lte-enb.c 59.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/*******************************************************************************
    OpenAirInterface
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is
    included in this distribution in the file called "COPYING". If not,
    see <http://www.gnu.org/licenses/>.

   Contact Information
   OpenAirInterface Admin: openair_admin@eurecom.fr
   OpenAirInterface Tech : openair_tech@eurecom.fr
   OpenAirInterface Dev  : openair4g-devel@lists.eurecom.fr

   Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE

*******************************************************************************/

/*! \file lte-enb.c
 * \brief Top-level threads for eNodeB
 * \author R. Knopp, F. Kaltenberger, Navid Nikaein
 * \date 2012
 * \version 0.1
 * \company Eurecom
 * \email: knopp@eurecom.fr,florian.kaltenberger@eurecom.fr, navid.nikaein@eurecom.fr
 * \note
 * \warning
 */
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sched.h>
#include <linux/sched.h>
#include <signal.h>
#include <execinfo.h>
#include <getopt.h>
#include <sys/sysinfo.h>
#include "rt_wrapper.h"

#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all

#include "assertions.h"
#include "msc.h"

#include "PHY/types.h"

#include "PHY/defs.h"
#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all
//#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all

#include "../../ARCH/COMMON/common_lib.h"

//#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all

71
#include "PHY/LTE_TRANSPORT/if4_tools.h"
72
#include "PHY/LTE_TRANSPORT/if5_tools.h"
73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
#include "PHY/extern.h"
#include "SCHED/extern.h"
#include "LAYER2/MAC/extern.h"

#include "../../SIMU/USER/init_lte.h"

#include "LAYER2/MAC/defs.h"
#include "LAYER2/MAC/extern.h"
#include "LAYER2/MAC/proto.h"
#include "RRC/LITE/extern.h"
#include "PHY_INTERFACE/extern.h"

#ifdef SMBV
#include "PHY/TOOLS/smbv.h"
unsigned short config_frames[4] = {2,9,11,13};
#endif
#include "UTIL/LOG/log_extern.h"
#include "UTIL/OTG/otg_tx.h"
#include "UTIL/OTG/otg_externs.h"
#include "UTIL/MATH/oml.h"
#include "UTIL/LOG/vcd_signal_dumper.h"
#include "UTIL/OPT/opt.h"
#include "enb_config.h"
//#include "PHY/TOOLS/time_meas.h"

#ifndef OPENAIR2
#include "UTIL/OTG/otg_extern.h"
#endif

#if defined(ENABLE_ITTI)
# if defined(ENABLE_USE_MME)
#   include "s1ap_eNB.h"
#ifdef PDCP_USE_NETLINK
#   include "SIMULATION/ETH_TRANSPORT/proto.h"
#endif
# endif
#endif

Rohit Gupta's avatar
Rohit Gupta committed
112 113
#include "T.h"

114 115 116 117 118 119 120 121 122 123
//#define DEBUG_THREADS 1

//#define USRP_DEBUG 1
struct timing_info_t {
  //unsigned int frame, hw_slot, last_slot, next_slot;
  RTIME time_min, time_max, time_avg, time_last, time_now;
  //unsigned int mbox0, mbox1, mbox2, mbox_target;
  unsigned int n_samples;
} timing_info;

124 125
// Fix per CC openair rf/if device update
// extern openair0_device openair0;
126 127 128 129 130 131 132 133 134 135 136 137 138

#if defined(ENABLE_ITTI)
extern volatile int             start_eNB;
extern volatile int             start_UE;
#endif
extern volatile int                    oai_exit;

extern openair0_config_t openair0_cfg[MAX_CARDS];

extern pthread_cond_t sync_cond;
extern pthread_mutex_t sync_mutex;
extern int sync_var;

139
//pthread_t                       main_eNB_thread;
140 141 142

time_stats_t softmodem_stats_mt; // main thread
time_stats_t softmodem_stats_hw; //  hw acquisition
knopp's avatar
knopp committed
143
time_stats_t softmodem_stats_rxtx_sf; // total tx time
144
time_stats_t softmodem_stats_rx_sf; // total rx time
145 146 147
int32_t **rxdata;
int32_t **txdata;

148 149
uint8_t seqno; //sequence number

150 151 152 153 154 155 156 157 158 159
static int                      time_offset[4] = {0,0,0,0};

/* mutex, cond and variable to serialize phy proc TX calls
 * (this mechanism may be relaxed in the future for better
 * performances)
 */
static struct {
  pthread_mutex_t  mutex_phy_proc_tx;
  pthread_cond_t   cond_phy_proc_tx;
  volatile uint8_t phy_proc_CC_id;
160
} sync_phy_proc;
161 162 163

void exit_fun(const char* s);

knopp's avatar
knopp committed
164
void init_eNB(eNB_func_t node_function[], eNB_timing_t node_timing[],int nb_inst,eth_params_t *,int);
165
void stop_eNB(int nb_inst);
166 167


knopp's avatar
knopp committed
168
static inline void thread_top_init(char *thread_name,
169
				   int affinity,
knopp's avatar
knopp committed
170 171 172
				   uint64_t runtime,
				   uint64_t deadline,
				   uint64_t period) {
knopp's avatar
knopp committed
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

  MSC_START_USE();

#ifdef DEADLINE_SCHEDULER
  struct sched_attr attr;

  unsigned int flags = 0;

  attr.size = sizeof(attr);
  attr.sched_flags = 0;
  attr.sched_nice = 0;
  attr.sched_priority = 0;

  attr.sched_policy   = SCHED_DEADLINE;
  attr.sched_runtime  = runtime;
  attr.sched_deadline = deadline;
  attr.sched_period   = period; 

  if (sched_setattr(0, &attr, flags) < 0 ) {
    perror("[SCHED] eNB tx thread: sched_setattr failed\n");
193
    exit_fun("Error setting deadline scheduler");
knopp's avatar
knopp committed
194 195
  }

196
  LOG_I( HW, "[SCHED] eNB %s deadline thread started on CPU %d\n", thread_name,sched_getcpu() );
knopp's avatar
knopp committed
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

#else //LOW_LATENCY
  int policy, s, j;
  struct sched_param sparam;
  char cpu_affinity[1024];
  cpu_set_t cpuset;

  /* Set affinity mask to include CPUs 1 to MAX_CPUS */
  /* CPU 0 is reserved for UHD threads */
  /* CPU 1 is reserved for all RX_TX threads */
  /* Enable CPU Affinity only if number of CPUs >2 */
  CPU_ZERO(&cpuset);

#ifdef CPU_AFFINITY
  if (get_nprocs() > 2)
  {
213 214 215 216
    if (affinity == 0)
      CPU_SET(0,&cpuset);
    else
      for (j = 1; j < get_nprocs(); j++)
knopp's avatar
knopp committed
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        CPU_SET(j, &cpuset);
    s = pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
    if (s != 0)
    {
      perror( "pthread_setaffinity_np");
      exit_fun("Error setting processor affinity");
    }
  }
#endif //CPU_AFFINITY

