channel_sim.c 25 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
#include <string.h>
#include <math.h>
#include <unistd.h>
#include <stdint.h>
#include <stdio.h>
#include <time.h>

#include "SIMULATION/TOOLS/defs.h"
#include "SIMULATION/RF/defs.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#include "PHY/extern.h"
#include "MAC_INTERFACE/extern.h"

#ifdef OPENAIR2
#include "LAYER2/MAC/defs.h"
#include "LAYER2/MAC/extern.h"
#include "UTIL/LOG/log_if.h"
#include "UTIL/LOG/log_extern.h"
#include "RRC/LITE/extern.h"
#include "PHY_INTERFACE/extern.h"
#include "UTIL/OCG/OCG.h"
#include "UTIL/OPT/opt.h" // to test OPT
#endif

#include "ARCH/CBMIMO1/DEVICE_DRIVER/extern.h"

#include "UTIL/FIFO/types.h"

#ifdef IFFT_FPGA
#include "PHY/LTE_REFSIG/mod_table.h"
#endif

#include "SCHED/defs.h"
#include "SCHED/extern.h"

#ifdef XFORMS
#include "forms.h"
#include "phy_procedures_sim_form.h"
#endif

#include "oaisim.h"

#define RF
//#define DEBUG_SIM

int number_rb_ul;
int first_rbUL ;

50
extern Signal_buffers_t *signal_buffers_g;
51

52
void do_OFDM_mod(mod_sym_t **txdataF, int32_t **txdata, uint32_t frame,uint16_t next_slot, LTE_DL_FRAME_PARMS *frame_parms) {
53 54 55 56 57 58 59 60 61

  int aa, slot_offset, slot_offset_F;

  slot_offset_F = (next_slot)*(frame_parms->ofdm_symbol_size)*((frame_parms->Ncp==1) ? 6 : 7);
  slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
  
  for (aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
   if (is_pmch_subframe(frame,next_slot>>1,frame_parms)) {
      if ((next_slot%2)==0) {
62
	LOG_D(OCM,"Frame %d, subframe %d: Doing MBSFN modulation (slot_offset %d)\n",frame,next_slot>>1,slot_offset); 
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
	PHY_ofdm_mod(&txdataF[aa][slot_offset_F],        // input
		     &txdata[aa][slot_offset],         // output
		     frame_parms->log2_symbol_size,                // log2_fft_size
		     12,                 // number of symbols
		     frame_parms->ofdm_symbol_size>>2,               // number of prefix samples
		     frame_parms->twiddle_ifft,  // IFFT twiddle factors
		     frame_parms->rev,           // bit-reversal permutation
		     CYCLIC_PREFIX);
     
	if (frame_parms->Ncp == EXTENDED)
	  PHY_ofdm_mod(&txdataF[aa][slot_offset_F],        // input
		       &txdata[aa][slot_offset],         // output
		       frame_parms->log2_symbol_size,                // log2_fft_size
		       2,                 // number of symbols
		       frame_parms->nb_prefix_samples,               // number of prefix samples
		       frame_parms->twiddle_ifft,  // IFFT twiddle factors
		       frame_parms->rev,           // bit-reversal permutation
		       CYCLIC_PREFIX);
	else {
82
	  LOG_D(OCM,"Frame %d, subframe %d: Doing PDCCH modulation\n",frame,next_slot>>1); 
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
	  normal_prefix_mod(&txdataF[aa][slot_offset_F],
			    &txdata[aa][slot_offset],
			    2,
			    frame_parms);
	}      
      }
    }
    else {
      if (frame_parms->Ncp == EXTENDED)
	PHY_ofdm_mod(&txdataF[aa][slot_offset_F],        // input
		     &txdata[aa][slot_offset],         // output
		     frame_parms->log2_symbol_size,                // log2_fft_size
		     6,                 // number of symbols
		     frame_parms->nb_prefix_samples,               // number of prefix samples
		     frame_parms->twiddle_ifft,  // IFFT twiddle factors
		     frame_parms->rev,           // bit-reversal permutation
		     CYCLIC_PREFIX);
      else {
	normal_prefix_mod(&txdataF[aa][slot_offset_F],
			  &txdata[aa][slot_offset],
			  7,
			  frame_parms);
      }
    }  
  }
  
