dci.c 126 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.0  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

/*! \file PHY/LTE_TRANSPORT/dci.c
* \brief Implements PDCCH physical channel TX/RX procedures (36.211) and DCI encoding/decoding (36.212/36.213). Current LTE compliance V8.6 2009-03.
* \author R. Knopp
* \date 2011
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr
* \note
* \warning
*/
#ifdef USER_MODE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#endif
#include "PHY/defs.h"
#include "PHY/extern.h"
#include "SCHED/defs.h"
40
#include "SIMULATION/TOOLS/defs.h" // for taus 
41
#include "PHY/sse_intrin.h"
42

43
#include "assertions.h" 
44 45 46 47

//#define DEBUG_DCI_ENCODING 1
//#define DEBUG_DCI_DECODING 1
//#define DEBUG_PHY
48

49 50
//#undef ALL_AGGREGATION

51 52
//extern uint16_t phich_reg[MAX_NUM_PHICH_GROUPS][3];
//extern uint16_t pcfich_reg[4];
53

54 55
uint32_t check_phich_reg(LTE_DL_FRAME_PARMS *frame_parms,uint32_t kprime,uint8_t lprime,uint8_t mi)
{
56

57 58 59 60
  uint16_t i;
  uint16_t Ngroup_PHICH = (frame_parms->phich_config_common.phich_resource*frame_parms->N_RB_DL)/48;
  uint16_t mprime;
  uint16_t *pcfich_reg = frame_parms->pcfich_reg;
61 62 63 64 65 66 67 68 69 70 71 72 73 74

  if ((lprime>0) && (frame_parms->Ncp==0) )
    return(0);

  //  printf("check_phich_reg : mi %d\n",mi);

  // compute REG based on symbol
  if ((lprime == 0)||
      ((lprime==1)&&(frame_parms->nb_antennas_tx_eNB == 4)))
    mprime = kprime/6;
  else
    mprime = kprime>>2;

  // check if PCFICH uses mprime
75
  if ((lprime==0) &&
76 77 78 79 80
      ((mprime == pcfich_reg[0]) ||
       (mprime == pcfich_reg[1]) ||
       (mprime == pcfich_reg[2]) ||
       (mprime == pcfich_reg[3]))) {
#ifdef DEBUG_DCI_ENCODING
81
    printf("[PHY] REG %d allocated to PCFICH\n",mprime);
82 83 84 85 86 87 88 89 90 91
#endif
    return(1);
  }

  // handle Special subframe case for TDD !!!

  //  printf("Checking phich_reg %d\n",mprime);
  if (mi > 0) {
    if (((frame_parms->phich_config_common.phich_resource*frame_parms->N_RB_DL)%48) > 0)
      Ngroup_PHICH++;
92

93 94 95
    if (frame_parms->Ncp == 1) {
      Ngroup_PHICH<<=1;
    }
96 97 98 99 100 101 102



    for (i=0; i<Ngroup_PHICH; i++) {
      if ((mprime == frame_parms->phich_reg[i][0]) ||
          (mprime == frame_parms->phich_reg[i][1]) ||
          (mprime == frame_parms->phich_reg[i][2]))  {
103
#ifdef DEBUG_DCI_ENCODING
104
        printf("[PHY] REG %d (lprime %d) allocated to PHICH\n",mprime,lprime);
105
#endif
106
        return(1);
107 108 109
      }
    }
  }
110

111 112 113
  return(0);
}

114 115
uint16_t extract_crc(uint8_t *dci,uint8_t dci_len)
{
116

117 118
  uint16_t crc16;
  //  uint8_t i;
119 120

  /*
121 122
  uint8_t crc;
  crc = ((uint16_t *)dci)[DCI_LENGTH>>4];
123 124 125
  printf("crc1: %x, shift %d (DCI_LENGTH %d)\n",crc,DCI_LENGTH&0xf,DCI_LENGTH);
  crc = (crc>>(DCI_LENGTH&0xf));
  // clear crc bits
126 127 128
  ((uint16_t *)dci)[DCI_LENGTH>>4] &= (0xffff>>(16-(DCI_LENGTH&0xf)));
  printf("crc2: %x, dci0 %x\n",crc,((int16_t *)dci)[DCI_LENGTH>>4]);
  crc |= (((uint16_t *)dci)[1+(DCI_LENGTH>>4)])<<(16-(DCI_LENGTH&0xf));
129
  // clear crc bits
130
  (((uint16_t *)dci)[1+(DCI_LENGTH>>4)]) = 0;
131 132
  printf("extract_crc: crc %x\n",crc);
  */
133
#ifdef DEBUG_DCI_DECODING
134
  LOG_I(PHY,"dci_crc (%x,%x,%x), dci_len&0x7=%d\n",dci[dci_len>>3],dci[1+(dci_len>>3)],dci[2+(dci_len>>3)],
135
      dci_len&0x7);
136
#endif
137

138
  if ((dci_len&0x7) > 0) {
139 140
    ((uint8_t *)&crc16)[0] = dci[1+(dci_len>>3)]<<(dci_len&0x7) | dci[2+(dci_len>>3)]>>(8-(dci_len&0x7));
    ((uint8_t *)&crc16)[1] = dci[(dci_len>>3)]<<(dci_len&0x7) | dci[1+(dci_len>>3)]>>(8-(dci_len&0x7));
141
  } else {
142 143
    ((uint8_t *)&crc16)[0] = dci[1+(dci_len>>3)];
    ((uint8_t *)&crc16)[1] = dci[(dci_len>>3)];
144 145
  }

146
#ifdef DEBUG_DCI_DECODING
147
  LOG_I(PHY,"dci_crc =>%x\n",crc16);
148 149 150 151 152
#endif

  //  dci[(dci_len>>3)]&=(0xffff<<(dci_len&0xf));
  //  dci[(dci_len>>3)+1] = 0;
  //  dci[(dci_len>>3)+2] = 0;
153
  return((uint16_t)crc16);
154
  
155 156 157 158
}



159 160
static uint8_t d[3*(MAX_DCI_SIZE_BITS + 16) + 96];
static uint8_t w[3*3*(MAX_DCI_SIZE_BITS+16)];
161

162
void dci_encoding(uint8_t *a,
163 164 165 166 167
                  uint8_t A,
                  uint16_t E,
                  uint8_t *e,
                  uint16_t rnti)
{
168 169


170 171
  uint8_t D = (A + 16);
  uint32_t RCC;
172 173

#ifdef DEBUG_DCI_ENCODING
174
  int32_t i;
175
#endif
176
  // encode dci
177 178

#ifdef DEBUG_DCI_ENCODING
179
  printf("Doing DCI encoding for %d bits, e %p, rnti %x\n",A,e,rnti);
180 181 182 183 184 185 186
#endif

  memset((void *)d,LTE_NULL,96);

  ccodelte_encode(A,2,a,d+96,rnti);

#ifdef DEBUG_DCI_ENCODING
187 188

  for (i=0; i<16+A; i++)
189
    printf("%d : (%d,%d,%d)\n",i,*(d+96+(3*i)),*(d+97+(3*i)),*(d+98+(3*i)));
190

191
#endif
192

193
#ifdef DEBUG_DCI_ENCODING
194
  printf("Doing DCI interleaving for %d coded bits, e %p\n",D*3,e);
195 196 197 198
#endif
  RCC = sub_block_interleaving_cc(D,d+96,w);

