[GITLAB] - UPGRADE TO v12 on Wednesday the 18th of December at 11.30AM

random_channel.c 37.2 KB
Newer Older
ghaddab's avatar
ghaddab committed
1
/*******************************************************************************
2
    OpenAirInterface
ghaddab's avatar
ghaddab committed
3 4 5 6 7 8 9 10 11 12 13 14 15 16
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
17 18
    along with OpenAirInterface.The full GNU General Public License is
   included in this distribution in the file called "COPYING". If not,
ghaddab's avatar
ghaddab committed
19 20 21 22 23
   see <http://www.gnu.org/licenses/>.

  Contact Information
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
24
  OpenAirInterface Dev  : openair4g-devel@lists.eurecom.fr
25

ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
ghaddab's avatar
ghaddab committed
27 28

 *******************************************************************************/
29 30 31 32 33 34 35 36 37 38 39 40 41
#include <math.h>
#include <cblas.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>


#include "PHY/TOOLS/defs.h"
#include "defs.h"
#include "scm_corrmat.h"
#include "UTIL/LOG/log.h"
//#define DEBUG_CH

42
void fill_channel_desc(channel_desc_t *chan_desc,
43 44 45 46 47 48 49 50
                       uint8_t nb_tx,
                       uint8_t nb_rx,
                       uint8_t nb_taps,
                       uint8_t channel_length,
                       double *amps,
                       double *delays,
                       struct complex** R_sqrt,
                       double Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
51 52
                       double sampling_rate,
		       double channel_bandwidth,
53 54 55 56 57 58 59 60 61
                       double ricean_factor,
                       double aoa,
                       double forgetting_factor,
                       double max_Doppler,
                       int32_t channel_offset,
                       double path_loss_dB,
                       uint8_t random_aoa)
{

62
  uint16_t i,j;
63 64 65
  double delta_tau;

  LOG_I(OCM,"[CHANNEL] Getting new channel descriptor, nb_tx %d, nb_rx %d, nb_taps %d, channel_length %d\n",
66
        nb_tx,nb_rx,nb_taps,channel_length);
67 68 69 70 71 72 73

  chan_desc->nb_tx          = nb_tx;
  chan_desc->nb_rx          = nb_rx;
  chan_desc->nb_taps        = nb_taps;
  chan_desc->channel_length = channel_length;
  chan_desc->amps           = amps;
  LOG_D(OCM,"[CHANNEL] Doing delays ...\n");
74

75 76 77
  if (delays==NULL) {
    chan_desc->delays = (double*) malloc(nb_taps*sizeof(double));
    delta_tau = Td/nb_taps;
78

79 80
    for (i=0; i<nb_taps; i++)
      chan_desc->delays[i] = ((double)i)*delta_tau;
81
  } else
82 83 84
    chan_desc->delays         = delays;

  chan_desc->Td             = Td;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
85 86
  chan_desc->sampling_rate             = sampling_rate;
  chan_desc->channel_bandwidth         = channel_bandwidth;
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
  chan_desc->ricean_factor  = ricean_factor;
  chan_desc->aoa            = aoa;
  chan_desc->random_aoa  = random_aoa;
  chan_desc->forgetting_factor = forgetting_factor;
  chan_desc->channel_offset = channel_offset;
  chan_desc->path_loss_dB   = path_loss_dB;
  chan_desc->first_run      = 1;
  chan_desc->ip             = 0.0;
  chan_desc->max_Doppler    = max_Doppler;
  chan_desc->ch             = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
  chan_desc->chF            = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
  chan_desc->a              = (struct complex**) malloc(nb_taps*sizeof(struct complex*));

  LOG_D(OCM,"[CHANNEL] Filling ch \n");

102 103
  for (i = 0; i<nb_tx*nb_rx; i++)
    chan_desc->ch[i] = (struct complex*) malloc(channel_length * sizeof(struct complex));
104

105
  for (i = 0; i<nb_tx*nb_rx; i++)
106 107 108
    chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));  // allocate for up to 100 RBs, 12 samples per RB

  LOG_D(OCM,"[CHANNEL] Filling a (nb_taps %d)\n",nb_taps);
109

110 111 112 113 114 115
  for (i = 0; i<nb_taps; i++) {
    LOG_D(OCM,"tap %d (%p,%d)\n",i,&chan_desc->a[i],nb_tx*nb_rx * sizeof(struct complex));
    chan_desc->a[i]         = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));
  }

  LOG_D(OCM,"[CHANNEL] Doing R_sqrt ...\n");
116

117
  if (R_sqrt == NULL) {
118 119
    chan_desc->R_sqrt         = (struct complex**) calloc(nb_taps,sizeof(struct complex*));

120
    for (i = 0; i<nb_taps; i++) {
121 122
      chan_desc->R_sqrt[i]    = (struct complex*) calloc(nb_tx*nb_rx*nb_tx*nb_rx,sizeof(struct complex));

123
      for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
124 125
        chan_desc->R_sqrt[i][j].x = 1.0;
        chan_desc->R_sqrt[i][j].y = 0.0;
126 127
      }
    }
128
  } else {
129 130 131 132 133 134 135 136 137 138
    chan_desc->R_sqrt = R_sqrt;
  }

  for (i = 0; i<nb_taps; i++) {
    for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
      LOG_D(OCM,"Rsqrt[%d][%d] %f %f\n",i,j,chan_desc->R_sqrt[i][j].x,chan_desc->R_sqrt[i][j].y);
    }
  }

  LOG_D(OCM,"[CHANNEL] RF %f\n",chan_desc->ricean_factor);
139 140

  for (i=0; i<chan_desc->nb_taps; i++)
141 142 143 144
    LOG_D(OCM,"[CHANNEL] tap %d: amp %f, delay %f\n",i,chan_desc->amps[i],chan_desc->delays[i]);

  chan_desc->nb_paths=10;