  /* Check the actual affinity mask assigned to the thread */
  s = pthread_getaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
  if (s != 0) {
    perror( "pthread_getaffinity_np");
    exit_fun("Error getting processor affinity ");
  }
  memset(cpu_affinity,0,sizeof(cpu_affinity));
  for (j = 0; j < CPU_SETSIZE; j++)
    if (CPU_ISSET(j, &cpuset)) {  
      char temp[1024];
      sprintf (temp, " CPU_%d", j);
      strcat(cpu_affinity, temp);
    }

  memset(&sparam, 0, sizeof(sparam));
242
  sparam.sched_priority = sched_get_priority_max(SCHED_FIFO);
knopp's avatar
knopp committed
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
  policy = SCHED_FIFO ; 
  
  s = pthread_setschedparam(pthread_self(), policy, &sparam);
  if (s != 0) {
    perror("pthread_setschedparam : ");
    exit_fun("Error setting thread priority");
  }
  
  s = pthread_getschedparam(pthread_self(), &policy, &sparam);
  if (s != 0) {
    perror("pthread_getschedparam : ");
    exit_fun("Error getting thread priority");
  }

  LOG_I(HW, "[SCHED][eNB] %s started on CPU %d TID %ld, sched_policy = %s , priority = %d, CPU Affinity=%s \n",thread_name,sched_getcpu(),gettid(),
                   (policy == SCHED_FIFO)  ? "SCHED_FIFO" :
                   (policy == SCHED_RR)    ? "SCHED_RR" :
                   (policy == SCHED_OTHER) ? "SCHED_OTHER" :
                   "???",
                   sparam.sched_priority, cpu_affinity );

#endif //LOW_LATENCY

  mlockall(MCL_CURRENT | MCL_FUTURE);

}

knopp's avatar
knopp committed
270
static inline void wait_sync(char *thread_name) {
knopp's avatar
knopp committed
271 272 273 274 275 276 277 278 279 280 281 282 283

  printf( "waiting for sync (%s)\n",thread_name);
  pthread_mutex_lock( &sync_mutex );
  
  while (sync_var<0)
    pthread_cond_wait( &sync_cond, &sync_mutex );
  
  pthread_mutex_unlock(&sync_mutex);
  
  printf( "got sync (%s)\n", thread_name);

}

284 285
void do_OFDM_mod_rt(int subframe,PHY_VARS_eNB *phy_vars_eNB) {
     
286 287
  unsigned int aa,slot_offset, slot_offset_F;
  int dummy_tx_b[7680*4] __attribute__((aligned(32)));
knopp's avatar
knopp committed
288
  int i,j, tx_offset;
289 290
  int slot_sizeF = (phy_vars_eNB->frame_parms.ofdm_symbol_size)*
                   ((phy_vars_eNB->frame_parms.Ncp==1) ? 6 : 7);
knopp's avatar
knopp committed
291 292
  int len,len2;
  int16_t *txdata;
293
//  int CC_id = phy_vars_eNB->proc.CC_id;
294

295 296
  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_ENB_SFGEN , 1 );

297 298
  slot_offset_F = (subframe<<1)*slot_sizeF;

299
  slot_offset = subframe*phy_vars_eNB->frame_parms.samples_per_tti;
300

301 302
  if ((subframe_select(&phy_vars_eNB->frame_parms,subframe)==SF_DL)||
      ((subframe_select(&phy_vars_eNB->frame_parms,subframe)==SF_S))) {
303 304
    //    LOG_D(HW,"Frame %d: Generating slot %d\n",frame,next_slot);

305 306 307
    for (aa=0; aa<phy_vars_eNB->frame_parms.nb_antennas_tx; aa++) {
      if (phy_vars_eNB->frame_parms.Ncp == EXTENDED) {
        PHY_ofdm_mod(&phy_vars_eNB->common_vars.txdataF[0][aa][slot_offset_F],
308
                     dummy_tx_b,
309
                     phy_vars_eNB->frame_parms.ofdm_symbol_size,
310
                     6,
311
                     phy_vars_eNB->frame_parms.nb_prefix_samples,
312
                     CYCLIC_PREFIX);
313 314 315
        PHY_ofdm_mod(&phy_vars_eNB->common_vars.txdataF[0][aa][slot_offset_F+slot_sizeF],
                     dummy_tx_b+(phy_vars_eNB->frame_parms.samples_per_tti>>1),
                     phy_vars_eNB->frame_parms.ofdm_symbol_size,
316
                     6,
317
                     phy_vars_eNB->frame_parms.nb_prefix_samples,
318 319
                     CYCLIC_PREFIX);
      } else {
320
        normal_prefix_mod(&phy_vars_eNB->common_vars.txdataF[0][aa][slot_offset_F],
321 322
                          dummy_tx_b,
                          7,
323
                          &(phy_vars_eNB->frame_parms));
324
	// if S-subframe generate first slot only
325
	if (subframe_select(&phy_vars_eNB->frame_parms,subframe) == SF_DL) 
326 327
	  normal_prefix_mod(&phy_vars_eNB->common_vars.txdataF[0][aa][slot_offset_F+slot_sizeF],
			    dummy_tx_b+(phy_vars_eNB->frame_parms.samples_per_tti>>1),
328
			    7,
329
			    &(phy_vars_eNB->frame_parms));
330 331 332
      }

      // if S-subframe generate first slot only
333 334
      if (subframe_select(&phy_vars_eNB->frame_parms,subframe) == SF_S)
	len = phy_vars_eNB->frame_parms.samples_per_tti>>1;
335
      else
336
	len = phy_vars_eNB->frame_parms.samples_per_tti;
337 338 339 340 341 342 343
      /*
      for (i=0;i<len;i+=4) {
	dummy_tx_b[i] = 0x100;
	dummy_tx_b[i+1] = 0x01000000;
	dummy_tx_b[i+2] = 0xff00;
	dummy_tx_b[i+3] = 0xff000000;
	}*/
knopp's avatar
knopp committed
344 345 346 347 348 349 350 351 352 353 354 355 356 357
      
      if (slot_offset+time_offset[aa]<0) {
	txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti)+tx_offset];
        len2 = -(slot_offset+time_offset[aa]);
	len2 = (len2>len) ? len : len2;
	for (i=0; i<(len2<<1); i++) {
	  txdata[i] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
	}
	if (len2<len) {
	  txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][0];
	  for (j=0; i<(len<<1); i++,j++) {
	    txdata[j++] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
	  }
	}
358
      }  
knopp's avatar
knopp committed
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
      else if ((slot_offset+time_offset[aa]+len)>(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti)) {
	tx_offset = (int)slot_offset+time_offset[aa];
	txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][tx_offset];
	len2 = -tx_offset+LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti;
	for (i=0; i<(len2<<1); i++) {
	  txdata[i] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
	}
	txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][0];
	for (j=0; i<(len<<1); i++,j++) {
	  txdata[j++] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
	}
      }
      else {
	tx_offset = (int)slot_offset+time_offset[aa];
	txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][tx_offset];
374

knopp's avatar
knopp committed
375 376 377 378 379
	for (i=0; i<(len<<1); i++) {
	  txdata[i] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
	}
      }
      
380
     // if S-subframe switch to RX in second subframe
knopp's avatar
knopp committed
381
      /*
382
     if (subframe_select(&phy_vars_eNB->frame_parms,subframe) == SF_S) {
383
       for (i=0; i<len; i++) {
384
	 phy_vars_eNB->common_vars.txdata[0][aa][tx_offset++] = 0x00010001;
385 386
       }
     }
knopp's avatar
knopp committed
387
      */
388
     if ((((phy_vars_eNB->frame_parms.tdd_config==0) ||
389 390 391 392
	   (phy_vars_eNB->frame_parms.tdd_config==1) ||
	   (phy_vars_eNB->frame_parms.tdd_config==2) ||
	   (phy_vars_eNB->frame_parms.tdd_config==6)) && 
	   (subframe==0)) || (subframe==5)) {
393 394 395
       // turn on tx switch N_TA_offset before
       //LOG_D(HW,"subframe %d, time to switch to tx (N_TA_offset %d, slot_offset %d) \n",subframe,phy_vars_eNB->N_TA_offset,slot_offset);
       for (i=0; i<phy_vars_eNB->N_TA_offset; i++) {
396 397 398
         tx_offset = (int)slot_offset+time_offset[aa]+i-phy_vars_eNB->N_TA_offset/2;
         if (tx_offset<0)
           tx_offset += LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti;
399
	 