#ifdef DEBUG_DCI_ENCODING
199
  printf("Doing DCI rate matching for %d channel bits, RCC %d, e %p\n",E,RCC,e);
200 201 202 203 204 205 206
#endif
  lte_rate_matching_cc(RCC,E,w,e);


}


207
uint8_t *generate_dci0(uint8_t *dci,
208 209 210 211 212 213
                       uint8_t *e,
                       uint8_t DCI_LENGTH,
                       uint8_t aggregation_level,
                       uint16_t rnti)
{

214 215
  uint16_t coded_bits;
  uint8_t dci_flip[8];
216 217

  if (aggregation_level>3) {
218
    printf("dci.c: generate_dci FATAL, illegal aggregation_level %d\n",aggregation_level);
219 220 221 222 223
    return NULL;
  }

  coded_bits = 72 * (1<<aggregation_level);

224 225 226
  /*

  #ifdef DEBUG_DCI_ENCODING
227
  for (i=0;i<1+((DCI_LENGTH+16)/8);i++)
228
    printf("i %d : %x\n",i,dci[i]);
229
  #endif
230
  */
231
  if (DCI_LENGTH<=32) {
232 233 234
    dci_flip[0] = dci[3];
    dci_flip[1] = dci[2];
    dci_flip[2] = dci[1];
235 236
    dci_flip[3] = dci[0];
  } else {
237 238 239 240 241 242 243 244
    dci_flip[0] = dci[7];
    dci_flip[1] = dci[6];
    dci_flip[2] = dci[5];
    dci_flip[3] = dci[4];
    dci_flip[4] = dci[3];
    dci_flip[5] = dci[2];
    dci_flip[6] = dci[1];
    dci_flip[7] = dci[0];
245
#ifdef DEBUG_DCI_ENCODING
246
    printf("DCI => %x,%x,%x,%x,%x,%x,%x,%x\n",
247 248
        dci_flip[0],dci_flip[1],dci_flip[2],dci_flip[3],
        dci_flip[4],dci_flip[5],dci_flip[6],dci_flip[7]);
249
#endif
250
  }
251

252 253 254 255 256
  dci_encoding(dci_flip,DCI_LENGTH,coded_bits,e,rnti);

  return(e+coded_bits);
}

257
uint32_t Y;
258 259 260 261 262 263 264 265

#define CCEBITS 72
#define CCEPERSYMBOL 33  // This is for 1200 RE
#define CCEPERSYMBOL0 22  // This is for 1200 RE
#define DCI_BITS_MAX ((2*CCEPERSYMBOL+CCEPERSYMBOL0)*CCEBITS)
#define Msymb (DCI_BITS_MAX/2)
//#define Mquad (Msymb/4)

266
static uint32_t bitrev_cc_dci[32] = {1,17,9,25,5,21,13,29,3,19,11,27,7,23,15,31,0,16,8,24,4,20,12,28,2,18,10,26,6,22,14,30};
267
static int32_t wtemp[2][Msymb];
268

269
void pdcch_interleaving(LTE_DL_FRAME_PARMS *frame_parms,int32_t **z, int32_t **wbar,uint8_t n_symbols_pdcch,uint8_t mi)
270
{
271

272
  int32_t *wptr,*wptr2,*zptr;
273 274 275 276
  uint32_t Mquad = get_nquad(n_symbols_pdcch,frame_parms,mi);
  uint32_t RCC = (Mquad>>5), ND;
  uint32_t row,col,Kpi,index;
  int32_t i,k,a;
277
#ifdef RM_DEBUG
278
  int32_t nulled=0;
279
#endif
280

281
  //  printf("[PHY] PDCCH Interleaving Mquad %d (Nsymb %d)\n",Mquad,n_symbols_pdcch);
282 283
  if ((Mquad&0x1f) > 0)
    RCC++;
284

285 286 287 288
  Kpi = (RCC<<5);
  ND = Kpi - Mquad;

  k=0;
289 290

  for (col=0; col<32; col++) {
291 292
    index = bitrev_cc_dci[col];

293
    for (row=0; row<RCC; row++) {
294
      //printf("col %d, index %d, row %d\n",col,index,row);
295
      if (index>=ND) {
296
        for (a=0; a<frame_parms->nb_antennas_tx_eNB; a++) {
297
          //printf("a %d k %d\n",a,k);
298 299 300

          wptr = &wtemp[a][k<<2];
          zptr = &z[a][(index-ND)<<2];
301

302
          //printf("wptr=%p, zptr=%p\n",wptr,zptr);
303

304 305 306 307 308
          wptr[0] = zptr[0];
          wptr[1] = zptr[1];
          wptr[2] = zptr[2];
          wptr[3] = zptr[3];
        }
309

310
        k++;
311
      }
312

313 314 315 316 317
      index+=32;
    }
  }

  // permutation
318 319 320
  for (i=0; i<Mquad; i++) {

    for (a=0; a<frame_parms->nb_antennas_tx_eNB; a++) {
321 322 323 324 325 326 327 328 329 330 331 332 333

      //wptr  = &wtemp[a][i<<2];
      //wptr2 = &wbar[a][((i+frame_parms->Nid_cell)%Mquad)<<2];
      wptr = &wtemp[a][((i+frame_parms->Nid_cell)%Mquad)<<2];
      wptr2 = &wbar[a][i<<2];
      wptr2[0] = wptr[0];
      wptr2[1] = wptr[1];
      wptr2[2] = wptr[2];
      wptr2[3] = wptr[3];
    }
  }
}

334 335
void pdcch_demapping(uint16_t *llr,uint16_t *wbar,LTE_DL_FRAME_PARMS *frame_parms,uint8_t num_pdcch_symbols,uint8_t mi)
{
336

337 338 339
  uint32_t i, lprime;
  uint16_t kprime,kprime_mod12,mprime,symbol_offset,tti_offset,tti_offset0;
  int16_t re_offset,re_offset0;
340 341 342 343 344 345 346 347 348

  // This is the REG allocation algorithm from 36-211, second part of Section 6.8.5

  int Msymb2;

  switch (frame_parms->N_RB_DL) {
  case 100:
    Msymb2 = Msymb;
    break;
349

350 351 352
  case 75:
    Msymb2 = 3*Msymb/4;
    break;
353

354 355 356
  case 50:
    Msymb2 = Msymb>>1;
    break;
357

358 359 360
  case 25:
    Msymb2 = Msymb>>2;
    break;
361

362 363 364
  case 15:
    Msymb2 = Msymb*15/100;
    break;
365

366 367 368
  case 6:
    Msymb2 = Msymb*6/100;
    break;
369

370 371 372 373
  default:
    Msymb2 = Msymb>>2;
    break;
  }
374

375 376 377 378 379
  mprime=0;


  re_offset = 0;
  re_offset0 = 0; // counter for symbol with pilots (extracted outside!)
380 381 382

  for (kprime=0; kprime<frame_parms->N_RB_DL*12; kprime++) {
    for (lprime=0; lprime<num_pdcch_symbols; lprime++) {
383

384
      symbol_offset = (uint32_t)frame_parms->N_RB_DL*12*lprime;
385

386 387
      tti_offset = symbol_offset + re_offset;
      tti_offset0 = symbol_offset + re_offset0;
388