145 146 147 148 149
  reset_meas(&chan_desc->random_channel);
  reset_meas(&chan_desc->interp_time);
  reset_meas(&chan_desc->interp_freq);
  reset_meas(&chan_desc->convolution);

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
}

double mbsfn_delays[] = {0,.03,.15,.31,.37,1.09,12.490,12.52,12.64,12.80,12.86,13.58,27.49,27.52,27.64,27.80,27.86,28.58};
double mbsfn_amps_dB[] = {0,-1.5,-1.4,-3.6,-0.6,-7.0,-10,-11.5,-11.4,-13.6,-10.6,-17.0,-20,-21.5,-21.4,-23.6,-20.6,-27};

double scm_c_delays[] = {0, 0.0125, 0.0250, 0.3625, 0.3750, 0.3875, 0.2500, 0.2625, 0.2750, 1.0375, 1.0500, 1.0625, 2.7250, 2.7375, 2.7500, 4.6000, 4.6125, 4.6250};
double scm_c_amps_dB[] = {0.00, -2.22, -3.98, -1.86, -4.08, -5.84, -1.08, -3.30, -5.06, -9.08, -11.30, -13.06, -15.14, -17.36, -19.12, -20.64, -22.85, -24.62};

double epa_delays[] = { 0,.03,.07,.09,.11,.19,.41};
double epa_amps_dB[] = {0.0,-1.0,-2.0,-3.0,-8.0,-17.2,-20.8};

double eva_delays[] = { 0,.03,.15,.31,.37,.71,1.09,1.73,2.51};
double eva_amps_dB[] = {0.0,-1.5,-1.4,-3.6,-0.6,-9.1,-7.0,-12.0,-16.9};

double etu_delays[] = { 0,.05,.12,.2,.23,.5,1.6,2.3,5.0};
double etu_amps_dB[] = {-1.0,-1.0,-1.0,0.0,0.0,0.0,-3.0,-5.0,-7.0};

double default_amps_lin[] = {0.3868472 , 0.3094778 , 0.1547389 , 0.0773694 , 0.0386847 , 0.0193424 , 0.0096712 , 0.0038685};
double default_amp_lin[] = {1};

170 171 172 173 174 175
//correlation matrix for a 2x2 channel with full Tx correlation
struct complex R_sqrt_22_corr_tap[16] = {{0.70711,0}, {0.0, 0.0}, {0.70711,0}, {0.0, 0.0},
  {0.0, 0.0}, {0.70711,0}, {0.0, 0.0}, {0.70711,0},
  {0.70711,0}, {0.0, 0.0}, {0.70711,0}, {0.0, 0.0},
  {0.0, 0.0}, {0.70711,0}, {0.0, 0.0}, {0.70711,0}
};
176 177 178
struct complex *R_sqrt_22_corr[1]     = {R_sqrt_22_corr_tap};

//correlation matrix for a fully correlated 2x1 channel (h1==h2)
179
struct complex R_sqrt_21_corr_tap[4]  = {{0.70711,0}, {0.70711,0}, {0.70711,0}, {0.70711,0}};
180 181
struct complex *R_sqrt_21_corr[1]      = {R_sqrt_21_corr_tap};

182 183 184 185 186 187
//correlation matrix for a 2x2 channel with full Tx anti-correlation
struct complex R_sqrt_22_anticorr_tap[16] = {{0.70711,0}, {0.0, 0.0}, {-0.70711,0}, {0.0, 0.0},
  {0.0, 0.0}, {0.70711,0}, {0.0, 0.0}, {-0.70711,0},
  {-0.70711,0}, {0.0, 0.0}, {0.70711,0}, {0.0, 0.0},
  {0.0, 0.0}, {-0.70711,0}, {0.0, 0.0}, {0.70711,0}
};
188 189 190
struct complex *R_sqrt_22_anticorr[1]     = {R_sqrt_22_anticorr_tap};

//correlation matrix for a fully anti-correlated 2x1 channel (h1==-h2)
191
struct complex R_sqrt_21_anticorr_tap[4]  = {{0.70711,0}, {-0.70711,0}, {-0.70711,0}, {0.70711,0}};
192 193 194 195 196
struct complex *R_sqrt_21_anticorr[1]     = {R_sqrt_21_anticorr_tap};

struct complex **R_sqrt_ptr2;


197 198 199
channel_desc_t *new_channel_desc_scm(uint8_t nb_tx,
                                     uint8_t nb_rx,
                                     SCM_t channel_model,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
200 201
                                     double sampling_rate,
				     double channel_bandwidth,
202 203 204 205
                                     double forgetting_factor,
                                     int32_t channel_offset,
                                     double path_loss_dB)
{
206 207

  channel_desc_t *chan_desc = (channel_desc_t *)malloc(sizeof(channel_desc_t));
208
  uint16_t i,j;
209 210 211 212 213 214
  double sum_amps;
  double aoa,ricean_factor,Td,maxDoppler;
  int channel_length,nb_taps;

  chan_desc->nb_tx          = nb_tx;
  chan_desc->nb_rx          = nb_rx;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
215 216
  chan_desc->sampling_rate             = sampling_rate;
  chan_desc->channel_bandwidth         = channel_bandwidth;
217 218 219 220 221 222 223 224 225 226 227 228 229
  chan_desc->forgetting_factor = forgetting_factor;
  chan_desc->channel_offset = channel_offset;
  chan_desc->path_loss_dB   = path_loss_dB;
  chan_desc->first_run      = 1;
  chan_desc->ip             = 0.0;

  LOG_I(OCM,"Channel Model (inside of new_channel_desc_scm)=%d\n\n", channel_model);

  switch (channel_model) {
  case SCM_A:
    LOG_W(OCM,"channel model not yet supported\n");
    free(chan_desc);
    return(NULL);
230

231 232 233 234
  case SCM_B:
    LOG_W(OCM,"channel model not yet supported\n");
    free(chan_desc);
    return(NULL);
235

