channel_sim.c 25 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*******************************************************************************
    OpenAirInterface 
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is 
    included in this distribution in the file called "COPYING". If not, 
    see <http://www.gnu.org/licenses/>.

   Contact Information
   OpenAirInterface Admin: openair_admin@eurecom.fr
   OpenAirInterface Tech : openair_tech@eurecom.fr
   OpenAirInterface Dev  : openair4g-devel@eurecom.fr
  
ghaddab's avatar
ghaddab committed
26
   Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
27 28 29

 *******************************************************************************/

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
#include <string.h>
#include <math.h>
#include <unistd.h>
#include <stdint.h>
#include <stdio.h>
#include <time.h>

#include "SIMULATION/TOOLS/defs.h"
#include "SIMULATION/RF/defs.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#include "PHY/extern.h"
#include "MAC_INTERFACE/extern.h"

#ifdef OPENAIR2
#include "LAYER2/MAC/defs.h"
#include "LAYER2/MAC/extern.h"
#include "UTIL/LOG/log_if.h"
#include "UTIL/LOG/log_extern.h"
#include "RRC/LITE/extern.h"
#include "PHY_INTERFACE/extern.h"
#include "UTIL/OCG/OCG.h"
#include "UTIL/OPT/opt.h" // to test OPT
#endif

#include "ARCH/CBMIMO1/DEVICE_DRIVER/extern.h"

#include "UTIL/FIFO/types.h"

#ifdef IFFT_FPGA
#include "PHY/LTE_REFSIG/mod_table.h"
#endif

#include "SCHED/defs.h"
#include "SCHED/extern.h"

#ifdef XFORMS
#include "forms.h"
#include "phy_procedures_sim_form.h"
#endif

#include "oaisim.h"

#define RF
74
//#define DEBUG_SIM
75 76 77 78

int number_rb_ul;
int first_rbUL ;

79
extern Signal_buffers_t *signal_buffers_g;
80 81 82 83 84 85



void do_DL_sig(double **r_re0,double **r_im0,
               double **r_re,double **r_im,
               double **s_re,double **s_im,
knopp's avatar
knopp committed
86
               channel_desc_t *eNB2UE[NUMBER_OF_eNB_MAX][NUMBER_OF_UE_MAX][MAX_NUM_CCs],
87 88
               node_desc_t *enb_data[NUMBER_OF_eNB_MAX],
               node_desc_t *ue_data[NUMBER_OF_UE_MAX],
89
               uint16_t next_slot,uint8_t abstraction_flag,LTE_DL_FRAME_PARMS *frame_parms,
knopp's avatar
knopp committed
90 91
               uint8_t UE_id,
	       int CC_id) {
92

93 94
  int32_t att_eNB_id=-1;
  int32_t **txdata,**rxdata;
95
  
96
  uint8_t eNB_id=0;
97
  double tx_pwr, rx_pwr;
98 99 100
  int32_t rx_pwr2;
  uint32_t i,aa;
  uint32_t slot_offset,slot_offset_meas;
101 102

  double min_path_loss=-200;
103 104
  uint8_t hold_channel=0;
  //  uint8_t aatx,aarx;
knopp's avatar
knopp committed
105 106
  uint8_t nb_antennas_rx = eNB2UE[0][0][CC_id]->nb_rx; // number of rx antennas at UE
  uint8_t nb_antennas_tx = eNB2UE[0][0][CC_id]->nb_tx; // number of tx antennas at eNB
107

knopp's avatar
knopp committed
108 109
  LTE_DL_FRAME_PARMS *fp;
  //  int subframe_sched = ((next_slot>>1) == 0) ? 9 : ((next_slot>>1)-1);
knopp's avatar
knopp committed
110 111

  
112 113 114 115 116 117 118 119
  if (next_slot==0)
    hold_channel = 0;
  else
    hold_channel = 1;

  if (abstraction_flag != 0) {
    //for (UE_id=0;UE_id<NB_UE_INST;UE_id++) {

120
    if (!hold_channel) {
121 122
      // calculate the random channel from each eNB
      for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
knopp's avatar
knopp committed
123
	
knopp's avatar
knopp committed
124
        random_channel(eNB2UE[eNB_id][UE_id][CC_id],abstraction_flag);
125 126 127 128
        /*
	for (i=0;i<eNB2UE[eNB_id][UE_id]->nb_taps;i++)
	  printf("eNB2UE[%d][%d]->a[0][%d] = (%f,%f)\n",eNB_id,UE_id,i,eNB2UE[eNB_id][UE_id]->a[0][i].x,eNB2UE[eNB_id][UE_id]->a[0][i].y);
	*/
knopp's avatar
knopp committed
129
        freq_channel(eNB2UE[eNB_id][UE_id][CC_id], frame_parms->N_RB_DL,frame_parms->N_RB_DL*12+1);
130 131 132 133
      }

