pbch_ue.c 19 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.1  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */

/*! \file PHY/LTE_TRANSPORT/pbch.c
* \brief Top-level routines for generating and decoding  the PBCH/BCH physical/transport channel V8.6 2009-03
* \author R. Knopp, F. Kaltenberger
* \date 2011
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr,florian.kaltenberger.fr
* \note
* \warning
*/
32 33 34
#include "PHY/defs_UE.h"
#include "PHY/CODING/coding_defs.h"
#include "PHY/CODING/coding_extern.h"
35
#include "PHY/CODING/lte_interleaver_inline.h"
36 37
#include "transport_ue.h"
#include "PHY/phy_extern_ue.h"
38
#include "PHY/sse_intrin.h"
39
#include "PHY/LTE_REFSIG/lte_refsig.h"
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

//#define DEBUG_PBCH 1
//#define DEBUG_PBCH_ENCODING
//#define INTERFERENCE_MITIGATION 1


#define PBCH_A 24

uint16_t pbch_extract(int **rxdataF,
                      int **dl_ch_estimates,
                      int **rxdataF_ext,
                      int **dl_ch_estimates_ext,
                      uint32_t symbol,
                      uint32_t high_speed_flag,
                      LTE_DL_FRAME_PARMS *frame_parms)
{


  uint16_t rb,nb_rb=6;
  uint8_t i,j,aarx,aatx;
  int *dl_ch0,*dl_ch0_ext,*rxF,*rxF_ext;

  uint32_t nsymb = (frame_parms->Ncp==0) ? 7:6;
  uint32_t symbol_mod = symbol % nsymb;

  int rx_offset = frame_parms->ofdm_symbol_size-3*12;
  int ch_offset = frame_parms->N_RB_DL*6-3*12;
  int nushiftmod3 = frame_parms->nushift%3;

  for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
    /*
    printf("extract_rbs (nushift %d): symbol_mod=%d, rx_offset=%d, ch_offset=%d\n",frame_parms->nushift,symbol_mod,
     (rx_offset + (symbol*(frame_parms->ofdm_symbol_size)))*2,
     LTE_CE_OFFSET+ch_offset+(symbol_mod*(frame_parms->ofdm_symbol_size)));
    */

    rxF        = &rxdataF[aarx][(rx_offset + (symbol*(frame_parms->ofdm_symbol_size)))];
    rxF_ext    = &rxdataF_ext[aarx][symbol_mod*(6*12)];

    for (rb=0; rb<nb_rb; rb++) {
      // skip DC carrier
      if (rb==3) {
        rxF       = &rxdataF[aarx][(1 + (symbol*(frame_parms->ofdm_symbol_size)))];
      }

      if ((symbol_mod==0) || (symbol_mod==1)) {
        j=0;

        for (i=0; i<12; i++) {
          if ((i!=nushiftmod3) &&
              (i!=(nushiftmod3+3)) &&
              (i!=(nushiftmod3+6)) &&
              (i!=(nushiftmod3+9))) {
            rxF_ext[j++]=rxF[i];
          }
        }

        rxF+=12;
        rxF_ext+=8;
      } else {
        for (i=0; i<12; i++) {
          rxF_ext[i]=rxF[i];
        }

        rxF+=12;
        rxF_ext+=12;
      }
    }

    for (aatx=0; aatx<4; aatx++) { //frame_parms->nb_antenna_ports_eNB;aatx++) {
      if (high_speed_flag == 1)
        dl_ch0     = &dl_ch_estimates[(aatx<<1)+aarx][LTE_CE_OFFSET+ch_offset+(symbol*(frame_parms->ofdm_symbol_size))];
      else
        dl_ch0     = &dl_ch_estimates[(aatx<<1)+aarx][LTE_CE_OFFSET+ch_offset];

      dl_ch0_ext = &dl_ch_estimates_ext[(aatx<<1)+aarx][symbol_mod*(6*12)];

      for (rb=0; rb<nb_rb; rb++) {
        // skip DC carrier
        // if (rb==3) dl_ch0++;
        if (symbol_mod>1) {
          memcpy(dl_ch0_ext,dl_ch0,12*sizeof(int));
          dl_ch0+=12;
          dl_ch0_ext+=12;
        } else {
          j=0;