}

void do_DL_sig(double **r_re0,double **r_im0,
               double **r_re,double **r_im,
               double **s_re,double **s_im,
               channel_desc_t *eNB2UE[NUMBER_OF_eNB_MAX][NUMBER_OF_UE_MAX],
               node_desc_t *enb_data[NUMBER_OF_eNB_MAX],
               node_desc_t *ue_data[NUMBER_OF_UE_MAX],
117 118
               uint16_t next_slot,uint8_t abstraction_flag,LTE_DL_FRAME_PARMS *frame_parms,
               uint8_t UE_id) {
119

120 121
  int32_t att_eNB_id=-1;
  int32_t **txdata,**rxdata;
122
  
123
  uint8_t eNB_id=0;
124
  double tx_pwr, rx_pwr;
125 126 127
  int32_t rx_pwr2;
  uint32_t i,aa;
  uint32_t slot_offset,slot_offset_meas;
128 129

  double min_path_loss=-200;
130 131 132 133
  uint8_t hold_channel=0;
  //  uint8_t aatx,aarx;
  uint8_t nb_antennas_rx = eNB2UE[0][0]->nb_rx; // number of rx antennas at UE
  uint8_t nb_antennas_tx = eNB2UE[0][0]->nb_tx; // number of tx antennas at eNB
134

knopp's avatar
knopp committed
135 136 137
  int subframe_sched = ((next_slot>>1) == 0) ? 9 : ((next_slot>>1)-1);

  
138 139 140 141 142 143 144 145
  if (next_slot==0)
    hold_channel = 0;
  else
    hold_channel = 1;

  if (abstraction_flag != 0) {
    //for (UE_id=0;UE_id<NB_UE_INST;UE_id++) {

146
    if (!hold_channel) {
147 148
      // calculate the random channel from each eNB
      for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
149
        random_channel(eNB2UE[eNB_id][UE_id],abstraction_flag);
150 151 152 153 154 155 156 157 158
        /*
	for (i=0;i<eNB2UE[eNB_id][UE_id]->nb_taps;i++)
	  printf("eNB2UE[%d][%d]->a[0][%d] = (%f,%f)\n",eNB_id,UE_id,i,eNB2UE[eNB_id][UE_id]->a[0][i].x,eNB2UE[eNB_id][UE_id]->a[0][i].y);
	*/
        freq_channel(eNB2UE[eNB_id][UE_id], frame_parms->N_RB_DL,frame_parms->N_RB_DL*12+1);
      }

      // find out which eNB the UE is attached to
      for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
159
        if (find_ue(PHY_vars_UE_g[UE_id]->lte_ue_pdcch_vars[0]->crnti,PHY_vars_eNB_g[eNB_id])>=0) {
160 161
          // UE with UE_id is connected to eNb with eNB_id
          att_eNB_id=eNB_id;
162
          LOG_D(OCM,"A: UE attached to eNB (UE%d->eNB%d)\n",UE_id,eNB_id);
163 164 165 166 167 168 169 170 171
        }
      }

      // if UE is not attached yet, find assume its the eNB with the smallest pathloss
      if (att_eNB_id<0) {
        for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
          if (min_path_loss<eNB2UE[eNB_id][UE_id]->path_loss_dB) {
            min_path_loss = eNB2UE[eNB_id][UE_id]->path_loss_dB;
            att_eNB_id=eNB_id;
172
            LOG_D(OCM,"B: UE attached to eNB (UE%d->eNB%d)\n",UE_id,eNB_id);
173 174 175 176 177 178 179 180 181
          }
        }
      }

      if (att_eNB_id<0) {
        LOG_E(OCM,"Cannot find eNB for UE %d, return\n",UE_id);
        return; //exit(-1);
      }
      
182
#ifdef DEBUG_SIM
183 184 185 186 187 188
      rx_pwr = signal_energy_fp2(eNB2UE[att_eNB_id][UE_id]->ch[0],
                                 eNB2UE[att_eNB_id][UE_id]->channel_length)*eNB2UE[att_eNB_id][UE_id]->channel_length;
      LOG_D(OCM,"Channel eNB %d => UE %d : tx_power %d dBm, path_loss %f dB\n",
            att_eNB_id,UE_id,
            PHY_vars_eNB_g[att_eNB_id]->lte_frame_parms.pdsch_config_common.referenceSignalPower,
            eNB2UE[att_eNB_id][UE_id]->path_loss_dB);
189
#endif
190 191 192 193