      // find out which eNB the UE is attached to
      for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
knopp's avatar
knopp committed
134
        if (find_ue(PHY_vars_UE_g[UE_id][CC_id]->lte_ue_pdcch_vars[0]->crnti,PHY_vars_eNB_g[eNB_id][CC_id])>=0) {
135 136
          // UE with UE_id is connected to eNb with eNB_id
          att_eNB_id=eNB_id;
137
          LOG_D(OCM,"A: UE attached to eNB (UE%d->eNB%d)\n",UE_id,eNB_id);
138 139 140 141 142 143
        }
      }

      // if UE is not attached yet, find assume its the eNB with the smallest pathloss
      if (att_eNB_id<0) {
        for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
knopp's avatar
knopp committed
144 145
          if (min_path_loss<eNB2UE[eNB_id][UE_id][CC_id]->path_loss_dB) {
            min_path_loss = eNB2UE[eNB_id][UE_id][CC_id]->path_loss_dB;
146
            att_eNB_id=eNB_id;
147
            LOG_D(OCM,"B: UE attached to eNB (UE%d->eNB%d)\n",UE_id,eNB_id);
148 149 150 151 152 153 154 155 156
          }
        }
      }

      if (att_eNB_id<0) {
        LOG_E(OCM,"Cannot find eNB for UE %d, return\n",UE_id);
        return; //exit(-1);
      }
      
157
#ifdef DEBUG_SIM
knopp's avatar
knopp committed
158 159 160 161
      rx_pwr = signal_energy_fp2(eNB2UE[att_eNB_id][UE_id][CC_id]->ch[0],
                                 eNB2UE[att_eNB_id][UE_id][CC_id]->channel_length)*eNB2UE[att_eNB_id][UE_id][CC_id]->channel_length;
      LOG_D(OCM,"Channel (CCid %d) eNB %d => UE %d : tx_power %d dBm, path_loss %f dB\n",
            CC_id,att_eNB_id,UE_id,
knopp's avatar
knopp committed
162
            frame_parms->pdsch_config_common.referenceSignalPower,
knopp's avatar
knopp committed
163
            eNB2UE[att_eNB_id][UE_id][CC_id]->path_loss_dB);
164
#endif
165 166 167

      //dlsch_abstraction(PHY_vars_UE_g[UE_id]->sinr_dB, rb_alloc, 8);
      // fill in perfect channel estimates
knopp's avatar
knopp committed
168 169
      channel_desc_t *desc1 = eNB2UE[att_eNB_id][UE_id][CC_id];
      int32_t **dl_channel_est = PHY_vars_UE_g[UE_id][CC_id]->lte_ue_common_vars.dl_ch_estimates[0];
170
      //      double scale = pow(10.0,(enb_data[att_eNB_id]->tx_power_dBm + eNB2UE[att_eNB_id][UE_id]->path_loss_dB + (double) PHY_vars_UE_g[UE_id]->rx_total_gain_dB)/20.0);
knopp's avatar
knopp committed
171
      double scale = pow(10.0,(frame_parms->pdsch_config_common.referenceSignalPower+eNB2UE[att_eNB_id][UE_id][CC_id]->path_loss_dB + (double) PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB)/20.0);
172 173
      //this factor is not really needed (it was actually wrong in the non abstraction mode)
      //scale = scale * sqrt(512.0/300.0); //TODO: make this variable for all BWs
174 175 176 177 178 179 180 181 182 183 184 185 186 187
      LOG_D(OCM,"scale =%lf (%d dB)\n",scale,(int) (20*log10(scale)));
      // freq_channel(desc1,frame_parms->N_RB_DL,nb_samples);
      //write_output("channel.m","ch",desc1->ch[0],desc1->channel_length,1,8);
      //write_output("channelF.m","chF",desc1->chF[0],nb_samples,1,8);
      int count,count1,a_rx,a_tx;
      for(a_tx=0;a_tx<nb_antennas_tx;a_tx++)
	{ 
	  for (a_rx=0;a_rx<nb_antennas_rx;a_rx++)
	    {
	      //for (count=0;count<frame_parms->symbols_per_tti/2;count++)
	      for (count=0;count<1;count++)
		{ 
		  for (count1=0;count1<frame_parms->N_RB_DL*12;count1++)
		    { 
188 189
		      ((int16_t *) dl_channel_est[(a_tx<<1)+a_rx])[2*count1+(count*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(desc1->chF[a_rx+(a_tx*nb_antennas_rx)][count1].x*scale);
		      ((int16_t *) dl_channel_est[(a_tx<<1)+a_rx])[2*count1+1+(count*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(desc1->chF[a_rx+(a_tx*nb_antennas_rx)][count1].y*scale) ;
190 191 192 193 194
		    }
		}
	    }
	}