389 390
      // if REG is allocated to PHICH, skip it
      if (check_phich_reg(frame_parms,kprime,lprime,mi) == 1) {
391 392 393
	//        printf("dci_demapping : skipping REG %d (RE %d)\n",(lprime==0)?kprime/6 : kprime>>2,kprime);
	if ((lprime == 0)&&((kprime%6)==0))
	  re_offset0+=4;
394
      } else { // not allocated to PHICH/PCFICH
395
	//        printf("dci_demapping: REG %d\n",(lprime==0)?kprime/6 : kprime>>2);
396 397 398 399 400 401 402 403 404
        if (lprime == 0) {
          // first symbol, or second symbol+4 TX antennas skip pilots
          kprime_mod12 = kprime%12;

          if ((kprime_mod12 == 0) || (kprime_mod12 == 6)) {
            // kprime represents REG

            for (i=0; i<4; i++) {
              wbar[mprime] = llr[tti_offset0+i];
405
#ifdef DEBUG_DCI_DECODING
406
              LOG_I(PHY,"PDCCH demapping mprime %d.%d <= llr %d (symbol %d re %d) -> (%d,%d)\n",mprime/4,i,tti_offset0+i,symbol_offset,re_offset0,*(char*)&wbar[mprime],*(1+(char*)&wbar[mprime]));
407
#endif
408 409 410 411 412 413 414 415 416 417 418 419 420
              mprime++;
              re_offset0++;
            }
          }
        } else if ((lprime==1)&&(frame_parms->nb_antennas_tx_eNB == 4)) {
          // LATER!!!!
        } else { // no pilots in this symbol
          kprime_mod12 = kprime%12;

          if ((kprime_mod12 == 0) || (kprime_mod12 == 4) || (kprime_mod12 == 8)) {
            // kprime represents REG
            for (i=0; i<4; i++) {
              wbar[mprime] = llr[tti_offset+i];
421
#ifdef DEBUG_DCI_DECODING
422
              LOG_I(PHY,"PDCCH demapping mprime %d.%d <= llr %d (symbol %d re %d) -> (%d,%d)\n",mprime/4,i,tti_offset+i,symbol_offset,re_offset+i,*(char*)&wbar[mprime],*(1+(char*)&wbar[mprime]));
423
#endif
424 425 426 427
              mprime++;
            }
          }  // is representative
        } // no pilots case
428 429 430 431
      } // not allocated to PHICH/PCFICH

      // Stop when all REGs are copied in
      if (mprime>=Msymb2)
432
        break;
433
    } //lprime loop
434

435 436 437 438 439
    re_offset++;

  } // kprime loop
}

440
static uint16_t wtemp_rx[Msymb];
441 442
void pdcch_deinterleaving(LTE_DL_FRAME_PARMS *frame_parms,uint16_t *z, uint16_t *wbar,uint8_t number_pdcch_symbols,uint8_t mi)
{
443

444
  uint16_t *wptr,*zptr,*wptr2;
445

446 447 448 449
  uint16_t Mquad=get_nquad(number_pdcch_symbols,frame_parms,mi);
  uint32_t RCC = (Mquad>>5), ND;
  uint32_t row,col,Kpi,index;
  int32_t i,k;
450 451 452 453 454


  //  printf("Mquad %d, RCC %d\n",Mquad,RCC);

  if (!z) {
455
    printf("dci.c: pdcch_deinterleaving: FATAL z is Null\n");
456 457
    return;
  }
458

459
  // undo permutation
460
  for (i=0; i<Mquad; i++) {
461 462 463 464 465 466 467
    wptr = &wtemp_rx[((i+frame_parms->Nid_cell)%Mquad)<<2];
    wptr2 = &wbar[i<<2];

    wptr[0] = wptr2[0];
    wptr[1] = wptr2[1];
    wptr[2] = wptr2[2];
    wptr[3] = wptr2[3];
468 469 470 471 472 473 474 475 476 477
    /*    
    printf("pdcch_deinterleaving (%p,%p): quad %d (%d) -> (%d,%d %d,%d %d,%d %d,%d)\n",wptr,wptr2,i,(i+frame_parms->Nid_cell)%Mquad,
	   ((char*)wptr2)[0],
	   ((char*)wptr2)[1],
	   ((char*)wptr2)[2],
	   ((char*)wptr2)[3],
	   ((char*)wptr2)[4],
	   ((char*)wptr2)[5],
	   ((char*)wptr2)[6],
	   ((char*)wptr2)[7]);
478
    */
479 480 481 482 483

  }

  if ((Mquad&0x1f) > 0)
    RCC++;
484

485 486 487 488
  Kpi = (RCC<<5);
  ND = Kpi - Mquad;

  k=0;
489 490

  for (col=0; col<32; col++) {
491 492
    index = bitrev_cc_dci[col];

493
    for (row=0; row<RCC; row++) {
494 495 496 497 498
      //      printf("row %d, index %d, Nd %d\n",row,index,ND);
      if (index>=ND) {



499 500 501 502 503 504 505 506
        wptr = &wtemp_rx[k<<2];
        zptr = &z[(index-ND)<<2];

        zptr[0] = wptr[0];
        zptr[1] = wptr[1];
        zptr[2] = wptr[2];
        zptr[3] = wptr[3];

507
	/*        
508 509 510 511 512 513 514 515 516
        printf("deinterleaving ; k %d, index-Nd %d  => (%d,%d,%d,%d,%d,%d,%d,%d)\n",k,(index-ND),
               ((int8_t *)wptr)[0],
               ((int8_t *)wptr)[1],
               ((int8_t *)wptr)[2],
               ((int8_t *)wptr)[3],
               ((int8_t *)wptr)[4],
               ((int8_t *)wptr)[5],
               ((int8_t *)wptr)[6],
               ((int8_t *)wptr)[7]);
517
	*/
518
        k++;
519
      }
520

521
      index+=32;
522

523 524 525
    }
  }

526
  for (i=0; i<Mquad; i++) {
527
    zptr = &z[i<<2];
528
    /*    
529
    printf("deinterleaving ; quad %d  => (%d,%d,%d,%d,%d,%d,%d,%d)\n",i,
530 531 532 533 534 535 536 537
     ((int8_t *)zptr)[0],
     ((int8_t *)zptr)[1],
     ((int8_t *)zptr)[2],
     ((int8_t *)zptr)[3],
     ((int8_t *)zptr)[4],
     ((int8_t *)zptr)[5],
     ((int8_t *)zptr)[6],
     ((int8_t *)zptr)[7]);
538
    */  
539
  }
540

541 542 543
}


544
int32_t pdcch_qpsk_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
545 546 547 548 549 550 551
                            int32_t **rxdataF_comp,
                            int32_t **rxdataF_comp_i,
                            int32_t **rho_i,
                            int16_t *pdcch_llr16,
                            int16_t *pdcch_llr8in,
                            uint8_t symbol)
{
552

553 554 555 556
  int16_t *rxF=(int16_t*)&rxdataF_comp[0][(symbol*frame_parms->N_RB_DL*12)];
  int16_t *rxF_i=(int16_t*)&rxdataF_comp_i[0][(symbol*frame_parms->N_RB_DL*12)];
  int16_t *rho=(int16_t*)&rho_i[0][(symbol*frame_parms->N_RB_DL*12)];
  int16_t *llr128;
557
  int32_t i;
558
  char *pdcch_llr8;
559
  int16_t *pdcch_llr;
560 561 562 563
  pdcch_llr8 = (char *)&pdcch_llr8in[symbol*frame_parms->N_RB_DL*12];
  pdcch_llr = &pdcch_llr16[symbol*frame_parms->N_RB_DL*12];