      //dlsch_abstraction(PHY_vars_UE_g[UE_id]->sinr_dB, rb_alloc, 8);
      // fill in perfect channel estimates
      channel_desc_t *desc1 = eNB2UE[att_eNB_id][UE_id];
194
      int32_t **dl_channel_est = PHY_vars_UE_g[UE_id]->lte_ue_common_vars.dl_ch_estimates[0];
195 196
      //      double scale = pow(10.0,(enb_data[att_eNB_id]->tx_power_dBm + eNB2UE[att_eNB_id][UE_id]->path_loss_dB + (double) PHY_vars_UE_g[UE_id]->rx_total_gain_dB)/20.0);
      double scale = pow(10.0,(PHY_vars_eNB_g[att_eNB_id]->lte_frame_parms.pdsch_config_common.referenceSignalPower+eNB2UE[att_eNB_id][UE_id]->path_loss_dB + (double) PHY_vars_UE_g[UE_id]->rx_total_gain_dB)/20.0);
197 198
      //this factor is not really needed (it was actually wrong in the non abstraction mode)
      //scale = scale * sqrt(512.0/300.0); //TODO: make this variable for all BWs
199 200 201 202 203 204 205 206 207 208 209 210 211 212
      LOG_D(OCM,"scale =%lf (%d dB)\n",scale,(int) (20*log10(scale)));
      // freq_channel(desc1,frame_parms->N_RB_DL,nb_samples);
      //write_output("channel.m","ch",desc1->ch[0],desc1->channel_length,1,8);
      //write_output("channelF.m","chF",desc1->chF[0],nb_samples,1,8);
      int count,count1,a_rx,a_tx;
      for(a_tx=0;a_tx<nb_antennas_tx;a_tx++)
	{ 
	  for (a_rx=0;a_rx<nb_antennas_rx;a_rx++)
	    {
	      //for (count=0;count<frame_parms->symbols_per_tti/2;count++)
	      for (count=0;count<1;count++)
		{ 
		  for (count1=0;count1<frame_parms->N_RB_DL*12;count1++)
		    { 
213 214
		      ((int16_t *) dl_channel_est[(a_tx<<1)+a_rx])[2*count1+(count*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(desc1->chF[a_rx+(a_tx*nb_antennas_rx)][count1].x*scale);
		      ((int16_t *) dl_channel_est[(a_tx<<1)+a_rx])[2*count1+1+(count*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(desc1->chF[a_rx+(a_tx*nb_antennas_rx)][count1].y*scale) ;
215 216 217 218 219
		    }
		}
	    }
	}

220
      /*
221 222
      if(PHY_vars_UE_g[UE_id]->transmission_mode[att_eNB_id]>=5)
	{
223
	  lte_ue_measurements(PHY_vars_UE_g[UE_id],
224 225 226
			      ((next_slot-1)>>1)*frame_parms->samples_per_tti,
			      1,
			      abstraction_flag);
227
	  		      
228 229
	  PHY_vars_eNB_g[att_eNB_id]->dlsch_eNB[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE_g[UE_id]->PHY_measurements,0);
	  //  printf("pmi_alloc in channel sim: %d",PHY_vars_eNB_g[att_eNB_id]->dlsch_eNB[0][0]->pmi_alloc);
230 231 232 233 234
        }
      */		      
      
      // calculate the SNR for the attached eNB (this assumes eNB always uses PMI stored in eNB_UE_stats; to be improved)
      init_snr(eNB2UE[att_eNB_id][UE_id], enb_data[att_eNB_id], ue_data[UE_id], PHY_vars_UE_g[UE_id]->sinr_dB, &PHY_vars_UE_g[UE_id]->N0, PHY_vars_UE_g[UE_id]->transmission_mode[att_eNB_id], PHY_vars_eNB_g[att_eNB_id]->eNB_UE_stats[UE_id].DL_pmi_single,PHY_vars_eNB_g[att_eNB_id]->mu_mimo_mode[UE_id].dl_pow_off);
235 236 237 238 239 240 241