          for (i=0; i<12; i++) {
            if ((i!=nushiftmod3) &&
                (i!=(nushiftmod3+3)) &&
                (i!=(nushiftmod3+6)) &&
                (i!=(nushiftmod3+9))) {
              //        printf("PBCH extract i %d j %d => (%d,%d)\n",i,j,*(short *)&dl_ch0[i],*(1+(short*)&dl_ch0[i]));
              dl_ch0_ext[j++]=dl_ch0[i];
            }
          }

          dl_ch0+=12;
          dl_ch0_ext+=8;
        }
      }
    }  //tx antenna loop

  }

  return(0);
}

//__m128i avg128;

//compute average channel_level on each (TX,RX) antenna pair
int pbch_channel_level(int **dl_ch_estimates_ext,
                       LTE_DL_FRAME_PARMS *frame_parms,
                       uint32_t symbol)
{

  int16_t rb, nb_rb=6;
  uint8_t aatx,aarx;

#if defined(__x86_64__) || defined(__i386__)
  __m128i avg128;
  __m128i *dl_ch128;
#elif defined(__arm__)
  int32x4_t avg128;
  int16x8_t *dl_ch128;
#endif
  int avg1=0,avg2=0;

  uint32_t nsymb = (frame_parms->Ncp==0) ? 7:6;
  uint32_t symbol_mod = symbol % nsymb;

  for (aatx=0; aatx<4; aatx++) //frame_parms->nb_antenna_ports_eNB;aatx++)
    for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
      //clear average level

#if defined(__x86_64__) || defined(__i386__)
      avg128 = _mm_setzero_si128();
      dl_ch128=(__m128i *)&dl_ch_estimates_ext[(aatx<<1)+aarx][symbol_mod*6*12];
#elif defined(__arm__)
      avg128 = vdupq_n_s32(0);
      dl_ch128=(int16x8_t *)&dl_ch_estimates_ext[(aatx<<1)+aarx][symbol_mod*6*12];

#endif
      for (rb=0; rb<nb_rb; rb++) {
#if defined(__x86_64__) || defined(__i386__)
        avg128 = _mm_add_epi32(avg128,_mm_madd_epi16(dl_ch128[0],dl_ch128[0]));
        avg128 = _mm_add_epi32(avg128,_mm_madd_epi16(dl_ch128[1],dl_ch128[1]));
        avg128 = _mm_add_epi32(avg128,_mm_madd_epi16(dl_ch128[2],dl_ch128[2]));
#elif defined(__arm__)
// to be filled in
#endif
        dl_ch128+=3;
        /*
          if (rb==0) {
          print_shorts("dl_ch128",&dl_ch128[0]);
          print_shorts("dl_ch128",&dl_ch128[1]);
          print_shorts("dl_ch128",&dl_ch128[2]);
          }
        */
      }

      avg1 = (((int*)&avg128)[0] +
              ((int*)&avg128)[1] +
              ((int*)&avg128)[2] +
              ((int*)&avg128)[3])/(nb_rb*12);

      if (avg1>avg2)
        avg2 = avg1;

      //msg("Channel level : %d, %d\n",avg1, avg2);
    }
#if defined(__x86_64__) || defined(__i386__)
  _mm_empty();
  _m_empty();
#endif
  return(avg2);

}

#if defined(__x86_64__) || defined(__i386__)
__m128i mmtmpP0,mmtmpP1,mmtmpP2,mmtmpP3;
#elif defined(__arm__)
int16x8_t mmtmpP0,mmtmpP1,mmtmpP2,mmtmpP3;
#endif
void pbch_channel_compensation(int **rxdataF_ext,
                               int **dl_ch_estimates_ext,
                               int **rxdataF_comp,
                               LTE_DL_FRAME_PARMS *frame_parms,
                               uint8_t symbol,
                               uint8_t output_shift)
{

  uint16_t rb,nb_rb=6;
  uint8_t aatx,aarx,symbol_mod;
#if defined(__x86_64__) || defined(__i386__)
  __m128i *dl_ch128,*rxdataF128,*rxdataF_comp128;
#elif defined(__arm__)

#endif
  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;

  for (aatx=0; aatx<4; aatx++) //frame_parms->nb_antenna_ports_eNB;aatx++)
    for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {

#if defined(__x86_64__) || defined(__i386__)
      dl_ch128          = (__m128i *)&dl_ch_estimates_ext[(aatx<<1)+aarx][symbol_mod*6*12];
      rxdataF128        = (__m128i *)&rxdataF_ext[aarx][symbol_mod*6*12];
      rxdataF_comp128   = (__m128i *)&rxdataF_comp[(aatx<<1)+aarx][symbol_mod*6*12];

#elif defined(__arm__)
// to be filled in
#endif

      for (rb=0; rb<nb_rb; rb++) {
        //printf("rb %d\n",rb);
#if defined(__x86_64__) || defined(__i386__)
        // multiply by conjugated channel
        mmtmpP0 = _mm_madd_epi16(dl_ch128[0],rxdataF128[0]);
        //  print_ints("re",&mmtmpP0);
        // mmtmpP0 contains real part of 4 consecutive outputs (32-bit)
        mmtmpP1 = _mm_shufflelo_epi16(dl_ch128[0],_MM_SHUFFLE(2,3,0,1));
        mmtmpP1 = _mm_shufflehi_epi16(mmtmpP1,_MM_SHUFFLE(2,3,0,1));
        mmtmpP1 = _mm_sign_epi16(mmtmpP1,*(__m128i*)&conjugate[0]);
        //  print_ints("im",&mmtmpP1);
        mmtmpP1 = _mm_madd_epi16(mmtmpP1,rxdataF128[0]);
        // mmtmpP1 contains imag part of 4 consecutive outputs (32-bit)
        mmtmpP0 = _mm_srai_epi32(mmtmpP0,output_shift);
        //  print_ints("re(shift)",&mmtmpP0);
        mmtmpP1 = _mm_srai_epi32(mmtmpP1,output_shift);
        //  print_ints("im(shift)",&mmtmpP1);
        mmtmpP2 = _mm_unpacklo_epi32(mmtmpP0,mmtmpP1);
        mmtmpP3 = _mm_unpackhi_epi32(mmtmpP0,mmtmpP1);
        //      print_ints("c0",&mmtmpP2);
        //  print_ints("c1",&mmtmpP3);
        rxdataF_comp128[0] = _mm_packs_epi32(mmtmpP2,mmtmpP3);
        //  print_shorts("rx:",rxdataF128);
        //  print_shorts("ch:",dl_ch128);
        //  print_shorts("pack:",rxdataF_comp128);

        // multiply by conjugated channel
        mmtmpP0 = _mm_madd_epi16(dl_ch128[1],rxdataF128[1]);
        // mmtmpP0 contains real part of 4 consecutive outputs (32-bit)
        mmtmpP1 = _mm_shufflelo_epi16(dl_ch128[1],_MM_SHUFFLE(2,3,0,1));
        mmtmpP1 = _mm_shufflehi_epi16(mmtmpP1,_MM_SHUFFLE(2,3,0,1));
        mmtmpP1 = _mm_sign_epi16(mmtmpP1,*(__m128i*)&conjugate[0]);
        mmtmpP1 = _mm_madd_epi16(mmtmpP1,rxdataF128[1]);
        // mmtmpP1 contains imag part of 4 consecutive outputs (32-bit)
        mmtmpP0 = _mm_srai_epi32(mmtmpP0,output_shift);
        mmtmpP1 = _mm_srai_epi32(mmtmpP1,output_shift);
        mmtmpP2 = _mm_unpacklo_epi32(mmtmpP0,mmtmpP1);
        mmtmpP3 = _mm_unpackhi_epi32(mmtmpP0,mmtmpP1);
        rxdataF_comp128[1] = _mm_packs_epi32(mmtmpP2,mmtmpP3);
        //  print_shorts("rx:",rxdataF128+1);
        //  print_shorts("ch:",dl_ch128+1);
        //  print_shorts("pack:",rxdataF_comp128+1);