195
      /*
196 197
      if(PHY_vars_UE_g[UE_id]->transmission_mode[att_eNB_id]>=5)
	{
198
	  lte_ue_measurements(PHY_vars_UE_g[UE_id],
199 200 201
			      ((next_slot-1)>>1)*frame_parms->samples_per_tti,
			      1,
			      abstraction_flag);
202
	  		      
203 204
	  PHY_vars_eNB_g[att_eNB_id]->dlsch_eNB[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE_g[UE_id]->PHY_measurements,0);
	  //  printf("pmi_alloc in channel sim: %d",PHY_vars_eNB_g[att_eNB_id]->dlsch_eNB[0][0]->pmi_alloc);
205 206 207 208
        }
      */		      
      
      // calculate the SNR for the attached eNB (this assumes eNB always uses PMI stored in eNB_UE_stats; to be improved)
knopp's avatar
knopp committed
209
      init_snr(eNB2UE[att_eNB_id][UE_id][CC_id], enb_data[att_eNB_id], ue_data[UE_id], PHY_vars_UE_g[UE_id][CC_id]->sinr_dB, &PHY_vars_UE_g[UE_id][CC_id]->N0, PHY_vars_UE_g[UE_id][CC_id]->transmission_mode[att_eNB_id], PHY_vars_eNB_g[att_eNB_id][CC_id]->eNB_UE_stats[UE_id].DL_pmi_single,PHY_vars_eNB_g[att_eNB_id][CC_id]->mu_mimo_mode[UE_id].dl_pow_off);
210 211 212 213

      // calculate sinr here
      for (eNB_id = 0; eNB_id < NB_eNB_INST; eNB_id++) {
        if (att_eNB_id != eNB_id) {
knopp's avatar
knopp committed
214
          calculate_sinr(eNB2UE[eNB_id][UE_id][CC_id], enb_data[eNB_id], ue_data[UE_id], PHY_vars_UE_g[UE_id][CC_id]->sinr_dB);
215 216
        }
      }
217
    } // hold channel
218 219 220 221 222 223 224
  }
  
  else { //abstraction_flag
    /* 
       Call do_OFDM_mod from phy_procedures_eNB_TX function
    */
   
knopp's avatar
knopp committed
225

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
   
    //for (UE_id=0;UE_id<NB_UE_INST;UE_id++) {
      // Compute RX signal for UE = UE_id
      /*
      for (i=0;i<(frame_parms->samples_per_tti>>1);i++) {
	for (aa=0;aa<nb_antennas_rx;aa++) {
	  r_re[aa][i]=0.0;
	  r_im[aa][i]=0.0;
	}
      }
      */
      //      printf("r_re[0] %p\n",r_re[0]);
      for (aa=0;aa<nb_antennas_rx;aa++) {
        memset((void*)r_re[aa],0,(frame_parms->samples_per_tti>>1)*sizeof(double));
        memset((void*)r_im[aa],0,(frame_parms->samples_per_tti>>1)*sizeof(double));
      }
      /*
      for (i=0;i<16;i++)
	printf("%f, %X\n",r_re[aa][i],(unsigned long long)r_re[aa][i]);
      */
      for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
        //	if (((double)PHY_vars_UE_g[UE_id]->tx_power_dBm +
        //	     eNB2UE[eNB_id][UE_id]->path_loss_dB) <= -107.0)
        //	  break;
knopp's avatar
knopp committed
250

knopp's avatar
knopp committed
251
        txdata = PHY_vars_eNB_g[eNB_id][CC_id]->lte_eNB_common_vars.txdata[0];
252 253 254 255 256 257 258 259 260 261 262 263
        slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
        slot_offset_meas = ((next_slot&1)==0) ? slot_offset : (slot_offset-(frame_parms->samples_per_tti>>1));
        tx_pwr = dac_fixed_gain(s_re,
                                s_im,
                                txdata,
                                slot_offset,
                                nb_antennas_tx,
                                frame_parms->samples_per_tti>>1,
                                slot_offset_meas,
                                frame_parms->ofdm_symbol_size,
                                14,
                                //				enb_data[eNB_id]->tx_power_dBm);
knopp's avatar
knopp committed
264 265
                                frame_parms->pdsch_config_common.referenceSignalPower,
				frame_parms->N_RB_DL*12);
266 267