      // calculate sinr here
      for (eNB_id = 0; eNB_id < NB_eNB_INST; eNB_id++) {
        if (att_eNB_id != eNB_id) {
          calculate_sinr(eNB2UE[eNB_id][UE_id], enb_data[eNB_id], ue_data[UE_id], PHY_vars_UE_g[UE_id]->sinr_dB);
        }
      }
242
    } // hold channel
243 244 245 246 247 248 249
  }
  
  else { //abstraction_flag
    /* 
       Call do_OFDM_mod from phy_procedures_eNB_TX function
    */
   
250 251
    for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
      start_meas(&PHY_vars_eNB_g[eNB_id]->ofdm_mod_stats);
252 253
      do_OFDM_mod(PHY_vars_eNB_g[eNB_id]->lte_eNB_common_vars.txdataF[0],
		  PHY_vars_eNB_g[eNB_id]->lte_eNB_common_vars.txdata[0],
knopp's avatar
knopp committed
254
		  PHY_vars_eNB_g[eNB_id]->proc[subframe_sched].frame_tx,next_slot,
255
		  &PHY_vars_eNB_g[eNB_id]->lte_frame_parms);
256
      stop_meas(&PHY_vars_eNB_g[eNB_id]->ofdm_mod_stats);
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    }
   
    //for (UE_id=0;UE_id<NB_UE_INST;UE_id++) {
      // Compute RX signal for UE = UE_id
      /*
      for (i=0;i<(frame_parms->samples_per_tti>>1);i++) {
	for (aa=0;aa<nb_antennas_rx;aa++) {
	  r_re[aa][i]=0.0;
	  r_im[aa][i]=0.0;
	}
      }
      */
      //      printf("r_re[0] %p\n",r_re[0]);
      for (aa=0;aa<nb_antennas_rx;aa++) {
        memset((void*)r_re[aa],0,(frame_parms->samples_per_tti>>1)*sizeof(double));
        memset((void*)r_im[aa],0,(frame_parms->samples_per_tti>>1)*sizeof(double));
      }
      /*
      for (i=0;i<16;i++)
	printf("%f, %X\n",r_re[aa][i],(unsigned long long)r_re[aa][i]);
      */
      for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
        //	if (((double)PHY_vars_UE_g[UE_id]->tx_power_dBm +
        //	     eNB2UE[eNB_id][UE_id]->path_loss_dB) <= -107.0)
        //	  break;
        frame_parms = &PHY_vars_eNB_g[eNB_id]->lte_frame_parms;
        txdata = PHY_vars_eNB_g[eNB_id]->lte_eNB_common_vars.txdata[0];
        slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
        slot_offset_meas = ((next_slot&1)==0) ? slot_offset : (slot_offset-(frame_parms->samples_per_tti>>1));
        tx_pwr = dac_fixed_gain(s_re,
                                s_im,
                                txdata,
                                slot_offset,
                                nb_antennas_tx,
                                frame_parms->samples_per_tti>>1,
                                slot_offset_meas,
                                frame_parms->ofdm_symbol_size,
                                14,
                                //				enb_data[eNB_id]->tx_power_dBm);
                                PHY_vars_eNB_g[eNB_id]->lte_frame_parms.pdsch_config_common.referenceSignalPower);

#ifdef DEBUG_SIM
299
        LOG_D(OCM,"[SIM][DL] eNB %d: tx_pwr %f dBm, for slot %d (subframe %d)\n",
300 301 302 303 304 305 306 307 308 309 310
              eNB_id,
              10*log10(tx_pwr),
              next_slot,
              next_slot>>1);
#endif
        //eNB2UE[eNB_id][UE_id]->path_loss_dB = 0;
        multipath_channel(eNB2UE[eNB_id][UE_id],s_re,s_im,r_re0,r_im0,
                          frame_parms->samples_per_tti>>1,hold_channel);
#ifdef DEBUG_SIM	  
        rx_pwr = signal_energy_fp2(eNB2UE[eNB_id][UE_id]->ch[0],
                                   eNB2UE[eNB_id][UE_id]->channel_length)*eNB2UE[eNB_id][UE_id]->channel_length;
311
        LOG_D(OCM,"[SIM][DL] Channel eNB %d => UE %d : Channel gain %f dB (%f)\n",eNB_id,UE_id,10*log10(rx_pwr),rx_pwr);
312 313 314 315 316
#endif


