channel_sim.c 24.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#include <string.h>
#include <math.h>
#include <unistd.h>
#include <stdint.h>
#include <stdio.h>
#include <time.h>

#include "SIMULATION/TOOLS/defs.h"
#include "SIMULATION/RF/defs.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#include "PHY/extern.h"
#include "MAC_INTERFACE/extern.h"

#ifdef OPENAIR2
#include "LAYER2/MAC/defs.h"
#include "LAYER2/MAC/extern.h"
#include "UTIL/LOG/log_if.h"
#include "UTIL/LOG/log_extern.h"
#include "RRC/LITE/extern.h"
#include "PHY_INTERFACE/extern.h"
#include "UTIL/OCG/OCG.h"
#include "UTIL/OPT/opt.h" // to test OPT
#endif

#include "ARCH/CBMIMO1/DEVICE_DRIVER/extern.h"

#include "UTIL/FIFO/types.h"

#ifdef IFFT_FPGA
#include "PHY/LTE_REFSIG/mod_table.h"
#endif

#include "SCHED/defs.h"
#include "SCHED/extern.h"

#ifdef XFORMS
#include "forms.h"
#include "phy_procedures_sim_form.h"
#endif

#include "oaisim.h"

#define RF
//#define DEBUG_SIM

int number_rb_ul;
int first_rbUL ;

extern Signal_buffers *signal_buffers_g;

void do_OFDM_mod(mod_sym_t **txdataF, s32 **txdata, uint32_t frame,u16 next_slot, LTE_DL_FRAME_PARMS *frame_parms) {

  int aa, slot_offset, slot_offset_F;

  slot_offset_F = (next_slot)*(frame_parms->ofdm_symbol_size)*((frame_parms->Ncp==1) ? 6 : 7);
  slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
  
  for (aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
   if (is_pmch_subframe(frame,next_slot>>1,frame_parms)) {
      if ((next_slot%2)==0) {
62
	LOG_D(OCM,"Frame %d, subframe %d: Doing MBSFN modulation (slot_offset %d)\n",frame,next_slot>>1,slot_offset); 
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
	PHY_ofdm_mod(&txdataF[aa][slot_offset_F],        // input
		     &txdata[aa][slot_offset],         // output
		     frame_parms->log2_symbol_size,                // log2_fft_size
		     12,                 // number of symbols
		     frame_parms->ofdm_symbol_size>>2,               // number of prefix samples
		     frame_parms->twiddle_ifft,  // IFFT twiddle factors
		     frame_parms->rev,           // bit-reversal permutation
		     CYCLIC_PREFIX);
     
	if (frame_parms->Ncp == EXTENDED)
	  PHY_ofdm_mod(&txdataF[aa][slot_offset_F],        // input
		       &txdata[aa][slot_offset],         // output
		       frame_parms->log2_symbol_size,                // log2_fft_size
		       2,                 // number of symbols
		       frame_parms->nb_prefix_samples,               // number of prefix samples
		       frame_parms->twiddle_ifft,  // IFFT twiddle factors
		       frame_parms->rev,           // bit-reversal permutation
		       CYCLIC_PREFIX);
	else {
82
	  LOG_D(OCM,"Frame %d, subframe %d: Doing PDCCH modulation\n",frame,next_slot>>1); 
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
	  normal_prefix_mod(&txdataF[aa][slot_offset_F],
			    &txdata[aa][slot_offset],
			    2,
			    frame_parms);
	}      
      }
    }
    else {
      if (frame_parms->Ncp == EXTENDED)
	PHY_ofdm_mod(&txdataF[aa][slot_offset_F],        // input
		     &txdata[aa][slot_offset],         // output
		     frame_parms->log2_symbol_size,                // log2_fft_size
		     6,                 // number of symbols
		     frame_parms->nb_prefix_samples,               // number of prefix samples
		     frame_parms->twiddle_ifft,  // IFFT twiddle factors
		     frame_parms->rev,           // bit-reversal permutation
		     CYCLIC_PREFIX);
      else {
	normal_prefix_mod(&txdataF[aa][slot_offset_F],
			  &txdata[aa][slot_offset],
			  7,
			  frame_parms);
      }
    }  
  }
  