#ifdef DEBUG_SIM
knopp's avatar
knopp committed
268
        LOG_D(OCM,"[SIM][DL] eNB %d (CCid %d): tx_pwr %f dBm (target %f), for slot %d (subframe %d)\n",
knopp's avatar
knopp committed
269
              eNB_id,CC_id,
270
              10*log10(tx_pwr),
knopp's avatar
knopp committed
271
	      frame_parms->pdsch_config_common.referenceSignalPower+10*log10(12.0*frame_parms->N_RB_DL),
272 273 274 275
              next_slot,
              next_slot>>1);
#endif
        //eNB2UE[eNB_id][UE_id]->path_loss_dB = 0;
knopp's avatar
knopp committed
276
        multipath_channel(eNB2UE[eNB_id][UE_id][CC_id],s_re,s_im,r_re0,r_im0,
277 278
                          frame_parms->samples_per_tti>>1,hold_channel);
#ifdef DEBUG_SIM	  
knopp's avatar
knopp committed
279 280 281
        rx_pwr = signal_energy_fp2(eNB2UE[eNB_id][UE_id][CC_id]->ch[0],
                                   eNB2UE[eNB_id][UE_id][CC_id]->channel_length)*eNB2UE[eNB_id][UE_id][CC_id]->channel_length;
        LOG_D(OCM,"[SIM][DL] Channel eNB %d => UE %d (CCid %d): Channel gain %f dB (%f)\n",eNB_id,UE_id,CC_id,10*log10(rx_pwr),rx_pwr);
282 283 284 285
#endif


#ifdef DEBUG_SIM
knopp's avatar
knopp committed
286
        for (i=0;i<eNB2UE[eNB_id][UE_id][CC_id]->channel_length;i++)
287
          LOG_D(OCM,"channel(%d,%d)[%d] : (%f,%f)\n",eNB_id,UE_id,i,eNB2UE[eNB_id][UE_id][CC_id]->ch[0][i].x,eNB2UE[eNB_id][UE_id][CC_id]->ch[0][i].y);
288 289
#endif

knopp's avatar
knopp committed
290
        LOG_D(OCM,"[SIM][DL] Channel eNB %d => UE %d (CCid %d): tx_power %f dBm/RE, path_loss %f dB\n",
knopp's avatar
knopp committed
291
              eNB_id,UE_id,CC_id,
knopp's avatar
knopp committed
292
              (double)frame_parms->pdsch_config_common.referenceSignalPower,
293
              //	       enb_data[eNB_id]->tx_power_dBm,
knopp's avatar
knopp committed
294
              eNB2UE[eNB_id][UE_id][CC_id]->path_loss_dB);
295 296

#ifdef DEBUG_SIM      
knopp's avatar
knopp committed
297 298 299
        rx_pwr = signal_energy_fp(r_re0,r_im0,nb_antennas_rx,frame_parms->ofdm_symbol_size,0)*(double)frame_parms->ofdm_symbol_size/(12.0*frame_parms->N_RB_DL);
        LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr %f dBm/RE (%f dBm RSSI)for slot %d (subframe %d)\n",UE_id,10*log10(rx_pwr/12.0/(double)frame_parms->N_RB_DL),10*log10(rx_pwr),next_slot,next_slot>>1);
        LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr (noise) -132 dBm/RE (N0fs = %f dBm, N0B = %f dBm) for slot %d (subframe %d)\n",UE_id,10*log10(eNB2UE[eNB_id][UE_id][CC_id]->BW*1e6)+-174, 10*log10(eNB2UE[eNB_id][UE_id][CC_id]->BW*1e6*12*frame_parms->N_RB_DL/(double)frame_parms->ofdm_symbol_size)+-174, next_slot,next_slot>>1);
300 301
#endif      

knopp's avatar
knopp committed
302 303
        if (eNB2UE[eNB_id][UE_id][CC_id]->first_run == 1)
          eNB2UE[eNB_id][UE_id][CC_id]->first_run = 0;
304 305 306 307