400 401
         if (tx_offset>=(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti))
           tx_offset -= LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti;
402
	 
403
         phy_vars_eNB->common_vars.txdata[0][aa][tx_offset] = 0x00000000;
404 405 406 407
       }
     }
    }
  }
408 409 410 411
  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_ENB_SFGEN , 0 );
}

void tx_fh_if5(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc) {
412
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TST, proc->timestamp_tx&0xffffffff );
413 414 415
  send_IF5(eNB, proc->timestamp_tx, proc->subframe_tx, &seqno, IF5_RRH_GW_DL);
}

416 417 418 419 420
void tx_fh_if5_mobipass(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc) {
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TST, proc->timestamp_tx&0xffffffff );
  send_IF5(eNB, proc->timestamp_tx, proc->subframe_tx, &seqno, IF5_MOBIPASS); 
}

421 422 423 424
void tx_fh_if4p5(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc) {    
  send_IF4p5(eNB,proc->frame_tx, proc->subframe_tx, IF4p5_PDLFFT, 0);
}

425 426 427 428
void proc_tx_high0(PHY_VARS_eNB *eNB,
		   eNB_rxtx_proc_t *proc,
		   relaying_type_t r_type,
		   PHY_VARS_RN *rn) {
429

knopp's avatar
knopp committed
430 431 432
  int offset = proc == &eNB->proc.proc_rxtx[0] ? 0 : 1;

  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_TX0_ENB+offset, proc->frame_tx );
433
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_TX0_ENB+offset, proc->subframe_tx );
knopp's avatar
knopp committed
434

435
  phy_procedures_eNB_TX(eNB,proc,r_type,rn,1);
436 437 438 439 440 441 442 443 444 445 446 447 448 449

  /* we're done, let the next one proceed */
  if (pthread_mutex_lock(&sync_phy_proc.mutex_phy_proc_tx) != 0) {
    LOG_E(PHY, "[SCHED][eNB] error locking PHY proc mutex for eNB TX proc\n");
    exit_fun("nothing to add");
  }	
  sync_phy_proc.phy_proc_CC_id++;
  sync_phy_proc.phy_proc_CC_id %= MAX_NUM_CCs;
  pthread_cond_broadcast(&sync_phy_proc.cond_phy_proc_tx);
  if (pthread_mutex_unlock(&sync_phy_proc.mutex_phy_proc_tx) != 0) {
    LOG_E(PHY, "[SCHED][eNB] error unlocking PHY proc mutex for eNB TX proc\n");
    exit_fun("nothing to add");
  }

450 451 452 453 454 455
}

void proc_tx_high(PHY_VARS_eNB *eNB,
		  eNB_rxtx_proc_t *proc,
		  relaying_type_t r_type,
		  PHY_VARS_RN *rn) {
456

knopp's avatar
knopp committed
457

458 459 460 461 462 463 464 465 466 467 468 469
  // do PHY high
  proc_tx_high0(eNB,proc,r_type,rn);

  // if TX fronthaul go ahead 
  if (eNB->tx_fh) eNB->tx_fh(eNB,proc);

}

void proc_tx_full(PHY_VARS_eNB *eNB,
		  eNB_rxtx_proc_t *proc,
		  relaying_type_t r_type,
		  PHY_VARS_RN *rn) {
470

471 472 473 474 475 476

  // do PHY high
  proc_tx_high0(eNB,proc,r_type,rn);
  // do OFDM modulation
  do_OFDM_mod_rt(proc->subframe_tx,eNB);
  // if TX fronthaul go ahead 
477 478 479 480 481 482
  if (eNB->tx_fh) eNB->tx_fh(eNB,proc);



}

483 484 485 486
void proc_tx_rru_if4p5(PHY_VARS_eNB *eNB,
		       eNB_rxtx_proc_t *proc,
		       relaying_type_t r_type,
		       PHY_VARS_RN *rn) {
487 488 489 490 491

  uint32_t symbol_number=0;
  uint32_t symbol_mask, symbol_mask_full;
  uint16_t packet_type;

knopp's avatar
knopp committed
492 493 494
  int offset = proc == &eNB->proc.proc_rxtx[0] ? 0 : 1;

  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_TX0_ENB+offset, proc->frame_tx );
495
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_TX0_ENB+offset, proc->subframe_tx );
knopp's avatar
knopp committed
496

497 498 499 500 501
  /// **** recv_IF4 of txdataF from RCC **** ///             
  symbol_number = 0;
  symbol_mask = 0;
  symbol_mask_full = (1<<eNB->frame_parms.symbols_per_tti)-1;
  
knopp's avatar
knopp committed
502

503 504 505 506 507 508 509 510 511
  do { 
    recv_IF4p5(eNB, &proc->frame_tx, &proc->subframe_tx, &packet_type, &symbol_number);
    symbol_mask = symbol_mask | (1<<symbol_number);
  } while (symbol_mask != symbol_mask_full); 

  do_OFDM_mod_rt(proc->subframe_tx, eNB);
}

void proc_tx_rru_if5(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc) {
knopp's avatar
knopp committed
512 513 514
  int offset = proc == &eNB->proc.proc_rxtx[0] ? 0 : 1;

  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_TX0_ENB+offset, proc->frame_tx );
515
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_TX0_ENB+offset, proc->subframe_tx );
516 517
  /// **** recv_IF5 of txdata from BBU **** ///       
  recv_IF5(eNB, &proc->timestamp_tx, proc->subframe_tx, IF5_RRH_GW_DL);
518 519
}

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
int wait_CCs(eNB_rxtx_proc_t *proc) {

  struct timespec wait;

  wait.tv_sec=0;
  wait.tv_nsec=5000000L;

  if (pthread_mutex_timedlock(&sync_phy_proc.mutex_phy_proc_tx,&wait) != 0) {
    LOG_E(PHY, "[SCHED][eNB] error locking PHY proc mutex for eNB TX\n");
    exit_fun("nothing to add");
    return(-1);
  }
  
  // wait for our turn or oai_exit
  while (sync_phy_proc.phy_proc_CC_id != proc->CC_id && !oai_exit) {
    pthread_cond_wait(&sync_phy_proc.cond_phy_proc_tx,
		      &sync_phy_proc.mutex_phy_proc_tx);
  }
  
  if (pthread_mutex_unlock(&sync_phy_proc.mutex_phy_proc_tx) != 0) {
    LOG_E(PHY, "[SCHED][eNB] error unlocking PHY proc mutex for eNB TX\n");
    exit_fun("nothing to add");
    return(-1);
  }
  return(0);
}
546

knopp's avatar
knopp committed
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
static inline int rxtx(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc, char *thread_name) {

  start_meas(&softmodem_stats_rxtx_sf);
  // ****************************************
  // Common RX procedures subframe n
  phy_procedures_eNB_common_RX(eNB);
  
  // UE-specific RX processing for subframe n
  if (eNB->proc_uespec_rx) eNB->proc_uespec_rx(eNB, proc, no_relay );
  