}

void do_DL_sig(double **r_re0,double **r_im0,
               double **r_re,double **r_im,
               double **s_re,double **s_im,
               channel_desc_t *eNB2UE[NUMBER_OF_eNB_MAX][NUMBER_OF_UE_MAX],
               node_desc_t *enb_data[NUMBER_OF_eNB_MAX],
               node_desc_t *ue_data[NUMBER_OF_UE_MAX],
               u16 next_slot,u8 abstraction_flag,LTE_DL_FRAME_PARMS *frame_parms,
               u8 UE_id) {

  s32 att_eNB_id=-1;
  s32 **txdata,**rxdata;
  
  u8 eNB_id=0;
  double tx_pwr, rx_pwr;
  s32 rx_pwr2;
  u32 i,aa;
  u32 slot_offset,slot_offset_meas;

  double min_path_loss=-200;
  u8 hold_channel=0;
  //  u8 aatx,aarx;
  u8 nb_antennas_rx = eNB2UE[0][0]->nb_rx; // number of rx antennas at UE
  u8 nb_antennas_tx = eNB2UE[0][0]->nb_tx; // number of tx antennas at eNB

  if (next_slot==0)
    hold_channel = 0;
  else
    hold_channel = 1;

  if (abstraction_flag != 0) {
    //for (UE_id=0;UE_id<NB_UE_INST;UE_id++) {

143
    if (!hold_channel) {
144 145
      // calculate the random channel from each eNB
      for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
146
        random_channel(eNB2UE[eNB_id][UE_id],abstraction_flag);
147 148 149 150 151 152 153 154 155
        /*
	for (i=0;i<eNB2UE[eNB_id][UE_id]->nb_taps;i++)
	  printf("eNB2UE[%d][%d]->a[0][%d] = (%f,%f)\n",eNB_id,UE_id,i,eNB2UE[eNB_id][UE_id]->a[0][i].x,eNB2UE[eNB_id][UE_id]->a[0][i].y);
	*/
        freq_channel(eNB2UE[eNB_id][UE_id], frame_parms->N_RB_DL,frame_parms->N_RB_DL*12+1);
      }

      // find out which eNB the UE is attached to
      for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
156
        if (find_ue(PHY_vars_UE_g[UE_id]->lte_ue_pdcch_vars[0]->crnti,PHY_vars_eNB_g[eNB_id])>=0) {
157 158
          // UE with UE_id is connected to eNb with eNB_id
          att_eNB_id=eNB_id;
159
          LOG_D(OCM,"A: UE attached to eNB (UE%d->eNB%d)\n",UE_id,eNB_id);
160 161 162 163 164 165 166 167 168
        }
      }

      // if UE is not attached yet, find assume its the eNB with the smallest pathloss
      if (att_eNB_id<0) {
        for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
          if (min_path_loss<eNB2UE[eNB_id][UE_id]->path_loss_dB) {
            min_path_loss = eNB2UE[eNB_id][UE_id]->path_loss_dB;
            att_eNB_id=eNB_id;
169
            LOG_D(OCM,"B: UE attached to eNB (UE%d->eNB%d)\n",UE_id,eNB_id);
170 171 172 173 174 175 176 177 178
          }
        }
      }

      if (att_eNB_id<0) {
        LOG_E(OCM,"Cannot find eNB for UE %d, return\n",UE_id);
        return; //exit(-1);
      }
      
179
#ifdef DEBUG_SIM
180 181 182 183 184 185
      rx_pwr = signal_energy_fp2(eNB2UE[att_eNB_id][UE_id]->ch[0],
                                 eNB2UE[att_eNB_id][UE_id]->channel_length)*eNB2UE[att_eNB_id][UE_id]->channel_length;
      LOG_D(OCM,"Channel eNB %d => UE %d : tx_power %d dBm, path_loss %f dB\n",
            att_eNB_id,UE_id,
            PHY_vars_eNB_g[att_eNB_id]->lte_frame_parms.pdsch_config_common.referenceSignalPower,
            eNB2UE[att_eNB_id][UE_id]->path_loss_dB);
186
#endif
187 188 189 190 191 192 193