        if (symbol_mod>1) {
          // multiply by conjugated channel
          mmtmpP0 = _mm_madd_epi16(dl_ch128[2],rxdataF128[2]);
          // mmtmpP0 contains real part of 4 consecutive outputs (32-bit)
          mmtmpP1 = _mm_shufflelo_epi16(dl_ch128[2],_MM_SHUFFLE(2,3,0,1));
          mmtmpP1 = _mm_shufflehi_epi16(mmtmpP1,_MM_SHUFFLE(2,3,0,1));
          mmtmpP1 = _mm_sign_epi16(mmtmpP1,*(__m128i*)&conjugate[0]);
          mmtmpP1 = _mm_madd_epi16(mmtmpP1,rxdataF128[2]);
          // mmtmpP1 contains imag part of 4 consecutive outputs (32-bit)
          mmtmpP0 = _mm_srai_epi32(mmtmpP0,output_shift);
          mmtmpP1 = _mm_srai_epi32(mmtmpP1,output_shift);
          mmtmpP2 = _mm_unpacklo_epi32(mmtmpP0,mmtmpP1);
          mmtmpP3 = _mm_unpackhi_epi32(mmtmpP0,mmtmpP1);
          rxdataF_comp128[2] = _mm_packs_epi32(mmtmpP2,mmtmpP3);
          //  print_shorts("rx:",rxdataF128+2);
          //  print_shorts("ch:",dl_ch128+2);
          //      print_shorts("pack:",rxdataF_comp128+2);

          dl_ch128+=3;
          rxdataF128+=3;
          rxdataF_comp128+=3;
        } else {
          dl_ch128+=2;
          rxdataF128+=2;
          rxdataF_comp128+=2;
        }
#elif defined(__arm__)
// to be filled in
#endif
      }
    }
#if defined(__x86_64__) || defined(__i386__)
  _mm_empty();
  _m_empty();
#endif
}

void pbch_detection_mrc(LTE_DL_FRAME_PARMS *frame_parms,
                        int **rxdataF_comp,
                        uint8_t symbol)
{

  uint8_t aatx, symbol_mod;
  int i, nb_rb=6;
#if defined(__x86_64__) || defined(__i386__)
  __m128i *rxdataF_comp128_0,*rxdataF_comp128_1;
#elif defined(__arm__)
  int16x8_t *rxdataF_comp128_0,*rxdataF_comp128_1;
#endif
  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;

  if (frame_parms->nb_antennas_rx>1) {
    for (aatx=0; aatx<4; aatx++) { //frame_parms->nb_antenna_ports_eNB;aatx++) {
#if defined(__x86_64__) || defined(__i386__)
      rxdataF_comp128_0   = (__m128i *)&rxdataF_comp[(aatx<<1)][symbol_mod*6*12];
      rxdataF_comp128_1   = (__m128i *)&rxdataF_comp[(aatx<<1)+1][symbol_mod*6*12];
#elif defined(__arm__)
      rxdataF_comp128_0   = (int16x8_t *)&rxdataF_comp[(aatx<<1)][symbol_mod*6*12];
      rxdataF_comp128_1   = (int16x8_t *)&rxdataF_comp[(aatx<<1)+1][symbol_mod*6*12];

#endif
      // MRC on each re of rb, both on MF output and magnitude (for 16QAM/64QAM llr computation)
      for (i=0; i<nb_rb*3; i++) {
#if defined(__x86_64__) || defined(__i386__)
        rxdataF_comp128_0[i] = _mm_adds_epi16(_mm_srai_epi16(rxdataF_comp128_0[i],1),_mm_srai_epi16(rxdataF_comp128_1[i],1));
#elif defined(__arm__)
        rxdataF_comp128_0[i] = vhaddq_s16(rxdataF_comp128_0[i],rxdataF_comp128_1[i]);

#endif
      }
    }
  }
#if defined(__x86_64__) || defined(__i386__)
  _mm_empty();
  _m_empty();
#endif
}

void pbch_unscrambling(LTE_DL_FRAME_PARMS *frame_parms,
                       int8_t* llr,
                       uint32_t length,
                       uint8_t frame_mod4)
{
  int i;
  uint8_t reset;
  uint32_t x1, x2, s=0;

  reset = 1;
  // x1 is set in first call to lte_gold_generic
  x2 = frame_parms->Nid_cell; //this is c_init in 36.211 Sec 6.6.1
  //  msg("pbch_unscrambling: Nid_cell = %d\n",x2);

  for (i=0; i<length; i++) {
    if (i%32==0) {
      s = lte_gold_generic(&x1, &x2, reset);
      //      printf("lte_gold[%d]=%x\n",i,s);
      reset = 0;
    }