        // RF model
#ifdef DEBUG_SIM
knopp's avatar
knopp committed
308
        LOG_D(OCM,"[SIM][DL] UE %d (CCid %d): rx_gain %d dB (-ADC %f) for slot %d (subframe %d)\n",UE_id,CC_id,PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB,PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB-66.227,next_slot,next_slot>>1);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
#endif
        /*
	rf_rx(r_re0,
	      r_im0,
	      NULL,
	      NULL,
	      0,
	      nb_antennas_rx,
	      frame_parms->samples_per_tti>>1,
	      1e3/eNB2UE[eNB_id][UE_id]->BW,  // sampling time (ns)
	      0.0,               // freq offset (Hz) (-20kHz..20kHz)
	      0.0,               // drift (Hz) NOT YET IMPLEMENTED
	      ue_data[UE_id]->rx_noise_level,                // noise_figure NOT YET IMPLEMENTED
	      (double)PHY_vars_UE_g[UE_id]->rx_total_gain_dB - 66.227,   // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)
	      200.0,               // IP3_dBm (dBm)
	      &eNB2UE[eNB_id][UE_id]->ip,               // initial phase
	      30.0e3,            // pn_cutoff (kHz)
	      -500.0,            // pn_amp (dBc) default: 50
	      0.0,               // IQ imbalance (dB),
	      0.0);              // IQ phase imbalance (rad)
	*/

        rf_rx_simple(r_re0,
                     r_im0,
                     nb_antennas_rx,
                     frame_parms->samples_per_tti>>1,
knopp's avatar
knopp committed
335 336
                     1e3/eNB2UE[eNB_id][UE_id][CC_id]->BW,  // sampling time (ns)
                     (double)PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB - 66.227);   // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)
337 338

#ifdef DEBUG_SIM    
knopp's avatar
knopp committed
339 340
        rx_pwr = signal_energy_fp(r_re0,r_im0,nb_antennas_rx,frame_parms->ofdm_symbol_size,0);
        LOG_D(OCM,"[SIM][DL] UE %d : ADC in (eNB %d) %f dBm for slot %d (subframe %d)\n",
341 342 343 344 345 346 347 348 349 350 351 352
               UE_id,eNB_id,
               10*log10(rx_pwr),next_slot,next_slot>>1);
#endif    	
        for (i=0;i<(frame_parms->samples_per_tti>>1);i++) {
          for (aa=0;aa<nb_antennas_rx;aa++) {
            r_re[aa][i]+=r_re0[aa][i];
            r_im[aa][i]+=r_im0[aa][i];
          }
        }

      }      
#ifdef DEBUG_SIM    
knopp's avatar
knopp committed
353 354
      rx_pwr = signal_energy_fp(r_re,r_im,nb_antennas_rx,frame_parms->ofdm_symbol_size,0);
      LOG_D(OCM,"[SIM][DL] UE %d : ADC in %f dBm for slot %d (subframe %d)\n",UE_id,10*log10(rx_pwr),next_slot,next_slot>>1);  
355 356
#endif    

knopp's avatar
knopp committed
357
      rxdata = PHY_vars_UE_g[UE_id][CC_id]->lte_ue_common_vars.rxdata;
358 359 360 361 362 363 364 365 366 367 368
      slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
      
      adc(r_re,
	  r_im,
	  0,
	  slot_offset,
	  rxdata,
	  nb_antennas_rx,
	  frame_parms->samples_per_tti>>1,
	  12);
      
369
#ifdef DEBUG_SIM
knopp's avatar
knopp committed
370
      rx_pwr2 = signal_energy(rxdata[0]+slot_offset,frame_parms->ofdm_symbol_size)*(frame_parms->ofdm_symbol_size/(12.0*frame_parms->N_RB_DL));
371
      LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr (ADC out) %f dB (%d) for slot %d (subframe %d), writing to %p\n",UE_id, 10*log10((double)rx_pwr2),rx_pwr2,next_slot,next_slot>>1,rxdata);  
372 373 374 375
#else
      UNUSED_VARIABLE(rx_pwr2);
      UNUSED_VARIABLE(tx_pwr);
      UNUSED_VARIABLE(rx_pwr);
376 377 378 379 380 381 382
#endif
    //}// UE_index loop
  }

}


knopp's avatar
knopp committed
383
void do_UL_sig(double **r_re0,double **r_im0,double **r_re,double **r_im,double **s_re,double **s_im,channel_desc_t *UE2eNB[NUMBER_OF_UE_MAX][NUMBER_OF_eNB_MAX][MAX_NUM_CCs],node_desc_t *enb_data[NUMBER_OF_eNB_MAX],node_desc_t *ue_data[NUMBER_OF_UE_MAX],uint16_t next_slot,uint8_t abstraction_flag,LTE_DL_FRAME_PARMS *frame_parms, uint32_t frame,uint8_t CC_id) {
384