236 237 238
  case SCM_C:
    chan_desc->nb_taps        = 18;
    chan_desc->Td             = 4.625;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
239
    chan_desc->channel_length = (int) (2*chan_desc->sampling_rate*chan_desc->Td + 1 + 2/(M_PI*M_PI)*log(4*M_PI*chan_desc->sampling_rate*chan_desc->Td));
240 241
    sum_amps = 0;
    chan_desc->amps           = (double*) malloc(chan_desc->nb_taps*sizeof(double));
242

243
    for (i = 0; i<chan_desc->nb_taps; i++) {
244
      chan_desc->amps[i]      = pow(10,.1*scm_c_amps_dB[i]);
245 246
      sum_amps += chan_desc->amps[i];
    }
247

248 249
    for (i = 0; i<chan_desc->nb_taps; i++)
      chan_desc->amps[i] /= sum_amps;
250

251 252 253 254 255 256 257
    chan_desc->delays         = scm_c_delays;
    chan_desc->ricean_factor  = 1;
    chan_desc->aoa            = 0;
    chan_desc->random_aoa     = 0;
    chan_desc->ch             = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->chF            = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->a              = (struct complex**) malloc(chan_desc->nb_taps*sizeof(struct complex*));
258 259 260 261 262 263 264 265

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));

    for (i = 0; i<chan_desc->nb_taps; i++)
266 267 268
      chan_desc->a[i]         = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));

    chan_desc->R_sqrt  = (struct complex**) malloc(6*sizeof(struct complex**));
269

270
    if (nb_tx==2 && nb_rx==2) {
271 272 273 274 275 276 277 278 279
      for (i = 0; i<6; i++)
        chan_desc->R_sqrt[i] = (struct complex*) &R22_sqrt[i][0];
    } else if (nb_tx==2 && nb_rx==1) {
      for (i = 0; i<6; i++)
        chan_desc->R_sqrt[i] = (struct complex*) &R21_sqrt[i][0];
    } else if (nb_tx==1 && nb_rx==2) {
      for (i = 0; i<6; i++)
        chan_desc->R_sqrt[i] = (struct complex*) &R12_sqrt[i][0];
    } else {
280
      for (i = 0; i<6; i++) {
281 282 283 284 285 286 287 288
        chan_desc->R_sqrt[i]    = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));

        for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
          chan_desc->R_sqrt[i][j].x = 1.0;
          chan_desc->R_sqrt[i][j].y = 0.0;
        }

        LOG_W(OCM,"correlation matrix not implemented for nb_tx==%d and nb_rx==%d, using identity\n", nb_tx, nb_rx);
289 290
      }
    }
291

292
    break;
293

294
  case SCM_D:
295 296 297
    LOG_W(OCM,"This is not the real SCM-D model! It is just SCM-C with an additional Rice factor!\n");
    chan_desc->nb_taps        = 18;
    chan_desc->Td             = 4.625;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
298
    chan_desc->channel_length = (int) (2*chan_desc->sampling_rate*chan_desc->Td + 1 + 2/(M_PI*M_PI)*log(4*M_PI*chan_desc->sampling_rate*chan_desc->Td));
299 300
    sum_amps = 0;
    chan_desc->amps           = (double*) malloc(chan_desc->nb_taps*sizeof(double));
301

302
    for (i = 0; i<chan_desc->nb_taps; i++) {
303
      chan_desc->amps[i]      = pow(10,.1*scm_c_amps_dB[i]);
304 305
      sum_amps += chan_desc->amps[i];
    }
306

307 308
    for (i = 0; i<chan_desc->nb_taps; i++)
      chan_desc->amps[i] /= sum_amps;
309

310 311 312 313 314 315 316
    chan_desc->delays         = scm_c_delays;
    chan_desc->ricean_factor  = 0.1;
    chan_desc->aoa            = 0;
    chan_desc->random_aoa     = 0;
    chan_desc->ch             = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->chF            = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->a              = (struct complex**) malloc(chan_desc->nb_taps*sizeof(struct complex*));
317 318 319 320 321 322 323 324

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));

    for (i = 0; i<chan_desc->nb_taps; i++)
325 326 327
      chan_desc->a[i]         = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));

    chan_desc->R_sqrt  = (struct complex**) malloc(6*sizeof(struct complex**));
328

329
    if (nb_tx==2 && nb_rx==2) {
330 331 332 333 334 335 336 337 338
      for (i = 0; i<6; i++)
        chan_desc->R_sqrt[i] = (struct complex*) &R22_sqrt[i][0];
    } else if (nb_tx==2 && nb_rx==1) {
      for (i = 0; i<6; i++)
        chan_desc->R_sqrt[i] = (struct complex*) &R21_sqrt[i][0];
    } else if (nb_tx==1 && nb_rx==2) {
      for (i = 0; i<6; i++)
        chan_desc->R_sqrt[i] = (struct complex*) &R12_sqrt[i][0];
    } else {
339
      for (i = 0; i<6; i++) {
340 341 342 343 344 345 346 347
        chan_desc->R_sqrt[i]    = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));

        for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
          chan_desc->R_sqrt[i][j].x = 1.0;
          chan_desc->R_sqrt[i][j].y = 0.0;
        }

        LOG_W(OCM,"correlation matrix not implemented for nb_tx==%d and nb_rx==%d, using identity\n", nb_tx, nb_rx);
348 349
      }
    }
350

351
    break;
352

353 354 355
  case EPA:
    chan_desc->nb_taps        = 7;
    chan_desc->Td             = .410;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
356
    chan_desc->channel_length = (int) (2*chan_desc->sampling_rate*chan_desc->Td + 1 + 2/(M_PI*M_PI)*log(4*M_PI*chan_desc->sampling_rate*chan_desc->Td));
357 358
    sum_amps = 0;
    chan_desc->amps           = (double*) malloc(chan_desc->nb_taps*sizeof(double));
359