      //dlsch_abstraction(PHY_vars_UE_g[UE_id]->sinr_dB, rb_alloc, 8);
      // fill in perfect channel estimates
      channel_desc_t *desc1 = eNB2UE[att_eNB_id][UE_id];
      s32 **dl_channel_est = PHY_vars_UE_g[UE_id]->lte_ue_common_vars.dl_ch_estimates[0];
      //      double scale = pow(10.0,(enb_data[att_eNB_id]->tx_power_dBm + eNB2UE[att_eNB_id][UE_id]->path_loss_dB + (double) PHY_vars_UE_g[UE_id]->rx_total_gain_dB)/20.0);
      double scale = pow(10.0,(PHY_vars_eNB_g[att_eNB_id]->lte_frame_parms.pdsch_config_common.referenceSignalPower+eNB2UE[att_eNB_id][UE_id]->path_loss_dB + (double) PHY_vars_UE_g[UE_id]->rx_total_gain_dB)/20.0);
194 195
      //this factor is not really needed (it was actually wrong in the non abstraction mode)
      //scale = scale * sqrt(512.0/300.0); //TODO: make this variable for all BWs
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
      LOG_D(OCM,"scale =%lf (%d dB)\n",scale,(int) (20*log10(scale)));
      // freq_channel(desc1,frame_parms->N_RB_DL,nb_samples);
      //write_output("channel.m","ch",desc1->ch[0],desc1->channel_length,1,8);
      //write_output("channelF.m","chF",desc1->chF[0],nb_samples,1,8);
      int count,count1,a_rx,a_tx;
      for(a_tx=0;a_tx<nb_antennas_tx;a_tx++)
	{ 
	  for (a_rx=0;a_rx<nb_antennas_rx;a_rx++)
	    {
	      //for (count=0;count<frame_parms->symbols_per_tti/2;count++)
	      for (count=0;count<1;count++)
		{ 
		  for (count1=0;count1<frame_parms->N_RB_DL*12;count1++)
		    { 
		      ((s16 *) dl_channel_est[(a_tx<<1)+a_rx])[2*count1+(count*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(s16)(desc1->chF[a_rx+(a_tx*nb_antennas_rx)][count1].x*scale);
		      ((s16 *) dl_channel_est[(a_tx<<1)+a_rx])[2*count1+1+(count*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(s16)(desc1->chF[a_rx+(a_tx*nb_antennas_rx)][count1].y*scale) ;
		    }
		}
	    }
	}

217
      /*
218 219
      if(PHY_vars_UE_g[UE_id]->transmission_mode[att_eNB_id]>=5)
	{
220
	  lte_ue_measurements(PHY_vars_UE_g[UE_id],
221 222 223
			      ((next_slot-1)>>1)*frame_parms->samples_per_tti,
			      1,
			      abstraction_flag);
224
	  		      
225 226
	  PHY_vars_eNB_g[att_eNB_id]->dlsch_eNB[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE_g[UE_id]->PHY_measurements,0);
	  //  printf("pmi_alloc in channel sim: %d",PHY_vars_eNB_g[att_eNB_id]->dlsch_eNB[0][0]->pmi_alloc);
227 228 229 230 231
        }
      */		      
      
      // calculate the SNR for the attached eNB (this assumes eNB always uses PMI stored in eNB_UE_stats; to be improved)
      init_snr(eNB2UE[att_eNB_id][UE_id], enb_data[att_eNB_id], ue_data[UE_id], PHY_vars_UE_g[UE_id]->sinr_dB, &PHY_vars_UE_g[UE_id]->N0, PHY_vars_UE_g[UE_id]->transmission_mode[att_eNB_id], PHY_vars_eNB_g[att_eNB_id]->eNB_UE_stats[UE_id].DL_pmi_single,PHY_vars_eNB_g[att_eNB_id]->mu_mimo_mode[UE_id].dl_pow_off);
232 233 234 235 236 237 238

      // calculate sinr here
      for (eNB_id = 0; eNB_id < NB_eNB_INST; eNB_id++) {
        if (att_eNB_id != eNB_id) {
          calculate_sinr(eNB2UE[eNB_id][UE_id], enb_data[eNB_id], ue_data[UE_id], PHY_vars_UE_g[UE_id]->sinr_dB);
        }
      }
239
    } // hold channel
240 241 242 243 244 245 246
  }
  
  else { //abstraction_flag
    /* 
       Call do_OFDM_mod from phy_procedures_eNB_TX function
    */
   