385
  int32_t **txdata,**rxdata;
386
#ifdef PHY_ABSTRACTION_UL
387
  int32_t att_eNB_id=-1;
388
#endif
389
  uint8_t eNB_id=0,UE_id=0;
390

knopp's avatar
knopp committed
391 392
  uint8_t nb_antennas_rx = UE2eNB[0][0][CC_id]->nb_rx; // number of rx antennas at eNB
  uint8_t nb_antennas_tx = UE2eNB[0][0][CC_id]->nb_tx; // number of tx antennas at UE
393 394

  double tx_pwr, rx_pwr;
395 396 397
  int32_t rx_pwr2;
  uint32_t i,aa;
  uint32_t slot_offset,slot_offset_meas;
398

399
  uint8_t hold_channel=0;
400 401 402

#ifdef PHY_ABSTRACTION_UL
  double min_path_loss=-200;
403 404
  uint16_t ul_nb_rb=0 ;
  uint16_t ul_fr_rb=0;
405 406
  int ulnbrb2 ;
  int ulfrrb2 ;
407
  uint8_t harq_pid;
408 409
  int subframe = (next_slot>>1);
#endif  
410

411
  /*
412 413
  if (next_slot==4) 
    hold_channel = 0;
414 415 416 417 418
  else
    hold_channel = 1;
  */

  if (abstraction_flag!=0)  {
419
#ifdef PHY_ABSTRACTION_UL
420
   for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) 
421 422 423
    {
      for (UE_id=0;UE_id<NB_UE_INST;UE_id++) 
      {
424
	if (!hold_channel) {
knopp's avatar
knopp committed
425 426
	  random_channel(UE2eNB[UE_id][eNB_id][CC_id],abstraction_flag);
	  freq_channel(UE2eNB[UE_id][eNB_id][CC_id], frame_parms->N_RB_UL,frame_parms->N_RB_UL*12+1);
427 428
	  
	  // REceived power at the eNB
knopp's avatar
knopp committed
429 430
	  rx_pwr = signal_energy_fp2(UE2eNB[UE_id][eNB_id][CC_id]->ch[0],
				     UE2eNB[UE_id][eNB_id][CC_id]->channel_length)*UE2eNB[UE_id][att_eNB_id][CC_id]->channel_length; // calculate the rx power at the eNB
431 432 433 434
	}

	//  write_output("SINRch.m","SINRch",PHY_vars_eNB_g[att_eNB_id]->sinr_dB_eNB,frame_parms->N_RB_UL*12+1,1,1);
	if(subframe>1 && subframe <5)
435 436
          {
            harq_pid = subframe2harq_pid(frame_parms,frame,subframe);
knopp's avatar
knopp committed
437 438
            ul_nb_rb = PHY_vars_eNB_g[att_eNB_id][CC_id]->ulsch_eNB[(uint8_t)UE_id]->harq_processes[harq_pid]->nb_rb;
            ul_fr_rb = PHY_vars_eNB_g[att_eNB_id][CC_id]->ulsch_eNB[(uint8_t)UE_id]->harq_processes[harq_pid]->first_rb;
439
          }
440 441
	
	if(ul_nb_rb>1 && (ul_fr_rb < 25 && ul_fr_rb > -1))
442 443 444
          {
            number_rb_ul = ul_nb_rb;
            first_rbUL = ul_fr_rb;
knopp's avatar
knopp committed
445
            init_snr_up(UE2eNB[UE_id][att_eNB_id][CC_id],enb_data[att_eNB_id], ue_data[UE_id],PHY_vars_eNB_g[att_eNB_id][CC_id]->sinr_dB,&PHY_vars_UE_g[att_eNB_id][CC_id]->N0,ul_nb_rb,ul_fr_rb);
446
	    
447
          }
448 449
      } //UE_id
    } //eNB_id
450
#else
451 452 453
/* the following functions are not needed */
/*  
if (abstraction_flag!=0) {
454 455 456 457 458 459 460
    for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
      for (UE_id=0;UE_id<NB_UE_INST;UE_id++) {
	random_channel(UE2eNB[UE_id][eNB_id]);
	freq_channel(UE2eNB[UE_id][eNB_id], frame_parms->N_RB_UL,2);
      }
    }
  }
461
*/
462
#endif
463
  }
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
  else { //without abstraction