360
    for (i = 0; i<chan_desc->nb_taps; i++) {
361
      chan_desc->amps[i]      = pow(10,.1*epa_amps_dB[i]);
362 363
      sum_amps += chan_desc->amps[i];
    }
364

365 366
    for (i = 0; i<chan_desc->nb_taps; i++)
      chan_desc->amps[i] /= sum_amps;
367

368 369 370 371 372 373 374
    chan_desc->delays         = epa_delays;
    chan_desc->ricean_factor  = 1;
    chan_desc->aoa            = 0;
    chan_desc->random_aoa     = 0;
    chan_desc->ch             = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->chF            = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->a              = (struct complex**) malloc(chan_desc->nb_taps*sizeof(struct complex*));
375 376 377 378 379 380 381 382

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));

    for (i = 0; i<chan_desc->nb_taps; i++)
383
      chan_desc->a[i]         = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));
384

385 386
    if (nb_tx==2 && nb_rx==2) {
      chan_desc->R_sqrt  = (struct complex**) malloc(6*sizeof(struct complex**));
387 388 389 390

      for (i = 0; i<6; i++)
        chan_desc->R_sqrt[i] = (struct complex*) &R22_sqrt[i][0];
    } else {
391
      chan_desc->R_sqrt         = (struct complex**) malloc(6*sizeof(struct complex**));
392

393
      for (i = 0; i<6; i++) {
394 395 396 397 398 399 400 401
        chan_desc->R_sqrt[i]    = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));

        for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
          chan_desc->R_sqrt[i][j].x = 1.0;
          chan_desc->R_sqrt[i][j].y = 0.0;
        }

        LOG_W(OCM,"correlation matrix only implemented for nb_tx==2 and nb_rx==2, using identity\n");
402 403
      }
    }
404

405
    break;
406

407 408 409
  case EVA:
    chan_desc->nb_taps        = 9;
    chan_desc->Td             = 2.51;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
410
    chan_desc->channel_length = (int) (2*chan_desc->sampling_rate*chan_desc->Td + 1 + 2/(M_PI*M_PI)*log(4*M_PI*chan_desc->sampling_rate*chan_desc->Td));
411 412
    sum_amps = 0;
    chan_desc->amps           = (double*) malloc(chan_desc->nb_taps*sizeof(double));
413

414
    for (i = 0; i<chan_desc->nb_taps; i++) {
415
      chan_desc->amps[i]      = pow(10,.1*eva_amps_dB[i]);
416 417
      sum_amps += chan_desc->amps[i];
    }
418

419 420
    for (i = 0; i<chan_desc->nb_taps; i++)
      chan_desc->amps[i] /= sum_amps;
421

422 423 424 425 426 427 428
    chan_desc->delays         = eva_delays;
    chan_desc->ricean_factor  = 1;
    chan_desc->aoa            = 0;
    chan_desc->random_aoa     = 0;
    chan_desc->ch             = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->chF            = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->a              = (struct complex**) malloc(chan_desc->nb_taps*sizeof(struct complex*));
429 430 431 432 433 434 435 436

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));

    for (i = 0; i<chan_desc->nb_taps; i++)
437
      chan_desc->a[i]         = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));
438

439 440
    if (nb_tx==2 && nb_rx==2) {
      chan_desc->R_sqrt  = (struct complex**) malloc(6*sizeof(struct complex**));
441 442 443 444

      for (i = 0; i<6; i++)
        chan_desc->R_sqrt[i] = (struct complex*) &R22_sqrt[i][0];
    } else {
445
      chan_desc->R_sqrt         = (struct complex**) malloc(6*sizeof(struct complex**));
446

447
      for (i = 0; i<6; i++) {
448 449 450 451 452 453 454 455
        chan_desc->R_sqrt[i]    = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));

        for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
          chan_desc->R_sqrt[i][j].x = 1.0;
          chan_desc->R_sqrt[i][j].y = 0.0;
        }

        LOG_W(OCM,"correlation matrix only implemented for nb_tx==2 and nb_rx==2, using identity\n");
456 457
      }
    }
458

459
    break;
460

461 462 463
  case ETU:
    chan_desc->nb_taps        = 9;
    chan_desc->Td             = 5.0;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
464
    chan_desc->channel_length = (int) (2*chan_desc->sampling_rate*chan_desc->Td + 1 + 2/(M_PI*M_PI)*log(4*M_PI*chan_desc->sampling_rate*chan_desc->Td));
465 466
    sum_amps = 0;
    chan_desc->amps           = (double*) malloc(chan_desc->nb_taps*sizeof(double));
467

468
    for (i = 0; i<chan_desc->nb_taps; i++) {
469
      chan_desc->amps[i]      = pow(10,.1*etu_amps_dB[i]);
470 471
      sum_amps += chan_desc->amps[i];
    }
472

473 474
    for (i = 0; i<chan_desc->nb_taps; i++)
      chan_desc->amps[i] /= sum_amps;
475

476 477 478 479 480 481 482
    chan_desc->delays         = etu_delays;
    chan_desc->ricean_factor  = 1;
    chan_desc->aoa            = 0;
    chan_desc->random_aoa     = 0;
    chan_desc->ch             = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->chF            = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->a              = (struct complex**) malloc(chan_desc->nb_taps*sizeof(struct complex*));
483 484 485 486 487 488 489 490

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));

    for (i = 0; i<chan_desc->nb_taps; i++)
491
      chan_desc->a[i]         = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));
492

493 494
    if (nb_tx==2 && nb_rx==2) {
      chan_desc->R_sqrt  = (struct complex**) malloc(6*sizeof(struct complex**));
495 496 497 498

      for (i = 0; i<6; i++)
        chan_desc->R_sqrt[i] = (struct complex*) &R22_sqrt[i][0];
    } else {
499
      chan_desc->R_sqrt         = (struct complex**) malloc(6*sizeof(struct complex**));
500