#ifdef DEBUG_SIM
        for (i=0;i<eNB2UE[eNB_id][UE_id]->channel_length;i++)
317
          printf("ch(%d,%d)[%d] : (%f,%f)\n",eNB_id,UE_id,i,eNB2UE[eNB_id][UE_id]->ch[0][i].x,eNB2UE[eNB_id][UE_id]->ch[0][i].y);
318 319 320 321 322 323 324 325 326
#endif

        LOG_D(OCM,"[SIM][DL] Channel eNB %d => UE %d : tx_power %f dBm, path_loss %f dB\n",
              eNB_id,UE_id,
              (double)PHY_vars_eNB_g[eNB_id]->lte_frame_parms.pdsch_config_common.referenceSignalPower,
              //	       enb_data[eNB_id]->tx_power_dBm,
              eNB2UE[eNB_id][UE_id]->path_loss_dB);

#ifdef DEBUG_SIM      
327 328
        rx_pwr = signal_energy_fp(r_re0,r_im0,nb_antennas_rx,512,0)*512.0/300.0;
        LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr %f dBm for slot %d (subframe %d)\n",UE_id,10*log10(rx_pwr),next_slot,next_slot>>1);
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
#endif      

        if (eNB2UE[eNB_id][UE_id]->first_run == 1)
          eNB2UE[eNB_id][UE_id]->first_run = 0;


        // RF model
#ifdef DEBUG_SIM
        LOG_D(OCM,"[SIM][DL] UE %d : rx_gain %d dB for slot %d (subframe %d)\n",UE_id,PHY_vars_UE_g[UE_id]->rx_total_gain_dB,next_slot,next_slot>>1);
#endif
        /*
	rf_rx(r_re0,
	      r_im0,
	      NULL,
	      NULL,
	      0,
	      nb_antennas_rx,
	      frame_parms->samples_per_tti>>1,
	      1e3/eNB2UE[eNB_id][UE_id]->BW,  // sampling time (ns)
	      0.0,               // freq offset (Hz) (-20kHz..20kHz)
	      0.0,               // drift (Hz) NOT YET IMPLEMENTED
	      ue_data[UE_id]->rx_noise_level,                // noise_figure NOT YET IMPLEMENTED
	      (double)PHY_vars_UE_g[UE_id]->rx_total_gain_dB - 66.227,   // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)
	      200.0,               // IP3_dBm (dBm)
	      &eNB2UE[eNB_id][UE_id]->ip,               // initial phase
	      30.0e3,            // pn_cutoff (kHz)
	      -500.0,            // pn_amp (dBc) default: 50
	      0.0,               // IQ imbalance (dB),
	      0.0);              // IQ phase imbalance (rad)
	*/

        rf_rx_simple(r_re0,
                     r_im0,
                     nb_antennas_rx,
                     frame_parms->samples_per_tti>>1,
                     1e3/eNB2UE[eNB_id][UE_id]->BW,  // sampling time (ns)
                     (double)PHY_vars_UE_g[UE_id]->rx_total_gain_dB - 66.227);   // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)

#ifdef DEBUG_SIM    
368 369
        rx_pwr = signal_energy_fp(r_re0,r_im0,nb_antennas_rx,frame_parms->ofdm_symbol_size,0)*512.0/300;
        LOG_D(OCM,"[SIM][DL] UE %d : ADC in (eNB %d) %f dB for slot %d (subframe %d)\n",
370 371 372 373 374 375 376 377 378 379 380 381
               UE_id,eNB_id,
               10*log10(rx_pwr),next_slot,next_slot>>1);
#endif    	
        for (i=0;i<(frame_parms->samples_per_tti>>1);i++) {
          for (aa=0;aa<nb_antennas_rx;aa++) {
            r_re[aa][i]+=r_re0[aa][i];
            r_im[aa][i]+=r_im0[aa][i];
          }
        }

      }      
#ifdef DEBUG_SIM    
382 383
      rx_pwr = signal_energy_fp(r_re,r_im,nb_antennas_rx,frame_parms->ofdm_symbol_size,0)*512.0/300.0;
      LOG_D(OCM,"[SIM][DL] UE %d : ADC in %f dB for slot %d (subframe %d)\n",UE_id,10*log10(rx_pwr),next_slot,next_slot>>1);  
384 385 386 387 388 389 390 391 392 393 394 395 396 397
#endif    

      rxdata = PHY_vars_UE_g[UE_id]->lte_ue_common_vars.rxdata;
      slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
      
      adc(r_re,
	  r_im,
	  0,
	  slot_offset,
	  rxdata,
	  nb_antennas_rx,
	  frame_parms->samples_per_tti>>1,
	  12);
      