  // *****************************************
  // TX processing for subframe n+4
  // run PHY TX procedures the one after the other for all CCs to avoid race conditions
  // (may be relaxed in the future for performance reasons)
  // *****************************************
562
  //if (wait_CCs(proc)<0) return(-1);
knopp's avatar
knopp committed
563 564 565 566 567 568 569 570 571 572 573 574
  
  if (oai_exit) return(-1);
  
  if (eNB->proc_tx)	eNB->proc_tx(eNB, proc, no_relay, NULL );
  
  if (release_thread(&proc->mutex_rxtx,&proc->instance_cnt_rxtx,thread_name)<0) return(-1);

  stop_meas( &softmodem_stats_rxtx_sf );
  
  return(0);
}

575
/*!
knopp's avatar
knopp committed
576
 * \brief The RX UE-specific and TX thread of eNB.
577 578 579
 * \param param is a \ref eNB_proc_t structure which contains the info what to process.
 * \returns a pointer to an int. The storage is not on the heap and must not be freed.
 */
580 581
static void* eNB_thread_rxtx( void* param ) {

knopp's avatar
knopp committed
582
  static int eNB_thread_rxtx_status;
583

knopp's avatar
knopp committed
584
  eNB_rxtx_proc_t *proc = (eNB_rxtx_proc_t*)param;
585 586
  PHY_VARS_eNB *eNB = PHY_vars_eNB_g[0][proc->CC_id];

knopp's avatar
knopp committed
587 588
  char thread_name[100];

589

590
  // set default return value
knopp's avatar
knopp committed
591
  eNB_thread_rxtx_status = 0;
592

knopp's avatar
knopp committed
593
  sprintf(thread_name,"RXn_TXnp4_%d\n",&eNB->proc.proc_rxtx[0] == proc ? 0 : 1);
594
  thread_top_init(thread_name,1,850000L,1000000L,2000000L);
595 596

  while (!oai_exit) {
knopp's avatar
knopp committed
597
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RXTX0+(proc->subframe_rx&1), 0 );
598

knopp's avatar
knopp committed
599
    if (wait_on_condition(&proc->mutex_rxtx,&proc->cond_rxtx,&proc->instance_cnt_rxtx,thread_name)<0) break;
600

knopp's avatar
knopp committed
601
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RXTX0+(proc->subframe_rx&1), 1 );
602

knopp's avatar
knopp committed
603
    
604
  
605 606
    if (oai_exit) break;

knopp's avatar
knopp committed
607
    if (rxtx(eNB,proc,thread_name) < 0) break;
608

knopp's avatar
knopp committed
609
  } // while !oai_exit
610

knopp's avatar
knopp committed
611
  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RXTX0+(proc->subframe_rx&1), 0 );
612

Raymond Knopp's avatar
Raymond Knopp committed
613
  printf( "Exiting eNB thread RXn_TXnp4\n");
614

knopp's avatar
knopp committed
615 616
  eNB_thread_rxtx_status = 0;
  return &eNB_thread_rxtx_status;
617 618
}

619
#if defined(ENABLE_ITTI) && defined(ENABLE_USE_MME)
620 621 622
/* Wait for eNB application initialization to be complete (eNB registration to MME) */
static void wait_system_ready (char *message, volatile int *start_flag) {
  
623
  static char *indicator[] = {".    ", "..   ", "...  ", ".... ", ".....",
624
			      " ....", "  ...", "   ..", "    .", "     "};
625 626 627 628 629 630 631
  int i = 0;
  
  while ((!oai_exit) && (*start_flag == 0)) {
    LOG_N(EMU, message, indicator[i]);
    fflush(stdout);
    i = (i + 1) % (sizeof(indicator) / sizeof(indicator[0]));
    usleep(200000);
632
  }
633 634
  
  LOG_D(EMU,"\n");
635 636
}
#endif
637

knopp's avatar
knopp committed
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

// asynchronous UL with IF4p5 (RCC,RAU,eNodeB_BBU)
void fh_if5_asynch_UL(PHY_VARS_eNB *eNB,int *frame,int *subframe) {

  eNB_proc_t *proc       = &eNB->proc;
  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;

  recv_IF5(eNB, &proc->timestamp_rx, *subframe, IF5_RRH_GW_UL); 

  proc->subframe_rx = (proc->timestamp_rx/fp->samples_per_tti)%10;
  proc->frame_rx    = (proc->timestamp_rx/(10*fp->samples_per_tti))&1023;

  if (proc->first_rx != 0) {
    proc->first_rx = 0;
    *subframe = proc->subframe_rx;
    *frame    = proc->frame_rx; 
  }
  else {
    if (proc->subframe_rx != *subframe) {
      LOG_E(PHY,"subframe_rx %d is not what we expect %d\n",proc->subframe_rx,*subframe);
      exit_fun("Exiting");
    }
    if (proc->frame_rx != *frame) {
      LOG_E(PHY,"subframe_rx %d is not what we expect %d\n",proc->frame_rx,*frame);  
      exit_fun("Exiting");
    }
  }
} // eNodeB_3GPP_BBU 

// asynchronous UL with IF4p5 (RCC,RAU,eNodeB_BBU)
void fh_if4p5_asynch_UL(PHY_VARS_eNB *eNB,int *frame,int *subframe) {

  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
  eNB_proc_t *proc       = &eNB->proc;

  uint16_t packet_type;
  uint32_t symbol_number,symbol_mask,symbol_mask_full,prach_rx;


  symbol_number = 0;
  symbol_mask = 0;
  symbol_mask_full = (1<<fp->symbols_per_tti)-1;
  prach_rx = 0;

  do {   // Blocking, we need a timeout on this !!!!!!!!!!!!!!!!!!!!!!!
    recv_IF4p5(eNB, &proc->frame_rx, &proc->subframe_rx, &packet_type, &symbol_number);
    if (proc->first_rx != 0) {
      *frame = proc->frame_rx;
      *subframe = proc->subframe_rx;
      proc->first_rx = 0;
    }
    else {
      if (proc->frame_rx != *frame) {
	LOG_E(PHY,"frame_rx %d is not what we expect %d\n",proc->frame_rx,*frame);
	exit_fun("Exiting");
      }
      if (proc->subframe_rx != *subframe) {
	LOG_E(PHY,"subframe_rx %d is not what we expect %d\n",proc->subframe_rx,*subframe);
	exit_fun("Exiting");
      }
    }
    if (packet_type == IF4p5_PULFFT) {
      symbol_mask = symbol_mask | (1<<symbol_number);
      prach_rx = (is_prach_subframe(fp, proc->frame_rx, proc->subframe_rx)>0) ? 1 : 0;                            
    } else if (packet_type == IF4p5_PRACH) {
      prach_rx = 0;
    }
  } while( (symbol_mask != symbol_mask_full) || (prach_rx == 1));    
  