501
      for (i = 0; i<6; i++) {
502 503 504 505 506 507 508 509
        chan_desc->R_sqrt[i]    = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));

        for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
          chan_desc->R_sqrt[i][j].x = 1.0;
          chan_desc->R_sqrt[i][j].y = 0.0;
        }

        LOG_W(OCM,"correlation matrix only implemented for nb_tx==2 and nb_rx==2, using identity\n");
510 511
      }
    }
512

513
    break;
514

515 516 517
  case MBSFN:
    chan_desc->nb_taps        = 18;
    chan_desc->Td             = 28.58;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
518
    chan_desc->channel_length = (int) (2*chan_desc->sampling_rate*chan_desc->Td + 1 + 2/(M_PI*M_PI)*log(4*M_PI*chan_desc->sampling_rate*chan_desc->Td));
519 520
    sum_amps = 0;
    chan_desc->amps           = (double*) malloc(chan_desc->nb_taps*sizeof(double));
521

522
    for (i = 0; i<chan_desc->nb_taps; i++) {
523
      chan_desc->amps[i]      = pow(10,.1*mbsfn_amps_dB[i]);
524 525
      sum_amps += chan_desc->amps[i];
    }
526

527 528
    for (i = 0; i<chan_desc->nb_taps; i++)
      chan_desc->amps[i] /= sum_amps;
529

530 531 532 533 534 535 536
    chan_desc->delays         = mbsfn_delays;
    chan_desc->ricean_factor  = 1;
    chan_desc->aoa            = 0;
    chan_desc->random_aoa     = 0;
    chan_desc->ch             = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->chF            = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
    chan_desc->a              = (struct complex**) malloc(chan_desc->nb_taps*sizeof(struct complex*));
537 538 539 540 541 542 543 544

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));

    for (i = 0; i<nb_tx*nb_rx; i++)
      chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));

    for (i = 0; i<chan_desc->nb_taps; i++)
545 546
      chan_desc->a[i]         = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));

nikaeinn's avatar
nikaeinn committed
547
    chan_desc->R_sqrt  = (struct complex**) malloc(6*sizeof(struct complex*));
548

549 550
    for (i = 0; i<6; i++) {
      chan_desc->R_sqrt[i]    = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));
551

552
      for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
553 554
        chan_desc->R_sqrt[i][j].x = 1.0;
        chan_desc->R_sqrt[i][j].y = 0.0;
555
      }
556

557 558
      LOG_W(OCM,"correlation matrix only implemented for nb_tx==2 and nb_rx==2, using identity\n");
    }
559

560
    break;
561

562
  case Rayleigh8:
563 564
    nb_taps = 8;
    Td = 0.8;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
565
    channel_length = (int)11+2*sampling_rate*Td;
566 567 568 569 570 571 572 573 574 575 576 577 578
    ricean_factor = 1;
    aoa = .03;
    maxDoppler = 0;

    fill_channel_desc(chan_desc,
                      nb_tx,
                      nb_rx,
                      nb_taps,
                      channel_length,
                      default_amps_lin,
                      NULL,
                      NULL,
                      Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
579 580
                      sampling_rate,
		      channel_bandwidth,
581 582 583 584 585 586 587 588
                      ricean_factor,
                      aoa,
                      forgetting_factor,
                      maxDoppler,
                      channel_offset,
                      path_loss_dB,
                      0);
    break;
589 590

  case Rice8:
591 592
    nb_taps = 8;
    Td = 0.8;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
593
    channel_length = (int)11+2*sampling_rate*Td;
594 595 596 597 598 599 600 601 602 603 604 605
    ricean_factor = 0.1;
    aoa = .03;
    maxDoppler = 0;

    fill_channel_desc(chan_desc,nb_tx,
                      nb_rx,
                      nb_taps,
                      channel_length,
                      default_amps_lin,
                      NULL,
                      NULL,
                      Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
606 607
                      sampling_rate,
		      channel_bandwidth,
608 609 610 611 612 613 614 615
                      ricean_factor,
                      aoa,
                      forgetting_factor,
                      maxDoppler,
                      channel_offset,
                      path_loss_dB,
                      1);
    break;
616 617

  case Rayleigh1:
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
    nb_taps = 1;
    Td = 0;
    channel_length = 1;
    ricean_factor = 1;
    aoa = .03;
    maxDoppler = 0;

    fill_channel_desc(chan_desc,nb_tx,
                      nb_rx,
                      nb_taps,
                      channel_length,
                      default_amp_lin,
                      NULL,
                      NULL,
                      Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
633 634
                      sampling_rate,
		      channel_bandwidth,
635 636 637 638 639 640 641 642
                      ricean_factor,
                      aoa,
                      forgetting_factor,
                      maxDoppler,
                      channel_offset,
                      path_loss_dB,
                      0);
    break;
643 644

  case Rayleigh1_800:
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
    nb_taps = 1;
    Td = 0;
    channel_length = 1;
    ricean_factor = 1;
    aoa = .03;
    maxDoppler = 800;

    fill_channel_desc(chan_desc,nb_tx,
                      nb_rx,
                      nb_taps,
                      channel_length,
                      default_amp_lin,
                      NULL,
                      NULL,
                      Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
660 661
                      sampling_rate,
		      channel_bandwidth,
662 663 664 665 666 667 668 669
                      ricean_factor,
                      aoa,
                      forgetting_factor,
                      maxDoppler,
                      channel_offset,
                      path_loss_dB,
                      0);
    break;
670 671

  case Rayleigh1_corr:
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
    nb_taps = 1;
    Td = 0;
    channel_length = 1;
    ricean_factor = 1;
    aoa = .03;
    maxDoppler = 0;