398
#ifdef DEBUG_SIM
399
      rx_pwr2 = signal_energy(rxdata[0]+slot_offset,512)*512.0/300.0;
400
      LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr (ADC out) %f dB (%d) for slot %d (subframe %d), writing to %p\n",UE_id, 10*log10((double)rx_pwr2),rx_pwr2,next_slot,next_slot>>1,rxdata);  
401 402 403 404
#else
      UNUSED_VARIABLE(rx_pwr2);
      UNUSED_VARIABLE(tx_pwr);
      UNUSED_VARIABLE(rx_pwr);
405 406 407 408 409 410 411
#endif
    //}// UE_index loop
  }

}


412
void do_UL_sig(double **r_re0,double **r_im0,double **r_re,double **r_im,double **s_re,double **s_im,channel_desc_t *UE2eNB[NUMBER_OF_UE_MAX][NUMBER_OF_eNB_MAX],node_desc_t *enb_data[NUMBER_OF_eNB_MAX],node_desc_t *ue_data[NUMBER_OF_UE_MAX],uint16_t next_slot,uint8_t abstraction_flag,LTE_DL_FRAME_PARMS *frame_parms, uint32_t frame) {
413

414
  int32_t **txdata,**rxdata;
415
#ifdef PHY_ABSTRACTION_UL
416
  int32_t att_eNB_id=-1;
417
#endif
418
  uint8_t eNB_id=0,UE_id=0;
419

420 421
  uint8_t nb_antennas_rx = UE2eNB[0][0]->nb_rx; // number of rx antennas at eNB
  uint8_t nb_antennas_tx = UE2eNB[0][0]->nb_tx; // number of tx antennas at UE
422 423

  double tx_pwr, rx_pwr;
424 425 426
  int32_t rx_pwr2;
  uint32_t i,aa;
  uint32_t slot_offset,slot_offset_meas;
427

428
  uint8_t hold_channel=0;
429 430 431

#ifdef PHY_ABSTRACTION_UL
  double min_path_loss=-200;
432 433
  uint16_t ul_nb_rb=0 ;
  uint16_t ul_fr_rb=0;
434 435
  int ulnbrb2 ;
  int ulfrrb2 ;
436
  uint8_t harq_pid;
437 438
  int subframe = (next_slot>>1);
#endif  
439

440
  /*
441 442
  if (next_slot==4) 
    hold_channel = 0;
443 444 445 446 447
  else
    hold_channel = 1;
  */

  if (abstraction_flag!=0)  {
448
#ifdef PHY_ABSTRACTION_UL
449
   for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) 
450 451 452
    {
      for (UE_id=0;UE_id<NB_UE_INST;UE_id++) 
      {
453 454 455 456 457 458 459 460 461 462 463
	if (!hold_channel) {
	  random_channel(UE2eNB[UE_id][eNB_id],abstraction_flag);
	  freq_channel(UE2eNB[UE_id][eNB_id], frame_parms->N_RB_UL,frame_parms->N_RB_UL*12+1);
	  
	  // REceived power at the eNB
	  rx_pwr = signal_energy_fp2(UE2eNB[UE_id][eNB_id]->ch[0],
				     UE2eNB[UE_id][eNB_id]->channel_length)*UE2eNB[UE_id][att_eNB_id]->channel_length; // calculate the rx power at the eNB
	}

	//  write_output("SINRch.m","SINRch",PHY_vars_eNB_g[att_eNB_id]->sinr_dB_eNB,frame_parms->N_RB_UL*12+1,1,1);
	if(subframe>1 && subframe <5)
464 465
          {
            harq_pid = subframe2harq_pid(frame_parms,frame,subframe);
466 467
            ul_nb_rb = PHY_vars_eNB_g[att_eNB_id]->ulsch_eNB[(uint8_t)UE_id]->harq_processes[harq_pid]->nb_rb;
            ul_fr_rb = PHY_vars_eNB_g[att_eNB_id]->ulsch_eNB[(uint8_t)UE_id]->harq_processes[harq_pid]->first_rb;
468
          }
469 470
	
	if(ul_nb_rb>1 && (ul_fr_rb < 25 && ul_fr_rb > -1))
471 472 473 474
          {
            number_rb_ul = ul_nb_rb;
            first_rbUL = ul_fr_rb;
            init_snr_up(UE2eNB[UE_id][att_eNB_id],enb_data[att_eNB_id], ue_data[UE_id],PHY_vars_eNB_g[att_eNB_id]->sinr_dB,&PHY_vars_UE_g[att_eNB_id]->N0,ul_nb_rb,ul_fr_rb);
475
	    