} 


void fh_if5_asynch_DL(PHY_VARS_eNB *eNB,int *frame,int *subframe) {

  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
  eNB_proc_t *proc       = &eNB->proc;
  int subframe_tx,frame_tx;
  openair0_timestamp timestamp_tx;

  recv_IF5(eNB, &timestamp_tx, *subframe, IF5_RRH_GW_DL); 
      //      printf("Received subframe %d (TS %llu) from RCC\n",subframe_tx,timestamp_tx);

  subframe_tx = (timestamp_tx/fp->samples_per_tti)%10;
  frame_tx    = (timestamp_tx/(fp->samples_per_tti*10))&1023;

  if (proc->first_tx != 0) {
    *subframe = subframe_tx;
    *frame    = frame_tx;
    proc->first_tx = 0;
  }
  else {
    if (subframe_tx != *subframe) {
      LOG_E(PHY,"subframe_tx %d is not what we expect %d\n",subframe_tx,*subframe);
      exit_fun("Exiting");
    }
    if (frame_tx != *frame) { 
      LOG_E(PHY,"frame_tx %d is not what we expect %d\n",frame_tx,*frame);
      exit_fun("Exiting");
    }
  }
}

void fh_if4p5_asynch_DL(PHY_VARS_eNB *eNB,int *frame,int *subframe) {

  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
  eNB_proc_t *proc       = &eNB->proc;

  uint16_t packet_type;
  uint32_t symbol_number,symbol_mask,symbol_mask_full;
  int subframe_tx,frame_tx;

  symbol_number = 0;
  symbol_mask = 0;
  symbol_mask_full = (1<<fp->symbols_per_tti)-1;

  do {   // Blocking, we need a timeout on this !!!!!!!!!!!!!!!!!!!!!!!
    recv_IF4p5(eNB, &frame_tx, &subframe_tx, &packet_type, &symbol_number);
    if (proc->first_tx != 0) {
      *frame    = frame_tx;
      *subframe = subframe_tx;
      proc->first_tx = 0;
    }
    else {
      if (frame_tx != *frame) {
	LOG_E(PHY,"frame_tx %d is not what we expect %d\n",frame_tx,*frame);
	exit_fun("Exiting");
      }
      if (subframe_tx != *subframe) {
	LOG_E(PHY,"subframe_tx %d is not what we expect %d\n",subframe_tx,*subframe);
	exit_fun("Exiting");
      }
    }
    if (packet_type == IF4p5_PDLFFT) {
      symbol_mask = symbol_mask | (1<<symbol_number);
    }
    else {
      LOG_E(PHY,"Illegal IF4p5 packet type (should only be IF4p5_PDLFFT%d\n",packet_type);
      exit_fun("Exiting");
    }
  } while (symbol_mask != symbol_mask_full);    
  
  do_OFDM_mod_rt(subframe_tx, eNB);
} 

783
/*!
784
 * \brief The Asynchronous RX/TX FH thread of RAU/RCC/eNB/RRU.
785 786 787 788
 * This handles the RX FH for an asynchronous RRU/UE
 * \param param is a \ref eNB_proc_t structure which contains the info what to process.
 * \returns a pointer to an int. The storage is not on the heap and must not be freed.
 */
789
static void* eNB_thread_asynch_rxtx( void* param ) {
790

791
  static int eNB_thread_asynch_rxtx_status;
792

793 794
  eNB_proc_t *proc = (eNB_proc_t*)param;
  PHY_VARS_eNB *eNB = PHY_vars_eNB_g[0][proc->CC_id];
knopp's avatar
knopp committed
795 796


knopp's avatar
knopp committed
797
  int subframe=0, frame=0; 
798

799
  thread_top_init("thread_asynch",1,870000L,1000000L,1000000L);
800 801 802

  // wait for top-level synchronization and do one acquisition to get timestamp for setting frame/subframe

knopp's avatar
knopp committed
803
  wait_sync("thread_asynch");
804

805 806
  // wait for top-level synchronization and do one acquisition to get timestamp for setting frame/subframe
  printf( "waiting for devices (eNB_thread_asynch_rx)\n");
807

knopp's avatar
knopp committed
808
  wait_on_condition(&proc->mutex_asynch_rxtx,&proc->cond_asynch_rxtx,&proc->instance_cnt_asynch_rxtx,"thread_asynch");
809

810 811 812
  printf( "devices ok (eNB_thread_asynch_rx)\n");


knopp's avatar
knopp committed
813 814 815
  while (!oai_exit) { 
   
    if (oai_exit) break;   
816

knopp's avatar
knopp committed
817 818 819 820 821 822 823
    if (subframe==9) { 
      subframe=0;
      frame++;
      frame&=1023;
    } else {
      subframe++;
    }      
824

knopp's avatar
knopp committed
825 826 827
    if (eNB->fh_asynch) eNB->fh_asynch(eNB,&frame,&subframe);
    else AssertFatal(1==0, "Unknown eNB->node_function %d",eNB->node_function);
    
828
  }
829

830 831
  eNB_thread_asynch_rxtx_status=0;
  return(&eNB_thread_asynch_rxtx_status);
832
}
833

834

knopp's avatar
knopp committed
835 836 837 838 839 840



void rx_rf(PHY_VARS_eNB *eNB,int *frame,int *subframe) {

  eNB_proc_t *proc = &eNB->proc;
841 842 843 844
  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
  void *rxp[fp->nb_antennas_rx],*txp[fp->nb_antennas_tx]; 
  unsigned int rxs,txs;
  int i;
845
  int tx_sfoffset = 3;//(eNB->single_thread_flag == 1) ? 3 : 3;
846 847
  if (proc->first_rx==0) {
    
848
    // Transmit TX buffer based on timestamp from RX
849
    //    printf("trx_write -> USRP TS %llu (sf %d)\n", (proc->timestamp_rx+(3*fp->samples_per_tti)),(proc->subframe_rx+2)%10);
850
    VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TST, (proc->timestamp_rx+(tx_sfoffset*fp->samples_per_tti)-openair0_cfg[0].tx_sample_advance)&0xffffffff );
851 852 853 854
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE, 1 );
    // prepare tx buffer pointers
	
    for (i=0; i<fp->nb_antennas_tx; i++)
855
      txp[i] = (void*)&eNB->common_vars.txdata[0][i][((proc->subframe_rx+tx_sfoffset)%10)*fp->samples_per_tti];
856 857
    
    txs = eNB->rfdevice.trx_write_func(&eNB->rfdevice,
858
				       proc->timestamp_rx+(tx_sfoffset*fp->samples_per_tti)-openair0_cfg[0].tx_sample_advance,
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
				       txp,
				       fp->samples_per_tti,
				       fp->nb_antennas_tx,
				       1);
    
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE, 0 );
    
    
    
    if (txs !=  fp->samples_per_tti) {
      LOG_E(PHY,"TX : Timeout (sent %d/%d)\n",txs, fp->samples_per_tti);
      exit_fun( "problem transmitting samples" );
    }	
  }
  
  for (i=0; i<fp->nb_antennas_rx; i++)
    rxp[i] = (void*)&eNB->common_vars.rxdata[0][i][*subframe*fp->samples_per_tti];
  
  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ, 1 );
878

879 880 881 882 883
  rxs = eNB->rfdevice.trx_read_func(&eNB->rfdevice,
				    &(proc->timestamp_rx),
				    rxp,
				    fp->samples_per_tti,
				    fp->nb_antennas_rx);
884 885

  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ, 0 );
886 887 888
  
  proc->frame_rx    = (proc->timestamp_rx / (fp->samples_per_tti*10))&1023;
  proc->subframe_rx = (proc->timestamp_rx / fp->samples_per_tti)%10;
889
  proc->timestamp_tx = proc->timestamp_rx+(4*fp->samples_per_tti);
890
  //  printf("trx_read <- USRP TS %llu (sf %d, first_rx %d)\n", proc->timestamp_rx,proc->subframe_rx,proc->first_rx);  
891 892 893
  
  if (proc->first_rx == 0) {
    if (proc->subframe_rx != *subframe){
894
      LOG_E(PHY,"Received Timestamp doesn't correspond to the time we think it is (proc->subframe_rx %d, subframe %d)\n",proc->subframe_rx,*subframe);
895 896 897 898
      exit_fun("Exiting");
    }
    
    if (proc->frame_rx != *frame) {
899
      LOG_E(PHY,"Received Timestamp doesn't correspond to the time we think it is (proc->frame_rx %d frame %d)\n",proc->frame_rx,*frame);
900 901 902 903 904 905 906 907 908 909 910 911
      exit_fun("Exiting");
    }
  } else {
    proc->first_rx = 0;
    *frame = proc->frame_rx;
    *subframe = proc->subframe_rx;        
  }
  