247 248
    for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
      start_meas(&PHY_vars_eNB_g[eNB_id]->ofdm_mod_stats);
249 250 251 252
      do_OFDM_mod(PHY_vars_eNB_g[eNB_id]->lte_eNB_common_vars.txdataF[0],
		  PHY_vars_eNB_g[eNB_id]->lte_eNB_common_vars.txdata[0],
		  ((next_slot==19) ? -1 : 0 ) + PHY_vars_eNB_g[eNB_id]->frame,next_slot,
		  &PHY_vars_eNB_g[eNB_id]->lte_frame_parms);
253
      stop_meas(&PHY_vars_eNB_g[eNB_id]->ofdm_mod_stats);
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    }
   
    //for (UE_id=0;UE_id<NB_UE_INST;UE_id++) {
      // Compute RX signal for UE = UE_id
      /*
      for (i=0;i<(frame_parms->samples_per_tti>>1);i++) {
	for (aa=0;aa<nb_antennas_rx;aa++) {
	  r_re[aa][i]=0.0;
	  r_im[aa][i]=0.0;
	}
      }
      */
      //      printf("r_re[0] %p\n",r_re[0]);
      for (aa=0;aa<nb_antennas_rx;aa++) {
        memset((void*)r_re[aa],0,(frame_parms->samples_per_tti>>1)*sizeof(double));
        memset((void*)r_im[aa],0,(frame_parms->samples_per_tti>>1)*sizeof(double));
      }
      /*
      for (i=0;i<16;i++)
	printf("%f, %X\n",r_re[aa][i],(unsigned long long)r_re[aa][i]);
      */
      for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
        //	if (((double)PHY_vars_UE_g[UE_id]->tx_power_dBm +
        //	     eNB2UE[eNB_id][UE_id]->path_loss_dB) <= -107.0)
        //	  break;
        frame_parms = &PHY_vars_eNB_g[eNB_id]->lte_frame_parms;
        txdata = PHY_vars_eNB_g[eNB_id]->lte_eNB_common_vars.txdata[0];
        slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
        slot_offset_meas = ((next_slot&1)==0) ? slot_offset : (slot_offset-(frame_parms->samples_per_tti>>1));
        tx_pwr = dac_fixed_gain(s_re,
                                s_im,
                                txdata,
                                slot_offset,
                                nb_antennas_tx,
                                frame_parms->samples_per_tti>>1,
                                slot_offset_meas,
                                frame_parms->ofdm_symbol_size,
                                14,
                                //				enb_data[eNB_id]->tx_power_dBm);
                                PHY_vars_eNB_g[eNB_id]->lte_frame_parms.pdsch_config_common.referenceSignalPower);

#ifdef DEBUG_SIM
296
        LOG_D(OCM,"[SIM][DL] eNB %d: tx_pwr %f dBm, for slot %d (subframe %d)\n",
297 298 299 300 301 302 303 304 305 306 307
              eNB_id,
              10*log10(tx_pwr),
              next_slot,
              next_slot>>1);
#endif
        //eNB2UE[eNB_id][UE_id]->path_loss_dB = 0;
        multipath_channel(eNB2UE[eNB_id][UE_id],s_re,s_im,r_re0,r_im0,
                          frame_parms->samples_per_tti>>1,hold_channel);
#ifdef DEBUG_SIM	  
        rx_pwr = signal_energy_fp2(eNB2UE[eNB_id][UE_id]->ch[0],
                                   eNB2UE[eNB_id][UE_id]->channel_length)*eNB2UE[eNB_id][UE_id]->channel_length;
308
        LOG_D(OCM,"[SIM][DL] Channel eNB %d => UE %d : Channel gain %f dB (%f)\n",eNB_id,UE_id,10*log10(rx_pwr),rx_pwr);
309 310 311 312 313
#endif


#ifdef DEBUG_SIM
        for (i=0;i<eNB2UE[eNB_id][UE_id]->channel_length;i++)
314
          printf("ch(%d,%d)[%d] : (%f,%f)\n",eNB_id,UE_id,i,eNB2UE[eNB_id][UE_id]->ch[0][i].x,eNB2UE[eNB_id][UE_id]->ch[0][i].y);
315 316 317 318 319 320 321 322 323
#endif