476
          }
477 478
      } //UE_id
    } //eNB_id
479
#else
480 481 482
/* the following functions are not needed */
/*  
if (abstraction_flag!=0) {
483 484 485 486 487 488 489
    for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
      for (UE_id=0;UE_id<NB_UE_INST;UE_id++) {
	random_channel(UE2eNB[UE_id][eNB_id]);
	freq_channel(UE2eNB[UE_id][eNB_id], frame_parms->N_RB_UL,2);
      }
    }
  }
490
*/
491
#endif
492
  }
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
  else { //without abstraction

    /*
    for (UE_id=0;UE_id<NB_UE_INST;UE_id++) {
      do_OFDM_mod(PHY_vars_UE_g[UE_id]->lte_ue_common_vars.txdataF,PHY_vars_UE_g[UE_id]->lte_ue_common_vars.txdata,next_slot,&PHY_vars_UE_g[UE_id]->lte_frame_parms);
    }
    */

    for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
      // Clear RX signal for eNB = eNB_id
      for (i=0;i<(frame_parms->samples_per_tti>>1);i++) {
        for (aa=0;aa<nb_antennas_rx;aa++) {
          r_re[aa][i]=0.0;
          r_im[aa][i]=0.0;
        }
      }
      
      // Compute RX signal for eNB = eNB_id
      for (UE_id=0;UE_id<NB_UE_INST;UE_id++){

        txdata = PHY_vars_UE_g[UE_id]->lte_ue_common_vars.txdata;
        frame_parms = &PHY_vars_UE_g[UE_id]->lte_frame_parms;
        slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
        slot_offset_meas = ((next_slot&1)==0) ? slot_offset : (slot_offset-(frame_parms->samples_per_tti>>1));

        if (((double)PHY_vars_UE_g[UE_id]->tx_power_dBm +
             UE2eNB[UE_id][eNB_id]->path_loss_dB) <= -125.0) {

          // don't simulate a UE that is too weak
        }
        else {

          tx_pwr = dac_fixed_gain(s_re,
                                  s_im,
                                  txdata,
                                  slot_offset,
                                  nb_antennas_tx,
                                  frame_parms->samples_per_tti>>1,
                                  slot_offset_meas,
                                  frame_parms->ofdm_symbol_size,
                                  14,
                                  PHY_vars_UE_g[UE_id]->tx_power_dBm);
          //ue_data[UE_id]->tx_power_dBm);
#ifdef DEBUG_SIM
537
	  LOG_D(OCM,"[SIM][UL] UE %d tx_pwr %f dBm (target %d dBm) for slot %d (subframe %d, slot_offset %d, slot_offset_meas %d)\n",UE_id,10*log10(tx_pwr),PHY_vars_UE_g[UE_id]->tx_power_dBm,next_slot,next_slot>>1,slot_offset,slot_offset_meas);
538 539 540 541 542 543 544 545
#endif
	  
	  multipath_channel(UE2eNB[UE_id][eNB_id],s_re,s_im,r_re0,r_im0,
			    frame_parms->samples_per_tti>>1,hold_channel);

#ifdef DEBUG_SIM	  
          rx_pwr = signal_energy_fp2(UE2eNB[UE_id][eNB_id]->ch[0],
                                     UE2eNB[UE_id][eNB_id]->channel_length)*UE2eNB[UE_id][eNB_id]->channel_length;
546
          LOG_D(OCM,"[SIM][UL] slot %d Channel UE %d => eNB %d : %f dB (hold %d)\n",next_slot,UE_id,eNB_id,10*log10(rx_pwr),hold_channel);
547 548 549 550
#endif