  //printf("timestamp_rx %lu, frame %d(%d), subframe %d(%d)\n",proc->timestamp_rx,proc->frame_rx,frame,proc->subframe_rx,subframe);
  
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TS, proc->timestamp_rx&0xffffffff );
  
912 913 914 915 916
  if (rxs != fp->samples_per_tti)
    exit_fun( "problem receiving samples" );
  

  
917 918
}

knopp's avatar
knopp committed
919
void rx_fh_if5(PHY_VARS_eNB *eNB,int *frame, int *subframe) {
920 921

  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
knopp's avatar
knopp committed
922
  eNB_proc_t *proc = &eNB->proc;
923 924 925 926 927 928 929

  recv_IF5(eNB, &proc->timestamp_rx, *subframe, IF5_RRH_GW_UL); 

  proc->frame_rx    = (proc->timestamp_rx / (fp->samples_per_tti*10))&1023;
  proc->subframe_rx = (proc->timestamp_rx / fp->samples_per_tti)%10;
  
  if (proc->first_rx == 0) {
930
    if (proc->subframe_rx != *subframe){
931 932 933 934
      LOG_E(PHY,"Received Timestamp doesn't correspond to the time we think it is (proc->subframe_rx %d, subframe %d)\n",proc->subframe_rx,subframe);
      exit_fun("Exiting");
    }
    
935
    if (proc->frame_rx != *frame) {
936 937 938 939 940
      LOG_E(PHY,"Received Timestamp doesn't correspond to the time we think it is (proc->frame_rx %d frame %d)\n",proc->frame_rx,frame);
      exit_fun("Exiting");
    }
  } else {
    proc->first_rx = 0;
941 942
    *frame = proc->frame_rx;
    *subframe = proc->subframe_rx;        
943 944 945 946 947 948
  }      
  
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TS, proc->timestamp_rx&0xffffffff );

}

knopp's avatar
knopp committed
949

950
void rx_fh_if4p5(PHY_VARS_eNB *eNB,int *frame,int *subframe) {
951 952

  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
953
  eNB_proc_t *proc = &eNB->proc;
954 955 956 957 958 959 960 961 962 963

  int prach_rx;

  uint16_t packet_type;
  uint32_t symbol_number=0;
  uint32_t symbol_mask, symbol_mask_full;

  symbol_mask = 0;
  symbol_mask_full = (1<<fp->symbols_per_tti)-1;
  prach_rx = 0;
964

965 966
  do {   // Blocking, we need a timeout on this !!!!!!!!!!!!!!!!!!!!!!!
    recv_IF4p5(eNB, &proc->frame_rx, &proc->subframe_rx, &packet_type, &symbol_number);
967

968 969 970 971 972 973
    if (packet_type == IF4p5_PULFFT) {
      symbol_mask = symbol_mask | (1<<symbol_number);
      prach_rx = (is_prach_subframe(fp, proc->frame_rx, proc->subframe_rx)>0) ? 1 : 0;                            
    } else if (packet_type == IF4p5_PRACH) {
      prach_rx = 0;
    }
974

975
  } while( (symbol_mask != symbol_mask_full) || (prach_rx == 1));    
976 977 978 979 980 981

  //caculate timestamp_rx, timestamp_tx based on frame and subframe
   proc->timestamp_rx = ((proc->frame_rx * 10)  + proc->subframe_rx ) * fp->samples_per_tti ;
   proc->timestamp_tx = proc->timestamp_rx +  (4*fp->samples_per_tti);
 
 
982 983
  if (proc->first_rx == 0) {
    if (proc->subframe_rx != *subframe){
984
      LOG_E(PHY,"Received Timestamp doesn't correspond to the time we think it is (proc->subframe_rx %d, subframe %d)\n",proc->subframe_rx,*subframe);
985 986 987
      exit_fun("Exiting");
    }
    if (proc->frame_rx != *frame) {
988
      LOG_E(PHY,"Received Timestamp doesn't correspond to the time we think it is (proc->frame_rx %d frame %d)\n",proc->frame_rx,*frame);
989 990 991 992 993 994 995 996 997 998 999 1000
      exit_fun("Exiting");
    }
  } else {
    proc->first_rx = 0;
    *frame = proc->frame_rx;
    *subframe = proc->subframe_rx;        
  }
  
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TS, proc->timestamp_rx&0xffffffff );
  
}

knopp's avatar
knopp committed
1001 1002
void rx_fh_slave(PHY_VARS_eNB *eNB,int *frame,int *subframe) {
  // This case is for synchronization to another thread
1003
  // it just waits for an external event.  The actual rx_fh is handle by the asynchronous RX thread
knopp's avatar
knopp committed
1004 1005
  eNB_proc_t *proc=&eNB->proc;

knopp's avatar
knopp committed
1006 1007 1008 1009 1010
  if (wait_on_condition(&proc->mutex_FH,&proc->cond_FH,&proc->instance_cnt_FH,"rx_fh_slave") < 0)
    return;

  release_thread(&proc->mutex_FH,&proc->instance_cnt_FH,"rx_fh_slave");

knopp's avatar
knopp committed
1011 1012 1013 1014
  
}


1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
int wakeup_rxtx(eNB_proc_t *proc,eNB_rxtx_proc_t *proc_rxtx,LTE_DL_FRAME_PARMS *fp) {

  int i;
  struct timespec wait;
  
  wait.tv_sec=0;
  wait.tv_nsec=5000000L;

  /* accept some delay in processing - up to 5ms */
  for (i = 0; i < 10 && proc_rxtx->instance_cnt_rxtx == 0; i++) {
    LOG_W( PHY,"[eNB] Frame %d, eNB RXn-TXnp4 thread busy!! (cnt_rxtx %i)\n", proc_rxtx->frame_tx, proc_rxtx->instance_cnt_rxtx);
    usleep(500);
  }
  if (proc_rxtx->instance_cnt_rxtx == 0) {
    exit_fun( "TX thread busy" );
    return(-1);
  }

  // wake up TX for subframe n+4
  // lock the TX mutex and make sure the thread is ready
  if (pthread_mutex_timedlock(&proc_rxtx->mutex_rxtx,&wait) != 0) {
    LOG_E( PHY, "[eNB] ERROR pthread_mutex_lock for eNB RXTX thread %d (IC %d)\n", proc_rxtx->subframe_rx&1,proc_rxtx->instance_cnt_rxtx );
    exit_fun( "error locking mutex_rxtx" );
    return(-1);
  }
  
  ++proc_rxtx->instance_cnt_rxtx;
  