  //  printf("dlsch_qpsk_qpsk: symbol %d\n",symbol);
564

565
  llr128 = (int16_t*)pdcch_llr;
566 567

  if (!llr128) {
568
    printf("dlsch_qpsk_qpsk_llr: llr is null, symbol %d\n",symbol);
569 570 571
    return -1;
  }

572 573 574 575
  qpsk_qpsk(rxF,
            rxF_i,
            llr128,
            rho,
576
            frame_parms->N_RB_DL*12);
577 578

  //prepare for Viterbi which accepts 8 bit, but prefers 4 bit, soft input.
579
  for (i=0; i<(frame_parms->N_RB_DL*24); i++) {
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
    if (*pdcch_llr>7)
      *pdcch_llr8=7;
    else if (*pdcch_llr<-8)
      *pdcch_llr8=-8;
    else
      *pdcch_llr8 = (char)(*pdcch_llr);

    pdcch_llr++;
    pdcch_llr8++;
  }

  return(0);
}


595
int32_t pdcch_llr(LTE_DL_FRAME_PARMS *frame_parms,
596 597 598 599
                  int32_t **rxdataF_comp,
                  char *pdcch_llr,
                  uint8_t symbol)
{
600

601 602
  int16_t *rxF= (int16_t*) &rxdataF_comp[0][(symbol*frame_parms->N_RB_DL*12)];
  int32_t i;
603 604 605
  char *pdcch_llr8;

  pdcch_llr8 = &pdcch_llr[2*symbol*frame_parms->N_RB_DL*12];
606

607
  if (!pdcch_llr8) {
608
    printf("pdcch_qpsk_llr: llr is null, symbol %d\n",symbol);
609 610
    return(-1);
  }
611

612
  //    printf("pdcch qpsk llr for symbol %d (pos %d), llr offset %d\n",symbol,(symbol*frame_parms->N_RB_DL*12),pdcch_llr8-pdcch_llr);
613

614
  for (i=0; i<(frame_parms->N_RB_DL*((symbol==0) ? 16 : 24)); i++) {
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

    if (*rxF>31)
      *pdcch_llr8=31;
    else if (*rxF<-32)
      *pdcch_llr8=-32;
    else
      *pdcch_llr8 = (char)(*rxF);

    //    printf("%d %d => %d\n",i,*rxF,*pdcch_llr8);
    rxF++;
    pdcch_llr8++;
  }

  return(0);

}

632
//__m128i avg128P;
633 634

//compute average channel_level on each (TX,RX) antenna pair
635
void pdcch_channel_level(int32_t **dl_ch_estimates_ext,
636 637 638 639
                         LTE_DL_FRAME_PARMS *frame_parms,
                         int32_t *avg,
                         uint8_t nb_rb)
{
640

641 642
  int16_t rb;
  uint8_t aatx,aarx;
643
#if defined(__x86_64__) || defined(__i386__)
644
  __m128i *dl_ch128;
645 646 647 648 649
  __m128i avg128P;
#elif defined(__arm__)
  int16x8_t *dl_ch128;
  int32x4_t *avg128P;
#endif
650 651
  for (aatx=0; aatx<frame_parms->nb_antennas_tx_eNB; aatx++)
    for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
652
      //clear average level
653
#if defined(__x86_64__) || defined(__i386__)
654
      avg128P = _mm_setzero_si128();
655
      dl_ch128=(__m128i *)&dl_ch_estimates_ext[(aatx<<1)+aarx][frame_parms->N_RB_DL*12];
656
#elif defined(__arm__)
657

658
#endif
659 660
      for (rb=0; rb<nb_rb; rb++) {

661
#if defined(__x86_64__) || defined(__i386__)
662 663 664
        avg128P = _mm_add_epi32(avg128P,_mm_madd_epi16(dl_ch128[0],dl_ch128[0]));
        avg128P = _mm_add_epi32(avg128P,_mm_madd_epi16(dl_ch128[1],dl_ch128[1]));
        avg128P = _mm_add_epi32(avg128P,_mm_madd_epi16(dl_ch128[2],dl_ch128[2]));
665
#elif defined(__arm__)
666

667
#endif
668 669 670 671 672 673 674 675
        dl_ch128+=3;
        /*
          if (rb==0) {
          print_shorts("dl_ch128",&dl_ch128[0]);
          print_shorts("dl_ch128",&dl_ch128[1]);
          print_shorts("dl_ch128",&dl_ch128[2]);
          }
        */
676 677
      }

678
      DevAssert( nb_rb );
679 680 681 682
      avg[(aatx<<1)+aarx] = (((int32_t*)&avg128P)[0] +
                             ((int32_t*)&avg128P)[1] +
                             ((int32_t*)&avg128P)[2] +
                             ((int32_t*)&avg128P)[3])/(nb_rb*12);
683

684
      //            printf("Channel level : %d\n",avg[(aatx<<1)+aarx]);
685
    }
686

687
#if defined(__x86_64__) || defined(__i386__)
688 689
  _mm_empty();
  _m_empty();
690
#endif
691 692 693

}

694
#if defined(__x86_64) || defined(__i386__)
695
__m128i mmtmpPD0,mmtmpPD1,mmtmpPD2,mmtmpPD3;
696
#elif defined(__arm__)
697

698
#endif
699
void pdcch_dual_stream_correlation(LTE_DL_FRAME_PARMS *frame_parms,
700 701 702 703 704 705
                                   uint8_t symbol,
                                   int32_t **dl_ch_estimates_ext,
                                   int32_t **dl_ch_estimates_ext_i,
                                   int32_t **dl_ch_rho_ext,
                                   uint8_t output_shift)
{
706

707
  uint16_t rb;
708
#if defined(__x86_64__) || defined(__i386__)
709
  __m128i *dl_ch128,*dl_ch128i,*dl_ch_rho128;
710 711 712
#elif defined(__arm__)

#endif
713
  uint8_t aarx;
714 715 716 717

  //  printf("dlsch_dual_stream_correlation: symbol %d\n",symbol);


718
  for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
719

720
#if defined(__x86_64__) || defined(__i386__)
721 722 723 724
    dl_ch128          = (__m128i *)&dl_ch_estimates_ext[aarx][symbol*frame_parms->N_RB_DL*12];
    dl_ch128i         = (__m128i *)&dl_ch_estimates_ext_i[aarx][symbol*frame_parms->N_RB_DL*12];
    dl_ch_rho128      = (__m128i *)&dl_ch_rho_ext[aarx][symbol*frame_parms->N_RB_DL*12];

725 726 727
#elif defined(__arm__)

#endif
728

729
    for (rb=0; rb<frame_parms->N_RB_DL; rb++) {
730
      // multiply by conjugated channel
731
#if defined(__x86_64__) || defined(__i386__)
732
      mmtmpPD0 = _mm_madd_epi16(dl_ch128[0],dl_ch128i[0]);
733 734
      //  print_ints("re",&mmtmpPD0);