    if ((nb_tx==2) && (nb_rx==1)) {
      R_sqrt_ptr2 = R_sqrt_21_corr;
    } else if ((nb_tx==2) && (nb_rx==2)) {
      R_sqrt_ptr2 = R_sqrt_22_corr;
    } else
      R_sqrt_ptr2 = NULL;

    fill_channel_desc(chan_desc,nb_tx,
                      nb_rx,
                      nb_taps,
                      channel_length,
                      default_amp_lin,
                      NULL,
                      R_sqrt_ptr2,
                      Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
694 695
                      sampling_rate,
		      channel_bandwidth,
696 697 698 699 700 701 702 703
                      ricean_factor,
                      aoa,
                      forgetting_factor,
                      maxDoppler,
                      channel_offset,
                      path_loss_dB,
                      0);
    break;
704 705

  case Rayleigh1_anticorr:
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
    nb_taps = 1;
    Td = 0;
    channel_length = 1;
    ricean_factor = 1;
    aoa = .03;
    maxDoppler = 0;

    if ((nb_tx==2) && (nb_rx==1)) {
      R_sqrt_ptr2 = R_sqrt_21_anticorr;
    } else if ((nb_tx==2) && (nb_rx==2)) {
      R_sqrt_ptr2 = R_sqrt_22_anticorr;
    } else
      R_sqrt_ptr2 = NULL;

    fill_channel_desc(chan_desc,nb_tx,
                      nb_rx,
                      nb_taps,
                      channel_length,
                      default_amp_lin,
                      NULL,
                      R_sqrt_ptr2,
                      Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
728 729
                      sampling_rate,
		      channel_bandwidth,
730 731 732 733 734 735 736 737
                      ricean_factor,
                      aoa,
                      forgetting_factor,
                      maxDoppler,
                      channel_offset,
                      path_loss_dB,
                      0);
    break;
738 739

  case Rice1:
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
    nb_taps = 1;
    Td = 0;
    channel_length = 1;
    ricean_factor = 0.1;
    aoa = .03;
    maxDoppler = 0;

    fill_channel_desc(chan_desc,nb_tx,
                      nb_rx,
                      nb_taps,
                      channel_length,
                      default_amp_lin,
                      NULL,
                      NULL,
                      Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
755 756
                      sampling_rate,
		      channel_bandwidth,
757 758 759 760 761 762 763 764
                      ricean_factor,
                      aoa,
                      forgetting_factor,
                      maxDoppler,
                      channel_offset,
                      path_loss_dB,
                      0);
    break;
765 766

  case AWGN:
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
    nb_taps = 1;
    Td = 0;
    channel_length = 1;
    ricean_factor = 0.0;
    aoa = 0.0;
    maxDoppler = 0;

    fill_channel_desc(chan_desc,nb_tx,
                      nb_rx,
                      nb_taps,
                      channel_length,
                      default_amp_lin,
                      NULL,
                      NULL,
                      Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
782 783
                      sampling_rate,
		      channel_bandwidth,
784 785 786 787 788 789 790 791 792 793
                      ricean_factor,
                      aoa,
                      forgetting_factor,
                      maxDoppler,
                      channel_offset,
                      path_loss_dB,
                      0);
    printf("AWGN: ricean_factor %f\n",chan_desc->ricean_factor);

    break;
794 795

  case Rice1_corr:
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
    nb_taps = 1;
    Td = 0;
    channel_length = 1;
    ricean_factor = 0.1;
    aoa = .03;
    maxDoppler = 0;

    if ((nb_tx==2) && (nb_rx==1)) {
      R_sqrt_ptr2 = R_sqrt_21_corr;
    } else if ((nb_tx==2) && (nb_rx==2)) {
      R_sqrt_ptr2 = R_sqrt_22_corr;
    } else
      R_sqrt_ptr2 = NULL;

    fill_channel_desc(chan_desc,nb_tx,
                      nb_rx,
                      nb_taps,
                      channel_length,
                      default_amp_lin,
                      NULL,
                      R_sqrt_ptr2,
                      Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
818 819
                      sampling_rate,
		      channel_bandwidth,
820 821 822 823 824 825 826 827
                      ricean_factor,
                      aoa,
                      forgetting_factor,
                      maxDoppler,
                      channel_offset,
                      path_loss_dB,
                      1);
    break;
828 829

  case Rice1_anticorr:
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
    nb_taps = 1;
    Td = 0;
    channel_length = 1;
    ricean_factor = 0.1;
    aoa = .03;
    maxDoppler = 0;

    if ((nb_tx==2) && (nb_rx==1)) {
      R_sqrt_ptr2 = R_sqrt_21_anticorr;
    } else if ((nb_tx==2) && (nb_rx==2)) {
      R_sqrt_ptr2 = R_sqrt_22_anticorr;
    } else
      R_sqrt_ptr2 = NULL;

    fill_channel_desc(chan_desc,nb_tx,
                      nb_rx,
                      nb_taps,
                      channel_length,
                      default_amp_lin,
                      NULL,
                      R_sqrt_ptr2,
                      Td,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
852 853
                      sampling_rate,
		      channel_bandwidth,
854 855 856 857 858 859 860 861
                      ricean_factor,
                      aoa,
                      forgetting_factor,
                      maxDoppler,
                      channel_offset,
                      path_loss_dB,
                      1);
    break;
862 863 864 865 866 867

  default:
    LOG_W(OCM,"channel model not yet supported\n");
    free(chan_desc);
    return(NULL);
  }
868

869
  LOG_D(OCM,"[CHANNEL] RF %f\n",chan_desc->ricean_factor);
870 871

  for (i=0; i<chan_desc->nb_taps; i++)
872 873 874 875 876 877 878 879
    LOG_D(OCM,"[CHANNEL] tap %d: amp %f, delay %f\n",i,chan_desc->amps[i],chan_desc->delays[i]);

  chan_desc->nb_paths = 10;

  return(chan_desc);
}


880 881 882
int random_channel(channel_desc_t *desc, uint8_t abstraction_flag)
{

883 884 885 886
  double s;
  int i,k,l,aarx,aatx;
  struct complex anew[NB_ANTENNAS_TX*NB_ANTENNAS_RX],acorr[NB_ANTENNAS_TX*NB_ANTENNAS_RX];
  struct complex phase, alpha, beta;
887