        LOG_D(OCM,"[SIM][DL] Channel eNB %d => UE %d : tx_power %f dBm, path_loss %f dB\n",
              eNB_id,UE_id,
              (double)PHY_vars_eNB_g[eNB_id]->lte_frame_parms.pdsch_config_common.referenceSignalPower,
              //	       enb_data[eNB_id]->tx_power_dBm,
              eNB2UE[eNB_id][UE_id]->path_loss_dB);

#ifdef DEBUG_SIM      
324 325
        rx_pwr = signal_energy_fp(r_re0,r_im0,nb_antennas_rx,512,0)*512.0/300.0;
        LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr %f dBm for slot %d (subframe %d)\n",UE_id,10*log10(rx_pwr),next_slot,next_slot>>1);
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
#endif      

        if (eNB2UE[eNB_id][UE_id]->first_run == 1)
          eNB2UE[eNB_id][UE_id]->first_run = 0;


        // RF model
#ifdef DEBUG_SIM
        LOG_D(OCM,"[SIM][DL] UE %d : rx_gain %d dB for slot %d (subframe %d)\n",UE_id,PHY_vars_UE_g[UE_id]->rx_total_gain_dB,next_slot,next_slot>>1);
#endif
        /*
	rf_rx(r_re0,
	      r_im0,
	      NULL,
	      NULL,
	      0,
	      nb_antennas_rx,
	      frame_parms->samples_per_tti>>1,
	      1e3/eNB2UE[eNB_id][UE_id]->BW,  // sampling time (ns)
	      0.0,               // freq offset (Hz) (-20kHz..20kHz)
	      0.0,               // drift (Hz) NOT YET IMPLEMENTED
	      ue_data[UE_id]->rx_noise_level,                // noise_figure NOT YET IMPLEMENTED
	      (double)PHY_vars_UE_g[UE_id]->rx_total_gain_dB - 66.227,   // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)
	      200.0,               // IP3_dBm (dBm)
	      &eNB2UE[eNB_id][UE_id]->ip,               // initial phase
	      30.0e3,            // pn_cutoff (kHz)
	      -500.0,            // pn_amp (dBc) default: 50
	      0.0,               // IQ imbalance (dB),
	      0.0);              // IQ phase imbalance (rad)
	*/

        rf_rx_simple(r_re0,
                     r_im0,
                     nb_antennas_rx,
                     frame_parms->samples_per_tti>>1,
                     1e3/eNB2UE[eNB_id][UE_id]->BW,  // sampling time (ns)
                     (double)PHY_vars_UE_g[UE_id]->rx_total_gain_dB - 66.227);   // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)

#ifdef DEBUG_SIM    
365 366
        rx_pwr = signal_energy_fp(r_re0,r_im0,nb_antennas_rx,frame_parms->ofdm_symbol_size,0)*512.0/300;
        LOG_D(OCM,"[SIM][DL] UE %d : ADC in (eNB %d) %f dB for slot %d (subframe %d)\n",
367 368 369 370 371 372 373 374 375 376 377 378
               UE_id,eNB_id,
               10*log10(rx_pwr),next_slot,next_slot>>1);
#endif    	
        for (i=0;i<(frame_parms->samples_per_tti>>1);i++) {
          for (aa=0;aa<nb_antennas_rx;aa++) {
            r_re[aa][i]+=r_re0[aa][i];
            r_im[aa][i]+=r_im0[aa][i];
          }
        }

      }      
#ifdef DEBUG_SIM    
379 380
      rx_pwr = signal_energy_fp(r_re,r_im,nb_antennas_rx,frame_parms->ofdm_symbol_size,0)*512.0/300.0;
      LOG_D(OCM,"[SIM][DL] UE %d : ADC in %f dB for slot %d (subframe %d)\n",UE_id,10*log10(rx_pwr),next_slot,next_slot>>1);  
381 382 383 384 385 386 387 388 389 390 391 392 393 394
#endif    

      rxdata = PHY_vars_UE_g[UE_id]->lte_ue_common_vars.rxdata;
      slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
      
      adc(r_re,
	  r_im,
	  0,
	  slot_offset,
	  rxdata,
	  nb_antennas_rx,
	  frame_parms->samples_per_tti>>1,
	  12);
      