735 736 737 738
      // mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
      mmtmpPD1 = _mm_shufflelo_epi16(dl_ch128[0],_MM_SHUFFLE(2,3,0,1));
      mmtmpPD1 = _mm_shufflehi_epi16(mmtmpPD1,_MM_SHUFFLE(2,3,0,1));
      mmtmpPD1 = _mm_sign_epi16(mmtmpPD1,*(__m128i*)&conjugate[0]);
739
      //  print_ints("im",&mmtmpPD1);
740 741 742
      mmtmpPD1 = _mm_madd_epi16(mmtmpPD1,dl_ch128i[0]);
      // mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpPD0 = _mm_srai_epi32(mmtmpPD0,output_shift);
743
      //  print_ints("re(shift)",&mmtmpPD0);
744
      mmtmpPD1 = _mm_srai_epi32(mmtmpPD1,output_shift);
745
      //  print_ints("im(shift)",&mmtmpPD1);
746 747
      mmtmpPD2 = _mm_unpacklo_epi32(mmtmpPD0,mmtmpPD1);
      mmtmpPD3 = _mm_unpackhi_epi32(mmtmpPD0,mmtmpPD1);
748 749
      //        print_ints("c0",&mmtmpPD2);
      //  print_ints("c1",&mmtmpPD3);
750
      dl_ch_rho128[0] = _mm_packs_epi32(mmtmpPD2,mmtmpPD3);
751

752 753 754
      //print_shorts("rx:",dl_ch128_2);
      //print_shorts("ch:",dl_ch128);
      //print_shorts("pack:",rho128);
755

756 757 758 759 760 761 762 763 764 765 766 767
      // multiply by conjugated channel
      mmtmpPD0 = _mm_madd_epi16(dl_ch128[1],dl_ch128i[1]);
      // mmtmpPD0 contains real part of 4 consecutive outputs (32-bit)
      mmtmpPD1 = _mm_shufflelo_epi16(dl_ch128[1],_MM_SHUFFLE(2,3,0,1));
      mmtmpPD1 = _mm_shufflehi_epi16(mmtmpPD1,_MM_SHUFFLE(2,3,0,1));
      mmtmpPD1 = _mm_sign_epi16(mmtmpPD1,*(__m128i*)conjugate);
      mmtmpPD1 = _mm_madd_epi16(mmtmpPD1,dl_ch128i[1]);
      // mmtmpPD1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpPD0 = _mm_srai_epi32(mmtmpPD0,output_shift);
      mmtmpPD1 = _mm_srai_epi32(mmtmpPD1,output_shift);
      mmtmpPD2 = _mm_unpacklo_epi32(mmtmpPD0,mmtmpPD1);
      mmtmpPD3 = _mm_unpackhi_epi32(mmtmpPD0,mmtmpPD1);
768 769


770 771 772
      dl_ch_rho128[1] =_mm_packs_epi32(mmtmpPD2,mmtmpPD3);
      //print_shorts("rx:",dl_ch128_2+1);
      //print_shorts("ch:",dl_ch128+1);
773
      //print_shorts("pack:",rho128+1);
774 775 776 777 778 779 780 781 782 783 784 785
      // multiply by conjugated channel
      mmtmpPD0 = _mm_madd_epi16(dl_ch128[2],dl_ch128i[2]);
      // mmtmpPD0 contains real part of 4 consecutive outputs (32-bit)
      mmtmpPD1 = _mm_shufflelo_epi16(dl_ch128[2],_MM_SHUFFLE(2,3,0,1));
      mmtmpPD1 = _mm_shufflehi_epi16(mmtmpPD1,_MM_SHUFFLE(2,3,0,1));
      mmtmpPD1 = _mm_sign_epi16(mmtmpPD1,*(__m128i*)conjugate);
      mmtmpPD1 = _mm_madd_epi16(mmtmpPD1,dl_ch128i[2]);
      // mmtmpPD1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpPD0 = _mm_srai_epi32(mmtmpPD0,output_shift);
      mmtmpPD1 = _mm_srai_epi32(mmtmpPD1,output_shift);
      mmtmpPD2 = _mm_unpacklo_epi32(mmtmpPD0,mmtmpPD1);
      mmtmpPD3 = _mm_unpackhi_epi32(mmtmpPD0,mmtmpPD1);
786

787 788 789 790
      dl_ch_rho128[2] = _mm_packs_epi32(mmtmpPD2,mmtmpPD3);
      //print_shorts("rx:",dl_ch128_2+2);
      //print_shorts("ch:",dl_ch128+2);
      //print_shorts("pack:",rho128+2);
791

792 793 794
      dl_ch128+=3;
      dl_ch128i+=3;
      dl_ch_rho128+=3;
795 796


797
#elif defined(__arm__)
798

799 800 801 802
#endif
     }
  }
#if defined(__x86_64__) || defined(__i386__)
803 804
  _mm_empty();
  _m_empty();
805
#endif
806

807 808 809 810
}


void pdcch_detection_mrc_i(LTE_DL_FRAME_PARMS *frame_parms,
811 812 813 814 815 816
                           int32_t **rxdataF_comp,
                           int32_t **rxdataF_comp_i,
                           int32_t **rho,
                           int32_t **rho_i,
                           uint8_t symbol)
{
817

818
  uint8_t aatx;
819

820
#if defined(__x86_64__) || defined(__i386__)
821
  __m128i *rxdataF_comp128_0,*rxdataF_comp128_1,*rxdataF_comp128_i0,*rxdataF_comp128_i1,*rho128_0,*rho128_1,*rho128_i0,*rho128_i1;
822 823 824
#elif defined(__arm__)
  int16x8_t *rxdataF_comp128_0,*rxdataF_comp128_1,*rxdataF_comp128_i0,*rxdataF_comp128_i1,*rho128_0,*rho128_1,*rho128_i0,*rho128_i1;
#endif
825
  int32_t i;
826 827

  if (frame_parms->nb_antennas_rx>1) {
828
    for (aatx=0; aatx<frame_parms->nb_antennas_tx_eNB; aatx++) {
829 830
      //if (frame_parms->mode1_flag && (aatx>0)) break;

831
#if defined(__x86_64__) || defined(__i386__)
832
      rxdataF_comp128_0   = (__m128i *)&rxdataF_comp[(aatx<<1)][symbol*frame_parms->N_RB_DL*12];
833
      rxdataF_comp128_1   = (__m128i *)&rxdataF_comp[(aatx<<1)+1][symbol*frame_parms->N_RB_DL*12];
834 835 836 837
#elif defined(__arm__)
      rxdataF_comp128_0   = (int16x8_t *)&rxdataF_comp[(aatx<<1)][symbol*frame_parms->N_RB_DL*12];
      rxdataF_comp128_1   = (int16x8_t *)&rxdataF_comp[(aatx<<1)+1][symbol*frame_parms->N_RB_DL*12];
#endif
838
      // MRC on each re of rb on MF output
839
      for (i=0; i<frame_parms->N_RB_DL*3; i++) {
840
#if defined(__x86_64__) || defined(__i386__)
841
        rxdataF_comp128_0[i] = _mm_adds_epi16(_mm_srai_epi16(rxdataF_comp128_0[i],1),_mm_srai_epi16(rxdataF_comp128_1[i],1));
842 843 844
#elif defined(__arm__)
        rxdataF_comp128_0[i] = vhaddq_s16(rxdataF_comp128_0[i],rxdataF_comp128_1[i]);
#endif
845 846
      }
    }
847