  // We have just received and processed the common part of a subframe, say n. 
  // TS_rx is the last received timestamp (start of 1st slot), TS_tx is the desired 
  // transmitted timestamp of the next TX slot (first).
  // The last (TS_rx mod samples_per_frame) was n*samples_per_tti, 
knopp's avatar
knopp committed
1047 1048
  // we want to generate subframe (n+4), so TS_tx = TX_rx+4*samples_per_tti,
  // and proc->subframe_tx = proc->subframe_rx+4
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
  proc_rxtx->timestamp_tx = proc->timestamp_rx + (4*fp->samples_per_tti);
  proc_rxtx->frame_rx     = proc->frame_rx;
  proc_rxtx->subframe_rx  = proc->subframe_rx;
  proc_rxtx->frame_tx     = (proc_rxtx->subframe_rx > 5) ? (proc_rxtx->frame_rx+1)&1023 : proc_rxtx->frame_rx;
  proc_rxtx->subframe_tx  = (proc_rxtx->subframe_rx + 4)%10;
  
  // the thread can now be woken up
  if (pthread_cond_signal(&proc_rxtx->cond_rxtx) != 0) {
    LOG_E( PHY, "[eNB] ERROR pthread_cond_signal for eNB RXn-TXnp4 thread\n");
    exit_fun( "ERROR pthread_cond_signal" );
    return(-1);
  }
  
  pthread_mutex_unlock( &proc_rxtx->mutex_rxtx );

  return(0);
}

void wakeup_slaves(eNB_proc_t *proc) {

  int i;
  struct timespec wait;
  
  wait.tv_sec=0;
  wait.tv_nsec=5000000L;
  
  for (i=0;i<proc->num_slaves;i++) {
    eNB_proc_t *slave_proc = proc->slave_proc[i];
    // wake up slave FH thread
    // lock the FH mutex and make sure the thread is ready
    if (pthread_mutex_timedlock(&slave_proc->mutex_FH,&wait) != 0) {
      LOG_E( PHY, "[eNB] ERROR pthread_mutex_lock for eNB CCid %d slave CCid %d (IC %d)\n",proc->CC_id,slave_proc->CC_id);
      exit_fun( "error locking mutex_rxtx" );
      break;
    }
    
    int cnt_slave            = ++slave_proc->instance_cnt_FH;
    slave_proc->frame_rx     = proc->frame_rx;
    slave_proc->subframe_rx  = proc->subframe_rx;
    slave_proc->timestamp_rx = proc->timestamp_rx;
1089 1090
    slave_proc->timestamp_tx = proc->timestamp_tx; 

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
    pthread_mutex_unlock( &slave_proc->mutex_FH );
    
    if (cnt_slave == 0) {
      // the thread was presumably waiting where it should and can now be woken up
      if (pthread_cond_signal(&slave_proc->cond_FH) != 0) {
	LOG_E( PHY, "[eNB] ERROR pthread_cond_signal for eNB CCid %d, slave CCid %d\n",proc->CC_id,slave_proc->CC_id);
          exit_fun( "ERROR pthread_cond_signal" );
	  break;
      }
    } else {
1101
      LOG_W( PHY,"[eNB] Frame %d, slave CC_id %d thread busy!! (cnt_FH %i)\n",slave_proc->frame_rx,slave_proc->CC_id, cnt_slave);
1102 1103 1104 1105 1106 1107
      exit_fun( "FH thread busy" );
      break;
    }             
  }
}

1108
/*!
1109 1110 1111
 * \brief The Fronthaul thread of RRU/RAU/RCC/eNB
 * In the case of RRU/eNB, handles interface with external RF
 * In the case of RAU/RCC, handles fronthaul interface with RRU/RAU
1112 1113 1114
 * \param param is a \ref eNB_proc_t structure which contains the info what to process.
 * \returns a pointer to an int. The storage is not on the heap and must not be freed.
 */
knopp's avatar
knopp committed
1115

1116
static void* eNB_thread_FH( void* param ) {
1117
  
1118
  static int eNB_thread_FH_status;
1119 1120

  eNB_proc_t *proc = (eNB_proc_t*)param;
1121 1122
  PHY_VARS_eNB *eNB = PHY_vars_eNB_g[0][proc->CC_id];
  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
1123

Sandeep Kumar's avatar
Sandeep Kumar committed
1124
  int subframe=0, frame=0; 
1125

1126
  // set default return value
1127
  eNB_thread_FH_status = 0;
1128

1129
  thread_top_init("eNB_thread_FH",0,870000,1000000,1000000);
1130

knopp's avatar
knopp committed
1131
  wait_sync("eNB_thread_FH");
1132

1133
#if defined(ENABLE_ITTI) && defined(ENABLE_USE_MME)
knopp's avatar
knopp committed
1134 1135
  if (eNB->node_function < NGFI_RRU_IF5)
    wait_system_ready ("Waiting for eNB application to be ready %s\r", &start_eNB);
1136
#endif 
1137

1138 1139 1140
  // Start IF device if any
  if (eNB->start_if) 
    if (eNB->start_if(eNB) != 0)
1141
      LOG_E(HW,"Could not start the IF device\n");
1142

knopp's avatar
knopp committed
1143 1144 1145 1146 1147
  // Start RF device if any
  if (eNB->start_rf)
    if (eNB->start_rf(eNB) != 0)
      LOG_E(HW,"Could not start the RF device\n");

knopp's avatar
knopp committed
1148
  // wakeup asnych_rxtx thread because the devices are ready at this point
1149 1150 1151 1152 1153
  pthread_mutex_lock(&proc->mutex_asynch_rxtx);
  proc->instance_cnt_asynch_rxtx=0;
  pthread_mutex_unlock(&proc->mutex_asynch_rxtx);
  pthread_cond_signal(&proc->cond_asynch_rxtx);

1154 1155
  // This is a forever while loop, it loops over subframes which are scheduled by incoming samples from HW devices
  while (!oai_exit) {
1156

knopp's avatar
knopp committed
1157 1158
    // these are local subframe/frame counters to check that we are in synch with the fronthaul timing.
    // They are set on the first rx/tx in the underly FH routines.
1159 1160 1161 1162 1163 1164 1165 1166
    if (subframe==9) { 
      subframe=0;
      frame++;
      frame&=1023;
    } else {
      subframe++;
    }      

knopp's avatar
knopp committed
1167 1168 1169 1170
 
    // synchronization on FH interface, acquire signals/data and block
    if (eNB->rx_fh) eNB->rx_fh(eNB,&frame,&subframe);
    else AssertFatal(1==0, "No fronthaul interface : eNB->node_function %d",eNB->node_function);
1171

Cedric Roux's avatar
Cedric Roux committed
1172 1173
    T(T_ENB_MASTER_TICK, T_INT(0), T_INT(proc->frame_rx), T_INT(proc->subframe_rx));

1174 1175
    // At this point, all information for subframe has been received on FH interface
    // If this proc is to provide synchronization, do so
1176
    wakeup_slaves(proc);
1177 1178
      
    // wake up RXn_TXnp4 thread for the subframe
1179
    // choose even or odd thread for RXn-TXnp4 processing 
1180
    if (wakeup_rxtx(proc,&proc->proc_rxtx[proc->subframe_rx&1],fp) < 0)
1181
      break;
1182

knopp's avatar
knopp committed
1183
    // artifical sleep for very slow fronthaul
1184 1185
    if (eNB->frame_parms.N_RB_DL==6)
      rt_sleep_ns(800000LL);
1186 1187 1188
  }
    
  printf( "Exiting FH thread \n");
knopp's avatar
knopp committed
1189
 
1190 1191
  eNB_thread_FH_status = 0;
  return &eNB_thread_FH_status;
1192 1193 1194 1195 1196 1197 1198 1199
}