395
#ifdef DEBUG_SIM
396
      rx_pwr2 = signal_energy(rxdata[0]+slot_offset,512)*512.0/300.0;
397
      LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr (ADC out) %f dB (%d) for slot %d (subframe %d), writing to %p\n",UE_id, 10*log10((double)rx_pwr2),rx_pwr2,next_slot,next_slot>>1,rxdata);  
398 399 400 401
#else
      UNUSED_VARIABLE(rx_pwr2);
      UNUSED_VARIABLE(tx_pwr);
      UNUSED_VARIABLE(rx_pwr);
402 403 404 405 406 407 408 409 410 411
#endif
    //}// UE_index loop
  }

}


void do_UL_sig(double **r_re0,double **r_im0,double **r_re,double **r_im,double **s_re,double **s_im,channel_desc_t *UE2eNB[NUMBER_OF_UE_MAX][NUMBER_OF_eNB_MAX],node_desc_t *enb_data[NUMBER_OF_eNB_MAX],node_desc_t *ue_data[NUMBER_OF_UE_MAX],u16 next_slot,u8 abstraction_flag,LTE_DL_FRAME_PARMS *frame_parms, u32 frame) {

  s32 **txdata,**rxdata;
412
#ifdef PHY_ABSTRACTION_UL
413
  s32 att_eNB_id=-1;
414
#endif
415 416 417 418 419 420 421 422 423
  u8 eNB_id=0,UE_id=0;

  u8 nb_antennas_rx = UE2eNB[0][0]->nb_rx; // number of rx antennas at eNB
  u8 nb_antennas_tx = UE2eNB[0][0]->nb_tx; // number of tx antennas at UE

  double tx_pwr, rx_pwr;
  s32 rx_pwr2;
  u32 i,aa;
  u32 slot_offset,slot_offset_meas;
424

425
  u8 hold_channel=0;
426 427 428

#ifdef PHY_ABSTRACTION_UL
  double min_path_loss=-200;
429
  u16 ul_nb_rb=0 ;
430
  u16 ul_fr_rb=0;
431 432 433 434 435
  int ulnbrb2 ;
  int ulfrrb2 ;
  u8 harq_pid;
  int subframe = (next_slot>>1);
#endif  
436

437
  /*
438 439
  if (next_slot==4) 
    hold_channel = 0;
440 441 442 443 444
  else
    hold_channel = 1;
  */

  if (abstraction_flag!=0)  {
445
#ifdef PHY_ABSTRACTION_UL
446
   for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) 
447 448 449
    {
      for (UE_id=0;UE_id<NB_UE_INST;UE_id++) 
      {
450 451 452 453 454 455 456 457 458 459 460
	if (!hold_channel) {
	  random_channel(UE2eNB[UE_id][eNB_id],abstraction_flag);
	  freq_channel(UE2eNB[UE_id][eNB_id], frame_parms->N_RB_UL,frame_parms->N_RB_UL*12+1);
	  
	  // REceived power at the eNB
	  rx_pwr = signal_energy_fp2(UE2eNB[UE_id][eNB_id]->ch[0],
				     UE2eNB[UE_id][eNB_id]->channel_length)*UE2eNB[UE_id][att_eNB_id]->channel_length; // calculate the rx power at the eNB
	}

	//  write_output("SINRch.m","SINRch",PHY_vars_eNB_g[att_eNB_id]->sinr_dB_eNB,frame_parms->N_RB_UL*12+1,1,1);
	if(subframe>1 && subframe <5)
461 462 463 464 465
          {
            harq_pid = subframe2harq_pid(frame_parms,frame,subframe);
            ul_nb_rb = PHY_vars_eNB_g[att_eNB_id]->ulsch_eNB[(u8)UE_id]->harq_processes[harq_pid]->nb_rb;
            ul_fr_rb = PHY_vars_eNB_g[att_eNB_id]->ulsch_eNB[(u8)UE_id]->harq_processes[harq_pid]->first_rb;
          }
466 467
	
	if(ul_nb_rb>1 && (ul_fr_rb < 25 && ul_fr_rb > -1))
468 469 470 471
          {
            number_rb_ul = ul_nb_rb;
            first_rbUL = ul_fr_rb;
            init_snr_up(UE2eNB[UE_id][att_eNB_id],enb_data[att_eNB_id], ue_data[UE_id],PHY_vars_eNB_g[att_eNB_id]->sinr_dB,&PHY_vars_UE_g[att_eNB_id]->N0,ul_nb_rb,ul_fr_rb);
472
	    