848
#if defined(__x86_64__) || defined(__i386__)
849 850
    rho128_0 = (__m128i *) &rho[0][symbol*frame_parms->N_RB_DL*12];
    rho128_1 = (__m128i *) &rho[1][symbol*frame_parms->N_RB_DL*12];
851 852 853 854
#elif defined(__arm__)
    rho128_0 = (int16x8_t *) &rho[0][symbol*frame_parms->N_RB_DL*12];
    rho128_1 = (int16x8_t *) &rho[1][symbol*frame_parms->N_RB_DL*12];
#endif
855
    for (i=0; i<frame_parms->N_RB_DL*3; i++) {
856
#if defined(__x86_64__) || defined(__i386__)
857
      rho128_0[i] = _mm_adds_epi16(_mm_srai_epi16(rho128_0[i],1),_mm_srai_epi16(rho128_1[i],1));
858 859 860
#elif defined(__arm__)
      rho128_0[i] = vhaddq_s16(rho128_0[i],rho128_1[i]);
#endif
861
    }
862

863
#if defined(__x86_64__) || defined(__i386__)
864 865
    rho128_i0 = (__m128i *) &rho_i[0][symbol*frame_parms->N_RB_DL*12];
    rho128_i1 = (__m128i *) &rho_i[1][symbol*frame_parms->N_RB_DL*12];
866
    rxdataF_comp128_i0   = (__m128i *)&rxdataF_comp_i[0][symbol*frame_parms->N_RB_DL*12];
867
    rxdataF_comp128_i1   = (__m128i *)&rxdataF_comp_i[1][symbol*frame_parms->N_RB_DL*12];
868 869 870 871 872
#elif defined(__arm__)
    rho128_i0 = (int16x8_t*) &rho_i[0][symbol*frame_parms->N_RB_DL*12];
    rho128_i1 = (int16x8_t*) &rho_i[1][symbol*frame_parms->N_RB_DL*12];
    rxdataF_comp128_i0   = (int16x8_t *)&rxdataF_comp_i[0][symbol*frame_parms->N_RB_DL*12];
    rxdataF_comp128_i1   = (int16x8_t *)&rxdataF_comp_i[1][symbol*frame_parms->N_RB_DL*12];
873

874
#endif
875 876
    // MRC on each re of rb on MF and rho
    for (i=0; i<frame_parms->N_RB_DL*3; i++) {
877
#if defined(__x86_64__) || defined(__i386__)
878 879
      rxdataF_comp128_i0[i] = _mm_adds_epi16(_mm_srai_epi16(rxdataF_comp128_i0[i],1),_mm_srai_epi16(rxdataF_comp128_i1[i],1));
      rho128_i0[i]          = _mm_adds_epi16(_mm_srai_epi16(rho128_i0[i],1),_mm_srai_epi16(rho128_i1[i],1));
880 881 882 883 884
#elif defined(__arm__)
      rxdataF_comp128_i0[i] = vhaddq_s16(rxdataF_comp128_i0[i],rxdataF_comp128_i1[i]);
      rho128_i0[i]          = vhaddq_s16(rho128_i0[i],rho128_i1[i]);

#endif
885 886
    }
  }
887

888
#if defined(__x86_64__) || defined(__i386__)
889 890
  _mm_empty();
  _m_empty();
891
#endif
892 893 894
}


895
void pdcch_extract_rbs_single(int32_t **rxdataF,
896 897 898 899 900 901 902
                              int32_t **dl_ch_estimates,
                              int32_t **rxdataF_ext,
                              int32_t **dl_ch_estimates_ext,
                              uint8_t symbol,
                              uint32_t high_speed_flag,
                              LTE_DL_FRAME_PARMS *frame_parms)
{
903 904


905 906 907
  uint16_t rb,nb_rb=0;
  uint8_t i,j,aarx;
  int32_t *dl_ch0,*dl_ch0_ext,*rxF,*rxF_ext;
908

909 910

  int nushiftmod3 = frame_parms->nushift%3;
911
  uint8_t symbol_mod;
912 913 914

  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;
#ifdef DEBUG_DCI_DECODING
915
  LOG_I(PHY, "extract_rbs_single: symbol_mod %d\n",symbol_mod);
916
#endif
917 918

  for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
919 920 921 922 923

    if (high_speed_flag == 1)
      dl_ch0     = &dl_ch_estimates[aarx][5+(symbol*(frame_parms->ofdm_symbol_size))];
    else
      dl_ch0     = &dl_ch_estimates[aarx][5];
924

925 926 927 928 929
    dl_ch0_ext = &dl_ch_estimates_ext[aarx][symbol*(frame_parms->N_RB_DL*12)];

    rxF_ext   = &rxdataF_ext[aarx][symbol*(frame_parms->N_RB_DL*12)];

    rxF       = &rxdataF[aarx][(frame_parms->first_carrier_offset + (symbol*(frame_parms->ofdm_symbol_size)))];
knopp's avatar
knopp committed
930

931
    if ((frame_parms->N_RB_DL&1) == 0)  { // even number of RBs
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
      for (rb=0; rb<frame_parms->N_RB_DL; rb++) {

        // For second half of RBs skip DC carrier
        if (rb==(frame_parms->N_RB_DL>>1)) {
          rxF       = &rxdataF[aarx][(1 + (symbol*(frame_parms->ofdm_symbol_size)))];

          //dl_ch0++;
        }

        if (symbol_mod>0) {
          memcpy(dl_ch0_ext,dl_ch0,12*sizeof(int32_t));

          for (i=0; i<12; i++) {

            rxF_ext[i]=rxF[i];

          }

          nb_rb++;
          dl_ch0_ext+=12;
          rxF_ext+=12;

          dl_ch0+=12;
          rxF+=12;
        } else {
          j=0;

          for (i=0; i<12; i++) {
            if ((i!=nushiftmod3) &&
                (i!=(nushiftmod3+3)) &&
                (i!=(nushiftmod3+6)) &&
                (i!=(nushiftmod3+9))) {
              rxF_ext[j]=rxF[i];
              //                        printf("extract rb %d, re %d => (%d,%d)\n",rb,i,*(short *)&rxF_ext[j],*(1+(short*)&rxF_ext[j]));
              dl_ch0_ext[j++]=dl_ch0[i];
              //                printf("ch %d => (%d,%d)\n",i,*(short *)&dl_ch0[i],*(1+(short*)&dl_ch0[i]));
            }
          }

          nb_rb++;
          dl_ch0_ext+=8;
          rxF_ext+=8;

          dl_ch0+=12;
          rxF+=12;
        }
978
      }
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
    } else { // Odd number of RBs
      for (rb=0; rb<frame_parms->N_RB_DL>>1; rb++) {

        if (symbol_mod>0) {
          memcpy(dl_ch0_ext,dl_ch0,12*sizeof(int32_t));

          for (i=0; i<12; i++)
            rxF_ext[i]=rxF[i];

          nb_rb++;
          dl_ch0_ext+=12;
          rxF_ext+=12;

          dl_ch0+=12;
          rxF+=12;
        } else {
          j=0;

          for (i=0; i<12; i++) {
            if ((i!=nushiftmod3) &&
                (i!=(nushiftmod3+3)) &&
                (i!=(nushiftmod3+6)) &&
                (i!=(nushiftmod3+9))) {
              rxF_ext[j]=rxF[i];
              //                        printf("extract rb %d, re %d => (%d,%d)\n",rb,i,*(short *)&rxF_ext[j],*(1+(short*)&rxF_ext[j]));
              dl_ch0_ext[j++]=dl_ch0[i];
              //                printf("ch %d => (%d,%d)\n",i,*(short *)&dl_ch0[i],*(1+(short*)&dl_ch0[i]));
            }
          }