888
  if ((desc->nb_tx>NB_ANTENNAS_TX) || (desc->nb_rx > NB_ANTENNAS_RX)) {
889
    msg("random_channel.c: Error: temporary buffer for channel not big enough (%d,%d)\n",desc->nb_tx,desc->nb_rx);
890 891 892
    return(-1);
  }

893
  start_meas(&desc->random_channel);
894

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
  for (i=0; i<(int)desc->nb_taps; i++) {
    for (aarx=0; aarx<desc->nb_rx; aarx++) {
      for (aatx=0; aatx<desc->nb_tx; aatx++) {

        anew[aarx+(aatx*desc->nb_rx)].x = sqrt(desc->ricean_factor*desc->amps[i]/2) * gaussdouble(0.0,1.0);
        anew[aarx+(aatx*desc->nb_rx)].y = sqrt(desc->ricean_factor*desc->amps[i]/2) * gaussdouble(0.0,1.0);

        if ((i==0) && (desc->ricean_factor != 1.0)) {
          if (desc->random_aoa==1) {
            desc->aoa = uniformrandom()*2*M_PI;
          }

          // this assumes that both RX and TX have linear antenna arrays with lambda/2 antenna spacing.
          // Furhter it is assumed that the arrays are parallel to each other and that they are far enough apart so
          // that we can safely assume plane wave propagation.
          phase.x = cos(M_PI*((aarx-aatx)*sin(desc->aoa)));
          phase.y = sin(M_PI*((aarx-aatx)*sin(desc->aoa)));

          anew[aarx+(aatx*desc->nb_rx)].x += phase.x * sqrt(1.0-desc->ricean_factor);
          anew[aarx+(aatx*desc->nb_rx)].y += phase.y * sqrt(1.0-desc->ricean_factor);
        }

917
#ifdef DEBUG_CH
918 919
        printf("(%d,%d,%d) %f->(%f,%f) (%f,%f) phase (%f,%f)\n",aarx,aatx,i,desc->amps[i],anew[aarx+(aatx*desc->nb_rx)].x,anew[aarx+(aatx*desc->nb_rx)].y,desc->aoa,desc->ricean_factor,phase.x,phase.y);
#endif
920 921 922 923 924 925 926
      } //aatx
    } //aarx

    /*
    // for debugging set a=anew;
    for (aarx=0;aarx<desc->nb_rx;aarx++) {
      for (aatx=0;aatx<desc->nb_tx;aatx++) {
927 928 929
    desc->a[i][aarx+(aatx*desc->nb_rx)].x = anew[aarx+(aatx*desc->nb_rx)].x;
    desc->a[i][aarx+(aatx*desc->nb_rx)].y = anew[aarx+(aatx*desc->nb_rx)].y;
    printf("anew(%d,%d) = %f+1j*%f\n",aatx,aarx,anew[aarx+(aatx*desc->nb_rx)].x, anew[aarx+(aatx*desc->nb_rx)].y);
930 931 932 933 934 935 936 937 938 939
     }
    }
    */
    //apply correlation matrix
    //compute acorr = R_sqrt[i] * anew
    alpha.x = 1.0;
    alpha.y = 0.0;
    beta.x = 0.0;
    beta.y = 0.0;

940 941 942
    cblas_zgemv(CblasRowMajor, CblasNoTrans, desc->nb_tx*desc->nb_rx, desc->nb_tx*desc->nb_rx,
                (void*) &alpha, (void*) desc->R_sqrt[i/3], desc->nb_rx*desc->nb_tx,
                (void*) anew, 1, (void*) &beta, (void*) acorr, 1);
943 944 945 946

    /*
    for (aarx=0;aarx<desc->nb_rx;aarx++) {
      for (aatx=0;aatx<desc->nb_tx;aatx++) {
947 948 949
    desc->a[i][aarx+(aatx*desc->nb_rx)].x = acorr[aarx+(aatx*desc->nb_rx)].x;
    desc->a[i][aarx+(aatx*desc->nb_rx)].y = acorr[aarx+(aatx*desc->nb_rx)].y;
    printf("tap %d, acorr1(%d,%d) = %f+1j*%f\n",i,aatx,aarx,acorr[aarx+(aatx*desc->nb_rx)].x, acorr[aarx+(aatx*desc->nb_rx)].y);
950 951 952 953
      }
    }
    */

954
    if (desc->first_run==1) {
955
      cblas_zcopy(desc->nb_tx*desc->nb_rx, (void*) acorr, 1, (void*) desc->a[i], 1);
956
    } else {
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
      // a = alpha*acorr+beta*a
      // a = beta*a
      // a = a+alpha*acorr
      alpha.x = sqrt(1-desc->forgetting_factor);
      alpha.y = 0;
      beta.x = sqrt(desc->forgetting_factor);
      beta.y = 0;
      cblas_zscal(desc->nb_tx*desc->nb_rx, (void*) &beta, (void*) desc->a[i], 1);
      cblas_zaxpy(desc->nb_tx*desc->nb_rx, (void*) &alpha, (void*) acorr, 1, (void*) desc->a[i], 1);

      //  desc->a[i][aarx+(aatx*desc->nb_rx)].x = (sqrt(desc->forgetting_factor)*desc->a[i][aarx+(aatx*desc->nb_rx)].x) + sqrt(1-desc->forgetting_factor)*anew.x;
      //  desc->a[i][aarx+(aatx*desc->nb_rx)].y = (sqrt(desc->forgetting_factor)*desc->a[i][aarx+(aatx*desc->nb_rx)].y) + sqrt(1-desc->forgetting_factor)*anew.y;
    }