    /*
    for (UE_id=0;UE_id<NB_UE_INST;UE_id++) {
      do_OFDM_mod(PHY_vars_UE_g[UE_id]->lte_ue_common_vars.txdataF,PHY_vars_UE_g[UE_id]->lte_ue_common_vars.txdata,next_slot,&PHY_vars_UE_g[UE_id]->lte_frame_parms);
    }
    */

    for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
      // Clear RX signal for eNB = eNB_id
      for (i=0;i<(frame_parms->samples_per_tti>>1);i++) {
        for (aa=0;aa<nb_antennas_rx;aa++) {
          r_re[aa][i]=0.0;
          r_im[aa][i]=0.0;
        }
      }
      
      // Compute RX signal for eNB = eNB_id
      for (UE_id=0;UE_id<NB_UE_INST;UE_id++){

knopp's avatar
knopp committed
484
        txdata = PHY_vars_UE_g[UE_id][CC_id]->lte_ue_common_vars.txdata;
485 486 487
        slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
        slot_offset_meas = ((next_slot&1)==0) ? slot_offset : (slot_offset-(frame_parms->samples_per_tti>>1));

knopp's avatar
knopp committed
488 489
        if (((double)PHY_vars_UE_g[UE_id][CC_id]->tx_power_dBm +
             UE2eNB[UE_id][eNB_id][CC_id]->path_loss_dB) <= -125.0) {
490 491 492 493 494 495 496 497 498 499 500 501 502 503

          // don't simulate a UE that is too weak
        }
        else {

          tx_pwr = dac_fixed_gain(s_re,
                                  s_im,
                                  txdata,
                                  slot_offset,
                                  nb_antennas_tx,
                                  frame_parms->samples_per_tti>>1,
                                  slot_offset_meas,
                                  frame_parms->ofdm_symbol_size,
                                  14,
knopp's avatar
knopp committed
504 505
                                  (double)PHY_vars_UE_g[UE_id][CC_id]->tx_power_dBm-10*log10((double)PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE),
				  PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE);  // This make the previous argument the total power
506
          //ue_data[UE_id]->tx_power_dBm);
knopp's avatar
knopp committed
507 508 509 510 511 512 513 514
	  //#ifdef DEBUG_SIM
	  LOG_D(OCM,"[SIM][UL] UE %d tx_pwr %f dBm (target %d dBm, num_RE %d) for slot %d (subframe %d, slot_offset %d, slot_offset_meas %d)\n",
		UE_id,
		10*log10(tx_pwr),
		PHY_vars_UE_g[UE_id][CC_id]->tx_power_dBm,
		PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE,
		next_slot,next_slot>>1,slot_offset,slot_offset_meas);
	  //#endif
515
	  
knopp's avatar
knopp committed
516
	  multipath_channel(UE2eNB[UE_id][eNB_id][CC_id],s_re,s_im,r_re0,r_im0,
517 518
			    frame_parms->samples_per_tti>>1,hold_channel);

knopp's avatar
knopp committed
519
	  //#ifdef DEBUG_SIM	  
knopp's avatar
knopp committed
520 521
          rx_pwr = signal_energy_fp2(UE2eNB[UE_id][eNB_id][CC_id]->ch[0],
                                     UE2eNB[UE_id][eNB_id][CC_id]->channel_length)*UE2eNB[UE_id][eNB_id][CC_id]->channel_length;
knopp's avatar
knopp committed
522 523 524 525
          LOG_D(OCM,"[SIM][UL] slot %d Channel UE %d => eNB %d : %f dB (hold %d,length %d, PL %f)\n",next_slot,UE_id,eNB_id,10*log10(rx_pwr),
		hold_channel,UE2eNB[UE_id][eNB_id][CC_id]->channel_length,
		UE2eNB[UE_id][eNB_id][CC_id]->path_loss_dB);
	  //#endif
526

knopp's avatar
knopp committed
527
	    //#ifdef DEBUG_SIM    
528
	  rx_pwr = signal_energy_fp(r_re0,r_im0,nb_antennas_rx,frame_parms->samples_per_tti>>1,0);
knopp's avatar
knopp committed
529
	  LOG_D(OCM,"[SIM][UL] eNB %d : rx_pwr %f dBm (%f) for slot %d (subframe %d), sptti %d\n",
530
		 eNB_id,10*log10(rx_pwr),rx_pwr,next_slot,next_slot>>1,frame_parms->samples_per_tti);  
knopp's avatar
knopp committed
531
	  //#endif
532 533


knopp's avatar
knopp committed
534 535
          if (UE2eNB[UE_id][eNB_id][CC_id]->first_run == 1)
            UE2eNB[UE_id][eNB_id][CC_id]->first_run = 0;
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573



          for (aa=0;aa<nb_antennas_rx;aa++) {
            for (i=0;i<(frame_parms->samples_per_tti>>1);i++) {
              r_re[aa][i]+=r_re0[aa][i];
              r_im[aa][i]+=r_im0[aa][i];
            }
          }
        }
      } //UE_id
      