          nb_rb++;
          dl_ch0_ext+=8;
          rxF_ext+=8;

          dl_ch0+=12;
          rxF+=12;
        }
1016
      }
1017

1018
      // Do middle RB (around DC)
1019
      //  printf("dlch_ext %d\n",dl_ch0_ext-&dl_ch_estimates_ext[aarx][0]);
1020 1021

      if (symbol_mod==0) {
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
        j=0;

        for (i=0; i<6; i++) {
          if ((i!=nushiftmod3) &&
              (i!=(nushiftmod3+3))) {
            dl_ch0_ext[j]=dl_ch0[i];
            rxF_ext[j++]=rxF[i];
            //              printf("**extract rb %d, re %d => (%d,%d)\n",rb,i,*(short *)&rxF_ext[j-1],*(1+(short*)&rxF_ext[j-1]));
          }
        }

        rxF       = &rxdataF[aarx][((symbol*(frame_parms->ofdm_symbol_size)))];

        for (; i<12; i++) {
          if ((i!=(nushiftmod3+6)) &&
              (i!=(nushiftmod3+9))) {
            dl_ch0_ext[j]=dl_ch0[i];
            rxF_ext[j++]=rxF[(1+i-6)];
            //              printf("**extract rb %d, re %d => (%d,%d)\n",rb,i,*(short *)&rxF_ext[j-1],*(1+(short*)&rxF_ext[j-1]));
          }
        }


        nb_rb++;
        dl_ch0_ext+=8;
        rxF_ext+=8;
        dl_ch0+=12;
        rxF+=7;
        rb++;
      } else {
        for (i=0; i<6; i++) {
          dl_ch0_ext[i]=dl_ch0[i];
          rxF_ext[i]=rxF[i];
        }

        rxF       = &rxdataF[aarx][((symbol*(frame_parms->ofdm_symbol_size)))];

        for (; i<12; i++) {
          dl_ch0_ext[i]=dl_ch0[i];
          rxF_ext[i]=rxF[(1+i-6)];
        }


        nb_rb++;
        dl_ch0_ext+=12;
        rxF_ext+=12;
        dl_ch0+=12;
        rxF+=7;
        rb++;
1071 1072
      }

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
      for (; rb<frame_parms->N_RB_DL; rb++) {
        if (symbol_mod > 0) {
          memcpy(dl_ch0_ext,dl_ch0,12*sizeof(int32_t));

          for (i=0; i<12; i++)
            rxF_ext[i]=rxF[i];

          nb_rb++;
          dl_ch0_ext+=12;
          rxF_ext+=12;

          dl_ch0+=12;
          rxF+=12;
        } else {
          j=0;

          for (i=0; i<12; i++) {
            if ((i!=(nushiftmod3)) &&
                (i!=(nushiftmod3+3)) &&
                (i!=(nushiftmod3+6)) &&
                (i!=(nushiftmod3+9))) {
              rxF_ext[j]=rxF[i];
              //                printf("extract rb %d, re %d => (%d,%d)\n",rb,i,*(short *)&rxF_ext[j],*(1+(short*)&rxF_ext[j]));
              dl_ch0_ext[j++]=dl_ch0[i];
            }
          }

          nb_rb++;
          dl_ch0_ext+=8;
          rxF_ext+=8;

          dl_ch0+=12;
          rxF+=12;
        }
1107 1108 1109 1110 1111
      }
    }
  }
}

1112
void pdcch_extract_rbs_dual(int32_t **rxdataF,
1113 1114 1115 1116 1117 1118 1119 1120
                            int32_t **dl_ch_estimates,
                            int32_t **rxdataF_ext,
                            int32_t **dl_ch_estimates_ext,
                            uint8_t symbol,
                            uint32_t high_speed_flag,
                            LTE_DL_FRAME_PARMS *frame_parms)
{

1121

1122 1123 1124 1125
  uint16_t rb,nb_rb=0;
  uint8_t i,aarx,j;
  int32_t *dl_ch0,*dl_ch0_ext,*dl_ch1,*dl_ch1_ext,*rxF,*rxF_ext;
  uint8_t symbol_mod;
1126 1127 1128 1129
  int nushiftmod3 = frame_parms->nushift%3;

  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;

1130
  for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
1131 1132 1133 1134

    if (high_speed_flag==1) {
      dl_ch0     = &dl_ch_estimates[aarx][5+(symbol*(frame_parms->ofdm_symbol_size))];
      dl_ch1     = &dl_ch_estimates[2+aarx][5+(symbol*(frame_parms->ofdm_symbol_size))];
1135
    } else {
1136 1137 1138
      dl_ch0     = &dl_ch_estimates[aarx][5];
      dl_ch1     = &dl_ch_estimates[2+aarx][5];
    }
1139

1140 1141 1142
    dl_ch0_ext = &dl_ch_estimates_ext[aarx][symbol*(frame_parms->N_RB_DL*12)];
    dl_ch1_ext = &dl_ch_estimates_ext[2+aarx][symbol*(frame_parms->N_RB_DL*12)];

1143
    //    printf("pdcch extract_rbs: rxF_ext pos %d\n",symbol*(frame_parms->N_RB_DL*12));
1144 1145 1146
    rxF_ext   = &rxdataF_ext[aarx][symbol*(frame_parms->N_RB_DL*12)];

    rxF       = &rxdataF[aarx][(frame_parms->first_carrier_offset + (symbol*(frame_parms->ofdm_symbol_size)))];
knopp's avatar
knopp committed
1147

1148
    if ((frame_parms->N_RB_DL&1) == 0)  // even number of RBs
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
      for (rb=0; rb<frame_parms->N_RB_DL; rb++) {

        // For second half of RBs skip DC carrier
        if (rb==(frame_parms->N_RB_DL>>1)) {
          rxF       = &rxdataF[aarx][(1 + (symbol*(frame_parms->ofdm_symbol_size)))];
          //    dl_ch0++;
          //dl_ch1++;
        }

        if (symbol_mod>0) {
          memcpy(dl_ch0_ext,dl_ch0,12*sizeof(int32_t));
          memcpy(dl_ch1_ext,dl_ch1,12*sizeof(int32_t));

          /*
1163
            printf("rb %d\n",rb);
1164
            for (i=0;i<12;i++)
1165 1166
            printf("(%d %d)",((int16_t *)dl_ch0)[i<<1],((int16_t*)dl_ch0)[1+(i<<1)]);
            printf("\n");
1167 1168 1169
          */
          for (i=0; i<12; i++) {
            rxF_ext[i]=rxF[i];
1170
            //      printf("%d : (%d,%d)\n",(rxF+(2*i)-&rxdataF[aarx][( (symbol*(frame_parms->ofdm_symbol_size)))*2])/2,
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
            //  ((int16_t*)&rxF[i<<1])[0],((int16_t*)&rxF[i<<1])[0]);
          }

          nb_rb++;
          dl_ch0_ext+=12;
          dl_ch1_ext+=12;
          rxF_ext+=12;
        } else {
          j=0;

          for (i=0; i<12; i++) {
            if ((i!=nushiftmod3) &&
                (i!=nushiftmod3+3) &&
                (i!=nushiftmod3+6) &&
                (i!=nushiftmod3+9)) {
              rxF_ext[j]=rxF[i];
              //                            printf("extract rb %d, re %d => (%d,%d)\n",rb,i,*(short *)&rxF_ext[j],*(1+(short*)&rxF_ext[j]));
              dl_ch0_ext[j]  =dl_ch0[i];
              dl_ch1_ext[j++]=dl_ch1[i];
            }
          }

          nb_rb++;
          dl_ch0_ext+=8;
          dl_ch1_ext+=8;
          rxF_ext+=8;
        }

        dl_ch0+=12;
        dl_ch1+=12;
        rxF+=12;
1202
      }
1203

1204
    else {  // Odd number of RBs
1205 1206
      for (rb=0; rb<frame_parms->N_RB_DL>>1; rb++) {