473
          }
474 475
      } //UE_id
    } //eNB_id
476
#else
477 478 479
/* the following functions are not needed */
/*  
if (abstraction_flag!=0) {
480 481 482 483 484 485 486
    for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
      for (UE_id=0;UE_id<NB_UE_INST;UE_id++) {
	random_channel(UE2eNB[UE_id][eNB_id]);
	freq_channel(UE2eNB[UE_id][eNB_id], frame_parms->N_RB_UL,2);
      }
    }
  }
487
*/
488
#endif
489
  }
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
  else { //without abstraction

    /*
    for (UE_id=0;UE_id<NB_UE_INST;UE_id++) {
      do_OFDM_mod(PHY_vars_UE_g[UE_id]->lte_ue_common_vars.txdataF,PHY_vars_UE_g[UE_id]->lte_ue_common_vars.txdata,next_slot,&PHY_vars_UE_g[UE_id]->lte_frame_parms);
    }
    */

    for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
      // Clear RX signal for eNB = eNB_id
      for (i=0;i<(frame_parms->samples_per_tti>>1);i++) {
        for (aa=0;aa<nb_antennas_rx;aa++) {
          r_re[aa][i]=0.0;
          r_im[aa][i]=0.0;
        }
      }
      
      // Compute RX signal for eNB = eNB_id
      for (UE_id=0;UE_id<NB_UE_INST;UE_id++){

        txdata = PHY_vars_UE_g[UE_id]->lte_ue_common_vars.txdata;
        frame_parms = &PHY_vars_UE_g[UE_id]->lte_frame_parms;
        slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
        slot_offset_meas = ((next_slot&1)==0) ? slot_offset : (slot_offset-(frame_parms->samples_per_tti>>1));

        if (((double)PHY_vars_UE_g[UE_id]->tx_power_dBm +
             UE2eNB[UE_id][eNB_id]->path_loss_dB) <= -125.0) {

          // don't simulate a UE that is too weak
        }
        else {

          tx_pwr = dac_fixed_gain(s_re,
                                  s_im,
                                  txdata,
                                  slot_offset,
                                  nb_antennas_tx,
                                  frame_parms->samples_per_tti>>1,
                                  slot_offset_meas,
                                  frame_parms->ofdm_symbol_size,
                                  14,
                                  PHY_vars_UE_g[UE_id]->tx_power_dBm);
          //ue_data[UE_id]->tx_power_dBm);
#ifdef DEBUG_SIM
534
	  LOG_D(OCM,"[SIM][UL] UE %d tx_pwr %f dBm (target %d dBm) for slot %d (subframe %d, slot_offset %d, slot_offset_meas %d)\n",UE_id,10*log10(tx_pwr),PHY_vars_UE_g[UE_id]->tx_power_dBm,next_slot,next_slot>>1,slot_offset,slot_offset_meas);
535 536 537 538 539 540 541 542
#endif
	  
	  multipath_channel(UE2eNB[UE_id][eNB_id],s_re,s_im,r_re0,r_im0,
			    frame_parms->samples_per_tti>>1,hold_channel);

#ifdef DEBUG_SIM	  
          rx_pwr = signal_energy_fp2(UE2eNB[UE_id][eNB_id]->ch[0],
                                     UE2eNB[UE_id][eNB_id]->channel_length)*UE2eNB[UE_id][eNB_id]->channel_length;
543
          LOG_D(OCM,"[SIM][UL] slot %d Channel UE %d => eNB %d : %f dB (hold %d)\n",next_slot,UE_id,eNB_id,10*log10(rx_pwr),hold_channel);
544 545 546 547
#endif