#ifdef DEBUG_SIM    
	  rx_pwr = signal_energy_fp(r_re0,r_im0,nb_antennas_rx,frame_parms->samples_per_tti>>1,0);
551
	  LOG_D(OCM,"[SIM][UL] eNB %d : rx_pwr %f dB (%f) for slot %d (subframe %d), sptti %d\n",
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
		 eNB_id,10*log10(rx_pwr),rx_pwr,next_slot,next_slot>>1,frame_parms->samples_per_tti);  
#endif


          if (UE2eNB[UE_id][eNB_id]->first_run == 1)
            UE2eNB[UE_id][eNB_id]->first_run = 0;



          for (aa=0;aa<nb_antennas_rx;aa++) {
            for (i=0;i<(frame_parms->samples_per_tti>>1);i++) {
              r_re[aa][i]+=r_re0[aa][i];
              r_im[aa][i]+=r_im0[aa][i];
            }
          }
        }
      } //UE_id
      
      // RF model
      /*
	  rf_rx(r_re0,
	  r_im0,
	  NULL,
	  NULL,
	  0,
	  frame_parms->nb_antennas_rx,
	  frame_parms->samples_per_tti>>1,
	  1e3/UE2eNB[UE_id][eNB_id]->BW,  // sampling time (ns) 
	  0.0,               // freq offset (Hz) (-20kHz..20kHz)
	  0.0,               // drift (Hz) NOT YET IMPLEMENTED
	  enb_data[eNB_id]->rx_noise_level,                // noise_figure NOT YET IMPLEMENTED
	  (double)PHY_vars_eNB_g[eNB_id]->rx_total_gain_eNB_dB - 66.227,   // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)
	  200.0,               // IP3_dBm (dBm)
	  &UE2eNB[UE_id][eNB_id]->ip,               // initial phase
	  30.0e3,            // pn_cutoff (kHz)
	  -500.0,            // pn_amp (dBc) default: 50
	  0.0,               // IQ imbalance (dB),
	  0.0);              // IQ phase imbalance (rad)
	*/
      
      rf_rx_simple(r_re,
                   r_im,
                   nb_antennas_rx,
                   frame_parms->samples_per_tti>>1,
                   1e3/UE2eNB[0][eNB_id]->BW,  // sampling time (ns)
                   (double)PHY_vars_eNB_g[eNB_id]->rx_total_gain_eNB_dB - 66.227);   // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)

#ifdef DEBUG_SIM    
600 601
      rx_pwr = signal_energy_fp(r_re,r_im,nb_antennas_rx,frame_parms->samples_per_tti>>1,0);
      LOG_D(OCM,"[SIM][UL] rx_pwr (ADC in) %f dB for slot %d (subframe %d)\n",10*log10(rx_pwr),next_slot,next_slot>>1);  
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
#endif
      
      rxdata = PHY_vars_eNB_g[eNB_id]->lte_eNB_common_vars.rxdata[0];
      slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
      
      adc(r_re,
          r_im,
          0,
          slot_offset,
          rxdata,
          nb_antennas_rx,
          frame_parms->samples_per_tti>>1,
          12);
      
#ifdef DEBUG_SIM    
617 618
      rx_pwr2 = signal_energy(rxdata[0]+slot_offset,frame_parms->samples_per_tti>>1);
      LOG_D(OCM,"[SIM][UL] eNB %d rx_pwr (ADC out) %f dB (%d) for slot %d (subframe %d)\n",eNB_id,10*log10((double)rx_pwr2),rx_pwr2,next_slot,next_slot>>1);  
619 620 621 622 623
#else
      UNUSED_VARIABLE(tx_pwr);
      UNUSED_VARIABLE(rx_pwr);
      UNUSED_VARIABLE(rx_pwr2);
#endif
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
      
    } // eNB_id
  } // abstraction_flag==0

}


void init_channel_vars(LTE_DL_FRAME_PARMS *frame_parms, double ***s_re,double ***s_im,double ***r_re,double ***r_im,double ***r_re0,double ***r_im0) {

  int i;

  *s_re = malloc(2*sizeof(double*));
  *s_im = malloc(2*sizeof(double*));
  *r_re = malloc(2*sizeof(double*));
  *r_im = malloc(2*sizeof(double*));
  *r_re0 = malloc(2*sizeof(double*));
  *r_im0 = malloc(2*sizeof(double*));


  for (i=0;i<2;i++) {

    (*s_re)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*s_re)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*s_im)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*s_im)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*r_re)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*r_re)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*r_im)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*r_im)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*r_re0)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*r_re0)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*r_im0)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*r_im0)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
  }
}