1207
        //  printf("rb %d: %d\n",rb,rxF-&rxdataF[aarx][(symbol*(frame_parms->ofdm_symbol_size))*2]);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

        if (symbol_mod>0) {
          memcpy(dl_ch0_ext,dl_ch0,12*sizeof(int32_t));
          memcpy(dl_ch1_ext,dl_ch1,12*sizeof(int32_t));

          for (i=0; i<12; i++)
            rxF_ext[i]=rxF[i];

          nb_rb++;
          dl_ch0_ext+=12;
          dl_ch1_ext+=12;
          rxF_ext+=12;

          dl_ch0+=12;
          dl_ch1+=12;
          rxF+=12;

        } else {
          j=0;

          for (i=0; i<12; i++) {
            if ((i!=nushiftmod3) &&
                (i!=nushiftmod3+3) &&
                (i!=nushiftmod3+6) &&
                (i!=nushiftmod3+9)) {
              rxF_ext[j]=rxF[i];
              //                        printf("extract rb %d, re %d => (%d,%d)\n",rb,i,*(short *)&rxF_ext[j],*(1+(short*)&rxF_ext[j]));
              dl_ch0_ext[j]=dl_ch0[i];
              dl_ch1_ext[j++]=dl_ch1[i];
              //                printf("ch %d => (%d,%d)\n",i,*(short *)&dl_ch0[i],*(1+(short*)&dl_ch0[i]));
            }
          }

          nb_rb++;
          dl_ch0_ext+=8;
          dl_ch1_ext+=8;
          rxF_ext+=8;


          dl_ch0+=12;
          dl_ch1+=12;
          rxF+=12;
        }
      }

      // Do middle RB (around DC)
1254 1255

      if (symbol_mod > 0) {
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
        for (i=0; i<6; i++) {
          dl_ch0_ext[i]=dl_ch0[i];
          dl_ch1_ext[i]=dl_ch1[i];
          rxF_ext[i]=rxF[i];
        }

        rxF       = &rxdataF[aarx][((symbol*(frame_parms->ofdm_symbol_size)))];

        for (; i<12; i++) {
          dl_ch0_ext[i]=dl_ch0[i];
          dl_ch1_ext[i]=dl_ch1[i];
          rxF_ext[i]=rxF[(1+i)];
        }

        nb_rb++;
        dl_ch0_ext+=12;
        dl_ch1_ext+=12;
        rxF_ext+=12;

        dl_ch0+=12;
        dl_ch1+=12;
        rxF+=7;
        rb++;
      } else {
        j=0;

        for (i=0; i<6; i++) {
          if ((i!=nushiftmod3) &&
              (i!=nushiftmod3+3)) {
            dl_ch0_ext[j]=dl_ch0[i];
            dl_ch1_ext[j]=dl_ch1[i];
            rxF_ext[j++]=rxF[i];
            //              printf("**extract rb %d, re %d => (%d,%d)\n",rb,i,*(short *)&rxF_ext[j-1],*(1+(short*)&rxF_ext[j-1]));
          }
        }

        rxF       = &rxdataF[aarx][((symbol*(frame_parms->ofdm_symbol_size)))];

        for (; i<12; i++) {
          if ((i!=nushiftmod3+6) &&
              (i!=nushiftmod3+9)) {
            dl_ch0_ext[j]=dl_ch0[i];
            dl_ch1_ext[j]=dl_ch1[i];
            rxF_ext[j++]=rxF[(1+i-6)];
            //              printf("**extract rb %d, re %d => (%d,%d)\n",rb,i,*(short *)&rxF_ext[j-1],*(1+(short*)&rxF_ext[j-1]));
          }
        }


        nb_rb++;
        dl_ch0_ext+=8;
        dl_ch1_ext+=8;
        rxF_ext+=8;
        dl_ch0+=12;
        dl_ch1+=12;
        rxF+=7;
        rb++;
1313 1314
      }

1315 1316 1317
      for (; rb<frame_parms->N_RB_DL; rb++) {

        if (symbol_mod>0) {
1318
          //  printf("rb %d: %d\n",rb,rxF-&rxdataF[aarx][(symbol*(frame_parms->ofdm_symbol_size))*2]);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
          memcpy(dl_ch0_ext,dl_ch0,12*sizeof(int32_t));
          memcpy(dl_ch1_ext,dl_ch1,12*sizeof(int32_t));

          for (i=0; i<12; i++)
            rxF_ext[i]=rxF[i];

          nb_rb++;
          dl_ch0_ext+=12;
          dl_ch1_ext+=12;
          rxF_ext+=12;

          dl_ch0+=12;
          dl_ch1+=12;
          rxF+=12;
        } else {
          j=0;

          for (i=0; i<12; i++) {
            if ((i!=nushiftmod3) &&
                (i!=nushiftmod3+3) &&
                (i!=nushiftmod3+6) &&
                (i!=nushiftmod3+9)) {
              rxF_ext[j]=rxF[i];
              //                printf("extract rb %d, re %d => (%d,%d)\n",rb,i,*(short *)&rxF_ext[j],*(1+(short*)&rxF_ext[j]));
              dl_ch0_ext[j]=dl_ch0[i];
              dl_ch1_ext[j++]=dl_ch1[i];
            }
          }

          nb_rb++;
          dl_ch0_ext+=8;
          dl_ch1_ext+=8;
          rxF_ext+=8;

          dl_ch0+=12;
          dl_ch1+=12;
          rxF+=12;
        }
1357 1358 1359 1360 1361 1362
      }
    }
  }
}


1363
void pdcch_channel_compensation(int32_t **rxdataF_ext,
1364 1365 1366 1367 1368 1369 1370
                                int32_t **dl_ch_estimates_ext,
                                int32_t **rxdataF_comp,
                                int32_t **rho,
                                LTE_DL_FRAME_PARMS *frame_parms,
                                uint8_t symbol,
                                uint8_t output_shift)
{
1371

1372
  uint16_t rb;
1373
#if defined(__x86_64__) || defined(__i386__)
1374 1375
  __m128i *dl_ch128,*rxdataF128,*rxdataF_comp128;
  __m128i *dl_ch128_2, *rho128;
1376 1377 1378
#elif defined(__arm__)

#endif
1379
  uint8_t aatx,aarx,pilots=0;
1380 1381 1382 1383 1384




#ifdef DEBUG_DCI_DECODING
1385
  LOG_I(PHY, "PDCCH comp: symbol %d\n",symbol);
1386 1387 1388 1389 1390
#endif

  if (symbol==0)
    pilots=1;

1391
  for (aatx=0; aatx<frame_parms->nb_antennas_tx_eNB; aatx++) {
1392 1393
    //if (frame_parms->mode1_flag && aatx>0) break; //if mode1_flag is set then there is only one stream to extract, independent of nb_antennas_tx_eNB

1394
    for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
1395

1396