#ifdef DEBUG_SIM    
	  rx_pwr = signal_energy_fp(r_re0,r_im0,nb_antennas_rx,frame_parms->samples_per_tti>>1,0);
548
	  LOG_D(OCM,"[SIM][UL] eNB %d : rx_pwr %f dB (%f) for slot %d (subframe %d), sptti %d\n",
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
		 eNB_id,10*log10(rx_pwr),rx_pwr,next_slot,next_slot>>1,frame_parms->samples_per_tti);  
#endif


          if (UE2eNB[UE_id][eNB_id]->first_run == 1)
            UE2eNB[UE_id][eNB_id]->first_run = 0;



          for (aa=0;aa<nb_antennas_rx;aa++) {
            for (i=0;i<(frame_parms->samples_per_tti>>1);i++) {
              r_re[aa][i]+=r_re0[aa][i];
              r_im[aa][i]+=r_im0[aa][i];
            }
          }
        }
      } //UE_id
      
      // RF model
      /*
	  rf_rx(r_re0,
	  r_im0,
	  NULL,
	  NULL,
	  0,
	  frame_parms->nb_antennas_rx,
	  frame_parms->samples_per_tti>>1,
	  1e3/UE2eNB[UE_id][eNB_id]->BW,  // sampling time (ns) 
	  0.0,               // freq offset (Hz) (-20kHz..20kHz)
	  0.0,               // drift (Hz) NOT YET IMPLEMENTED
	  enb_data[eNB_id]->rx_noise_level,                // noise_figure NOT YET IMPLEMENTED
	  (double)PHY_vars_eNB_g[eNB_id]->rx_total_gain_eNB_dB - 66.227,   // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)
	  200.0,               // IP3_dBm (dBm)
	  &UE2eNB[UE_id][eNB_id]->ip,               // initial phase
	  30.0e3,            // pn_cutoff (kHz)
	  -500.0,            // pn_amp (dBc) default: 50
	  0.0,               // IQ imbalance (dB),
	  0.0);              // IQ phase imbalance (rad)
	*/
      
      rf_rx_simple(r_re,
                   r_im,
                   nb_antennas_rx,
                   frame_parms->samples_per_tti>>1,
                   1e3/UE2eNB[0][eNB_id]->BW,  // sampling time (ns)
                   (double)PHY_vars_eNB_g[eNB_id]->rx_total_gain_eNB_dB - 66.227);   // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)

#ifdef DEBUG_SIM    
597 598
      rx_pwr = signal_energy_fp(r_re,r_im,nb_antennas_rx,frame_parms->samples_per_tti>>1,0);
      LOG_D(OCM,"[SIM][UL] rx_pwr (ADC in) %f dB for slot %d (subframe %d)\n",10*log10(rx_pwr),next_slot,next_slot>>1);  
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
#endif
      
      rxdata = PHY_vars_eNB_g[eNB_id]->lte_eNB_common_vars.rxdata[0];
      slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
      
      adc(r_re,
          r_im,
          0,
          slot_offset,
          rxdata,
          nb_antennas_rx,
          frame_parms->samples_per_tti>>1,
          12);
      
#ifdef DEBUG_SIM    
614 615
      rx_pwr2 = signal_energy(rxdata[0]+slot_offset,frame_parms->samples_per_tti>>1);
      LOG_D(OCM,"[SIM][UL] eNB %d rx_pwr (ADC out) %f dB (%d) for slot %d (subframe %d)\n",eNB_id,10*log10((double)rx_pwr2),rx_pwr2,next_slot,next_slot>>1);  
616 617 618 619 620
#else
      UNUSED_VARIABLE(tx_pwr);
      UNUSED_VARIABLE(rx_pwr);
      UNUSED_VARIABLE(rx_pwr2);
#endif
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
      
    } // eNB_id
  } // abstraction_flag==0

}


void init_channel_vars(LTE_DL_FRAME_PARMS *frame_parms, double ***s_re,double ***s_im,double ***r_re,double ***r_im,double ***r_re0,double ***r_im0) {

  int i;

  *s_re = malloc(2*sizeof(double*));
  *s_im = malloc(2*sizeof(double*));
  *r_re = malloc(2*sizeof(double*));
  *r_im = malloc(2*sizeof(double*));
  *r_re0 = malloc(2*sizeof(double*));
  *r_im0 = malloc(2*sizeof(double*));


  for (i=0;i<2;i++) {

    (*s_re)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*s_re)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*s_im)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*s_im)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*r_re)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*r_re)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*r_im)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*r_im)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*r_re0)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*r_re0)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*r_im0)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*r_im0)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
  }
}