      // RF model
      /*
	  rf_rx(r_re0,
	  r_im0,
	  NULL,
	  NULL,
	  0,
	  frame_parms->nb_antennas_rx,
	  frame_parms->samples_per_tti>>1,
	  1e3/UE2eNB[UE_id][eNB_id]->BW,  // sampling time (ns) 
	  0.0,               // freq offset (Hz) (-20kHz..20kHz)
	  0.0,               // drift (Hz) NOT YET IMPLEMENTED
	  enb_data[eNB_id]->rx_noise_level,                // noise_figure NOT YET IMPLEMENTED
	  (double)PHY_vars_eNB_g[eNB_id]->rx_total_gain_eNB_dB - 66.227,   // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)
	  200.0,               // IP3_dBm (dBm)
	  &UE2eNB[UE_id][eNB_id]->ip,               // initial phase
	  30.0e3,            // pn_cutoff (kHz)
	  -500.0,            // pn_amp (dBc) default: 50
	  0.0,               // IQ imbalance (dB),
	  0.0);              // IQ phase imbalance (rad)
	*/
      
      rf_rx_simple(r_re,
                   r_im,
                   nb_antennas_rx,
                   frame_parms->samples_per_tti>>1,
knopp's avatar
knopp committed
574 575
                   1e3/UE2eNB[0][eNB_id][CC_id]->BW,  // sampling time (ns)
                   (double)PHY_vars_eNB_g[eNB_id][CC_id]->rx_total_gain_eNB_dB - 66.227);   // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)
576 577

#ifdef DEBUG_SIM    
578 579
      rx_pwr = signal_energy_fp(r_re,r_im,nb_antennas_rx,frame_parms->samples_per_tti>>1,0);
      LOG_D(OCM,"[SIM][UL] rx_pwr (ADC in) %f dB for slot %d (subframe %d)\n",10*log10(rx_pwr),next_slot,next_slot>>1);  
580 581
#endif
      
knopp's avatar
knopp committed
582
      rxdata = PHY_vars_eNB_g[eNB_id][CC_id]->lte_eNB_common_vars.rxdata[0];
583 584 585 586 587 588 589 590 591 592 593 594
      slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
      
      adc(r_re,
          r_im,
          0,
          slot_offset,
          rxdata,
          nb_antennas_rx,
          frame_parms->samples_per_tti>>1,
          12);
      
#ifdef DEBUG_SIM    
595 596
      rx_pwr2 = signal_energy(rxdata[0]+slot_offset,frame_parms->samples_per_tti>>1);
      LOG_D(OCM,"[SIM][UL] eNB %d rx_pwr (ADC out) %f dB (%d) for slot %d (subframe %d)\n",eNB_id,10*log10((double)rx_pwr2),rx_pwr2,next_slot,next_slot>>1);  
597 598 599 600 601
#else
      UNUSED_VARIABLE(tx_pwr);
      UNUSED_VARIABLE(rx_pwr);
      UNUSED_VARIABLE(rx_pwr2);
#endif
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
      
    } // eNB_id
  } // abstraction_flag==0

}


void init_channel_vars(LTE_DL_FRAME_PARMS *frame_parms, double ***s_re,double ***s_im,double ***r_re,double ***r_im,double ***r_re0,double ***r_im0) {

  int i;

  *s_re = malloc(2*sizeof(double*));
  *s_im = malloc(2*sizeof(double*));
  *r_re = malloc(2*sizeof(double*));
  *r_im = malloc(2*sizeof(double*));
  *r_re0 = malloc(2*sizeof(double*));
  *r_im0 = malloc(2*sizeof(double*));


  for (i=0;i<2;i++) {

    (*s_re)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*s_re)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*s_im)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*s_im)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*r_re)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*r_re)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*r_im)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*r_im)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*r_re0)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*r_re0)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*r_im0)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*r_im0)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
  }
}