    /*
    for (aarx=0;aarx<desc->nb_rx;aarx++) {
      for (aatx=0;aatx<desc->nb_tx;aatx++) {
974 975 976
    //desc->a[i][aarx+(aatx*desc->nb_rx)].x = acorr[aarx+(aatx*desc->nb_rx)].x;
    //desc->a[i][aarx+(aatx*desc->nb_rx)].y = acorr[aarx+(aatx*desc->nb_rx)].y;
    printf("tap %d, a(%d,%d) = %f+1j*%f\n",i,aatx,aarx,desc->a[i][aarx+(aatx*desc->nb_rx)].x, desc->a[i][aarx+(aatx*desc->nb_rx)].y);
977 978 979 980
      }
    }
    */

981 982
  } //nb_taps

983
  stop_meas(&desc->random_channel);
984 985

  //memset((void *)desc->ch[aarx+(aatx*desc->nb_rx)],0,(int)(desc->channel_length)*sizeof(struct complex));
986

987
  if (abstraction_flag==0) {
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
    start_meas(&desc->interp_time);

    for (aarx=0; aarx<desc->nb_rx; aarx++) {
      for (aatx=0; aatx<desc->nb_tx; aatx++) {
        if (desc->channel_length == 1) {
          desc->ch[aarx+(aatx*desc->nb_rx)][0].x = desc->a[0][aarx+(aatx*desc->nb_rx)].x;
          desc->ch[aarx+(aatx*desc->nb_rx)][0].y = desc->a[0][aarx+(aatx*desc->nb_rx)].y;
        } else {

          for (k=0; k<(int)desc->channel_length; k++) {
            desc->ch[aarx+(aatx*desc->nb_rx)][k].x = 0.0;
            desc->ch[aarx+(aatx*desc->nb_rx)][k].y = 0.0;

            for (l=0; l<desc->nb_taps; l++) {
Florian Kaltenberger's avatar
Florian Kaltenberger committed
1002
              if ((k - (desc->delays[l]*desc->sampling_rate) - NB_SAMPLES_CHANNEL_OFFSET) == 0)
1003 1004
                s = 1.0;
              else
Florian Kaltenberger's avatar
Florian Kaltenberger committed
1005 1006
                s = sin(M_PI*(k - (desc->delays[l]*desc->sampling_rate) - NB_SAMPLES_CHANNEL_OFFSET))/
                    (M_PI*(k - (desc->delays[l]*desc->sampling_rate) - NB_SAMPLES_CHANNEL_OFFSET));
1007 1008 1009 1010 1011 1012 1013

              desc->ch[aarx+(aatx*desc->nb_rx)][k].x += s*desc->a[l][aarx+(aatx*desc->nb_rx)].x;
              desc->ch[aarx+(aatx*desc->nb_rx)][k].y += s*desc->a[l][aarx+(aatx*desc->nb_rx)].y;
              //    printf("l %d : desc->ch.x %f\n",l,desc->a[l][aarx+(aatx*desc->nb_rx)].x);

            } //nb_taps

1014
#ifdef DEBUG_CH
1015
            printf("(%d,%d,%d)->(%f,%f)\n",k,aarx,aatx,desc->ch[aarx+(aatx*desc->nb_rx)][k].x,desc->ch[aarx+(aatx*desc->nb_rx)][k].y);
1016
#endif
1017 1018 1019 1020 1021 1022
          }
        } //channel_length
      } //aatx
    } //aarx

    stop_meas(&desc->interp_time);
1023
  }
1024 1025 1026 1027 1028 1029 1030

  if (desc->first_run==1)
    desc->first_run = 0;

  return (0);
}

Florian Kaltenberger's avatar
Florian Kaltenberger committed
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
double N_RB2sampling_rate(uint16_t N_RB)
{
  double sampling_rate;
  switch (N_RB) {
  case 6:
    sampling_rate = 1.92;
    break;
    
  case 25:
    sampling_rate = 7.68;
    break;
    
  case 50:
    sampling_rate = 15.36;
    break;
    
  case 100:
    sampling_rate = 30.72;
    break;
    
  default:
    LOG_E(PHY,"Unknown N_PRB\n");
    return(-1);  
  }

  return(sampling_rate);
}

double N_RB2channel_bandwidth(uint16_t N_RB)
{
  double channel_bandwidth;
  switch (N_RB) {
  case 6:
    channel_bandwidth = 1.25;
    break;
    
  case 25:
    channel_bandwidth = 5.00;
    break;
    
  case 50:
    channel_bandwidth = 10.00;
    break;
    
  case 100:
    channel_bandwidth = 20.00;
    break;
    
  default:
    LOG_E(PHY,"Unknown N_PRB\n");
    return(-1);  
  }
  return(channel_bandwidth);
}

1086
#ifdef RANDOM_CHANNEL_MAIN
Florian Kaltenberger's avatar
Florian Kaltenberger committed
1087
#define sampling_rate 5.0
1088
#define Td 2.0
1089 1090
main(int argc,char **argv)
{
1091 1092

  double amps[8] = {.8,.2,.1,.04,.02,.01,.005};
Florian Kaltenberger's avatar
Florian Kaltenberger committed
1093
  struct complex ch[(int)(1+2*sampling_rate*Td)],phase;
1094
  int i;
1095

1096 1097 1098
  randominit();
  phase.x = 1.0;
  phase.y = 0;
Florian Kaltenberger's avatar
Florian Kaltenberger committed
1099
  random_channel(amps,Td, 8,sampling_rate,ch,(double)1.0,&phase);
1100
  /*
Florian Kaltenberger's avatar
Florian Kaltenberger committed
1101
  for (i=0;i<(11+2*sampling_rate*Td);i++){
1102 1103 1104 1105 1106 1107
    printf("%f + sqrt(-1)*%f\n",ch[i].x,ch[i].y);
  }
  */
}

#endif