf("rxdata[%d] @ %p\n",i,phy_vars_eNB[CC_id]->common_vars.rxdata[0][i]);
	
	for (j=0; j<16; j++) {
	  printf("rxbuffer %d: %x\n",j,phy_vars_eNB[CC_id]->common_vars.rxdata[0][i][j]);
	  phy_vars_eNB[CC_id]->common_vars.rxdata[0][i][j] = 16-j;
	}
1528
      }
Raymond Knopp's avatar
Raymond Knopp committed
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
      
      for (i=0; i<frame_parms->nb_antennas_tx; i++) {
	printf("Mapping eNB CC_id %d, tx_ant %d\n",CC_id,i);
	free(phy_vars_eNB[CC_id]->common_vars.txdata[0][i]);
	phy_vars_eNB[CC_id]->common_vars.txdata[0][i] = openair0_cfg[CC_id].txbase[i];//(int32_t*) openair0_exmimo_pci[rf_map[CC_id].card].dac_head[rf_map[CC_id].chain+i];
	
	printf("txdata[%d] @ %p\n",i,phy_vars_eNB[CC_id]->common_vars.txdata[0][i]);
	
	for (j=0; j<16; j++) {
	  printf(<