    // take the quarter of the PBCH that corresponds to this frame
    if ((i>=(frame_mod4*(length>>2))) && (i<((1+frame_mod4)*(length>>2)))) {

      if (((s>>(i%32))&1)==0)
        llr[i] = -llr[i];
    }
  }
}

void pbch_alamouti(LTE_DL_FRAME_PARMS *frame_parms,
                   int **rxdataF_comp,
                   uint8_t symbol)
{


  int16_t *rxF0,*rxF1;
  //  __m128i *ch_mag0,*ch_mag1,*ch_mag0b,*ch_mag1b;
  uint8_t rb,re,symbol_mod;
  int jj;

  //  printf("Doing alamouti\n");
  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;
  jj         = (symbol_mod*6*12);

  rxF0     = (int16_t*)&rxdataF_comp[0][jj];  //tx antenna 0  h0*y
  rxF1     = (int16_t*)&rxdataF_comp[2][jj];  //tx antenna 1  h1*y

  for (rb=0; rb<6; rb++) {

    for (re=0; re<12; re+=2) {

      // Alamouti RX combining

      rxF0[0] = rxF0[0] + rxF1[2];
      rxF0[1] = rxF0[1] - rxF1[3];

      rxF0[2] = rxF0[2] - rxF1[0];
      rxF0[3] = rxF0[3] + rxF1[1];

      rxF0+=4;
      rxF1+=4;
    }

  }

}

void pbch_quantize(int8_t *pbch_llr8,
                   int16_t *pbch_llr,
                   uint16_t len)
{

  uint16_t i;

  for (i=0; i<len; i++) {
    if (pbch_llr[i]>7)
      pbch_llr8[i]=7;
    else if (pbch_llr[i]<-8)
      pbch_llr8[i]=-8;
    else
      pbch_llr8[i] = (char)(pbch_llr[i]);

  }
}

static unsigned char dummy_w_rx[3*3*(16+PBCH_A)];
static int8_t pbch_w_rx[3*3*(16+PBCH_A)],pbch_d_rx[96+(3*(16+PBCH_A))];


uint16_t rx_pbch(LTE_UE_COMMON *lte_ue_common_vars,
                 LTE_UE_PBCH *lte_ue_pbch_vars,
                 LTE_DL_FRAME_PARMS *frame_parms,
                 uint8_t eNB_id,
                 MIMO_mode_t mimo_mode,
                 uint32_t high_speed_flag,
                 uint8_t frame_mod4)
{

  uint8_t log2_maxh;//,aatx,aarx;
  int max_h=0;

  int symbol,i;
  uint32_t nsymb = (frame_parms->Ncp==0) ? 14:12;
  uint16_t  pbch_E;
  uint8_t pbch_a[8];
  uint8_t RCC;

  int8_t *pbch_e_rx;
  uint8_t *decoded_output = lte_ue_pbch_vars->decoded_output;
  uint16_t crc;


  //  pbch_D    = 16+PBCH_A;

  pbch_E  = (frame_parms->Ncp==0) ? 1920 : 1728; //RE/RB * #RB * bits/RB (QPSK)
  pbch_e_rx = &lte_ue_pbch_vars->llr[frame_mod4*(pbch_E>>2)];
#ifdef DEBUG_PBCH
  LOG_D(PHY,"[PBCH] starting symbol loop (Ncp %d, frame_mod4 %d,mimo_mode %d\n",frame_parms->Ncp,frame_mod4,mimo_mode);
#endif

  // clear LLR buffer
  memset(lte_ue_pbch_vars->llr,0,pbch_E);

  for (symbol=(nsymb>>1); symbol<(nsymb>>1)+4; symbol++) {

#ifdef DEBUG_PBCH
    LOG_D(PHY,"[PBCH] starting extract\n");
#endif
    pbch_extract(lte_ue_common_vars->common_vars_rx_data_per_thread[0].rxdataF,
                 lte_ue_common_vars->common_vars_rx_data_per_thread[0].dl_ch_estimates[eNB_id],
                 lte_ue_pbch_vars->rxdataF_ext,
                 lte_ue_pbch_vars->dl_ch_estimates_ext,
                 symbol,
                 high_speed_flag,
                 frame_parms);
#ifdef DEBUG_PBCH
    LOG_D(PHY,"[PHY] PBCH Symbol %d\n",symbol);
    LOG_D(PHY,"[PHY] PBCH starting channel_level\n");
#endif

    max_h = pbch_channel_level(lte_ue_pbch_vars->dl_ch_estimates_ext,
                               frame_parms,
                               symbol);
    log2_maxh = 3+(log2_approx(max_h)/2);

#ifdef DEBUG_PBCH
    LOG_D(PHY,"[PHY] PBCH log2_maxh = %d (%d)\n",log2_maxh,max_h);
#endif

    pbch_channel_compensation(lte_ue_pbch_vars->rxdataF_ext,
                              lte_ue_pbch_vars->dl_ch_estimates_ext,
                              lte_ue_pbch_vars->rxdataF_comp,
                              frame_parms,
                              symbol,
                              log2_maxh); // log2_maxh+I0_shift

    if (frame_parms->nb_antennas_rx > 1)
      pbch_detection_mrc(frame_parms,
                         lte_ue_pbch_vars->rxdataF_comp,
                         symbol);


    if (mimo_mode == ALAMOUTI) {
      pbch_alamouti(frame_parms,lte_ue_pbch_vars->rxdataF_comp,symbol);
    } else if (mimo_mode != SISO) {
      LOG_D(PHY,"[PBCH][RX] Unsupported MIMO mode\n");
      return(-1);
    }

    if (symbol>(nsymb>>1)+1) {
      pbch_quantize(pbch_e_rx,
                    (short*)&(lte_ue_pbch_vars->rxdataF_comp[0][(symbol%(nsymb>>1))*72]),
                    144);

      pbch_e_rx+=144;
    } else {
      pbch_quantize(pbch_e_rx,
                    (short*)&(lte_ue_pbch_vars->rxdataF_comp[0][(symbol%(nsymb>>1))*72]),
                    96);

      pbch_e_rx+=96;
    }


  }

  pbch_e_rx = lte_ue_pbch_vars->llr;



  //un-scrambling
#ifdef DEBUG_PBCH
  LOG_D(PHY,"[PBCH] doing unscrambling\n");
#endif


  pbch_unscrambling(frame_parms,
                    pbch_e_rx,
                    pbch_E,
                    frame_mod4);



  //un-rate matching
#ifdef DEBUG_PBCH
  LOG_D(PHY,"[PBCH] doing un-rate-matching\n");
#endif


  memset(dummy_w_rx,0,3*3*(16+PBCH_A));
  RCC = generate_dummy_w_cc(16+PBCH_A,
                            dummy_w_rx);


  lte_rate_matching_cc_rx(RCC,pbch_E,pbch_w_rx,dummy_w_rx,pbch_e_rx);

  sub_block_deinterleaving_cc((unsigned int)(PBCH_A+16),
                              &pbch_d_rx[96],
                              &pbch_w_rx[0]);

  memset(pbch_a,0,((16+PBCH_A)>>3));




  phy_viterbi_lte_sse2(pbch_d_rx+96,pbch_a,16+PBCH_A);

  // Fix byte endian of PBCH (bit 23 goes in first)
  for (i=0; i<(PBCH_A>>3); i++)
    decoded_output[(PBCH_A>>3)-i-1] = pbch_a[i];

#ifdef DEBUG_PBCH

  for (i=0; i<(PBCH_A>>3); i++)
    LOG_I(PHY,"[PBCH] pbch_a[%d] = %x\n",i,decoded_output[i]);

#endif //DEBUG_PBCH

#ifdef DEBUG_PBCH
  LOG_I(PHY,"PBCH CRC %x : %x\n",
      crc16(pbch_a,PBCH_A),
      ((uint16_t)pbch_a[PBCH_A>>3]<<8)+pbch_a[(PBCH_A>>3)+1]);
#endif

  crc = (crc16(pbch_a,PBCH_A)>>16) ^
        (((uint16_t)pbch_a[PBCH_A>>3]<<8)+pbch_a[(PBCH_A>>3)+1]);

  if (crc == 0x0000)
    return(1);
  else if (crc == 0xffff)
    return(2);
  else if (crc == 0x5555)
    return(4);
  else
    return(-1);


}