/*!
 * \brief The prach receive thread of eNB.
 * \param param is a \ref eNB_proc_t structure which contains the info what to process.
 * \returns a pointer to an int. The storage is not on the heap and must not be freed.
 */
1200
static void* eNB_thread_prach( void* param ) {
1201 1202 1203 1204
  static int eNB_thread_prach_status;

  eNB_proc_t *proc = (eNB_proc_t*)param;
  PHY_VARS_eNB *eNB= PHY_vars_eNB_g[0][proc->CC_id];
Raymond Knopp's avatar
Raymond Knopp committed
1205

1206 1207 1208
  // set default return value
  eNB_thread_prach_status = 0;

1209
  thread_top_init("eNB_thread_prach",1,500000L,1000000L,20000000L);
1210

1211 1212 1213 1214
  while (!oai_exit) {
    
    if (oai_exit) break;

knopp's avatar
knopp committed
1215
    if (wait_on_condition(&proc->mutex_prach,&proc->cond_prach,&proc->instance_cnt_prach,"eNB_prach_thread") < 0) break;
knopp's avatar
knopp committed
1216
    
1217
    prach_procedures(eNB);
1218
    
knopp's avatar
knopp committed
1219
    if (release_thread(&proc->mutex_prach,&proc->instance_cnt_prach,"eNB_prach_thread") < 0) break;
1220
  }
1221

1222
  printf( "Exiting eNB thread PRACH\n");
Raymond Knopp's avatar
Raymond Knopp committed
1223

1224 1225
  eNB_thread_prach_status = 0;
  return &eNB_thread_prach_status;
1226 1227
}

knopp's avatar
knopp committed
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
static void* eNB_thread_single( void* param ) {

  static int eNB_thread_single_status;

  eNB_proc_t *proc = (eNB_proc_t*)param;
  eNB_rxtx_proc_t *proc_rxtx = &proc->proc_rxtx[0];
  PHY_VARS_eNB *eNB = PHY_vars_eNB_g[0][proc->CC_id];

  int subframe=0, frame=0; 

  // set default return value
  eNB_thread_single_status = 0;

1241
  thread_top_init("eNB_thread_single",0,870000,1000000,1000000);
knopp's avatar
knopp committed
1242 1243 1244

  wait_sync("eNB_thread_single");

1245
#if defined(ENABLE_ITTI) && defined(ENABLE_USE_MME)
knopp's avatar
knopp committed
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
  if (eNB->node_function < NGFI_RRU_IF5)
    wait_system_ready ("Waiting for eNB application to be ready %s\r", &start_eNB);
#endif 

  // Start IF device if any
  if (eNB->start_if) 
    if (eNB->start_if(eNB) != 0)
      LOG_E(HW,"Could not start the IF device\n");

  // Start RF device if any
  if (eNB->start_rf)
    if (eNB->start_rf(eNB) != 0)
      LOG_E(HW,"Could not start the RF device\n");

  // wakeup asnych_rxtx thread because the devices are ready at this point
  pthread_mutex_lock(&proc->mutex_asynch_rxtx);
  proc->instance_cnt_asynch_rxtx=0;
  pthread_mutex_unlock(&proc->mutex_asynch_rxtx);
  pthread_cond_signal(&proc->cond_asynch_rxtx);

  // This is a forever while loop, it loops over subframes which are scheduled by incoming samples from HW devices
  while (!oai_exit) {

    // these are local subframe/frame counters to check that we are in synch with the fronthaul timing.
    // They are set on the first rx/tx in the underly FH routines.
    if (subframe==9) { 
      subframe=0;
      frame++;
      frame&=1023;
    } else {
      subframe++;
    }      

1279
    LOG_D(PHY,"eNB Fronthaul thread, frame %d, subframe %d\n",frame,subframe);
knopp's avatar
knopp committed
1280 1281 1282 1283 1284 1285 1286
 
    // synchronization on FH interface, acquire signals/data and block
    if (eNB->rx_fh) eNB->rx_fh(eNB,&frame,&subframe);
    else AssertFatal(1==0, "No fronthaul interface : eNB->node_function %d",eNB->node_function);

    T(T_ENB_MASTER_TICK, T_INT(0), T_INT(proc->frame_rx), T_INT(proc->subframe_rx));

1287 1288 1289 1290 1291
    proc_rxtx->subframe_rx = proc->subframe_rx;
    proc_rxtx->frame_rx    = proc->frame_rx;
    proc_rxtx->subframe_tx = (proc->subframe_rx+4)%10;
    proc_rxtx->frame_tx    = (proc->subframe_rx < 6) ? proc->frame_rx : (proc->frame_rx+1)&1023; 
    proc_rxtx->timestamp_tx = proc->timestamp_tx;
1292

knopp's avatar
knopp committed
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    // At this point, all information for subframe has been received on FH interface
    // If this proc is to provide synchronization, do so
    wakeup_slaves(proc);

    if (rxtx(eNB,proc_rxtx,"eNB_thread_single") < 0) break;
  }
  

  printf( "Exiting eNB_single thread \n");
 
  eNB_thread_single_status = 0;
  return &eNB_thread_single_status;

}

1308
extern void init_fep_thread(PHY_VARS_eNB *, pthread_attr_t *);
knopp's avatar
knopp committed
1309 1310
extern void init_td_thread(PHY_VARS_eNB *, pthread_attr_t *);
extern void init_te_thread(PHY_VARS_eNB *, pthread_attr_t *);
1311

1312
void init_eNB_proc(int inst) {
1313
  
1314 1315
  int i;
  int CC_id;
1316 1317
  PHY_VARS_eNB *eNB;
  eNB_proc_t *proc;
knopp's avatar
knopp committed
1318
  eNB_rxtx_proc_t *proc_rxtx;
knopp's avatar
knopp committed
1319
  pthread_attr_t *attr0=NULL,*attr1=NULL,*attr_FH=NULL,*attr_prach=NULL,*attr_asynch=NULL,*attr_single=NULL,*attr_fep=NULL,*attr_td=NULL,*attr_te;
knopp's avatar
knopp committed
1320

1321 1322 1323 1324
  for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
    eNB = PHY_vars_eNB_g[inst][CC_id];
    LOG_I(PHY,"Initializing eNB %d CC_id %d (%s,%s),\n",inst,CC_id,eNB_functions[eNB->node_function],eNB_timing[eNB->node_timing]);
    proc = &eNB->proc;
knopp's avatar
knopp committed
1325

1326 1327 1328
    proc_rxtx = proc->proc_rxtx;
    proc_rxtx[0].instance_cnt_rxtx = -1;
    proc_rxtx[1].instance_cnt_rxtx = -1;
1329 1330
    proc->instance_cnt_prach       = -1;
    proc->instance_cnt_FH          = -1;
1331
    proc->instance_cnt_asynch_rxtx = -1;
1332
    proc->CC_id = CC_id;    
1333
    
knopp's avatar
knopp committed
1334 1335 1336
    proc->first_rx=1;
    proc->first_tx=1;

1337 1338 1339 1340
    pthread_mutex_init( &proc_rxtx[0].mutex_rxtx, NULL);
    pthread_mutex_init( &proc_rxtx[1].mutex_rxtx, NULL);
    pthread_cond_init( &proc_rxtx[0].cond_rxtx, NULL);
    pthread_cond_init( &proc_rxtx[1].cond_rxtx, NULL);
knopp's avatar
knopp committed
1341 1342 1343 1344

    pthread_mutex_init( &proc->mutex_prach, NULL);
    pthread_mutex_init( &proc->mutex_asynch_rxtx, NULL);

1345 1346
    pthread_cond_init( &proc->cond_prach, NULL);
    pthread_cond_init( &proc->cond_FH, NULL);
1347
    pthread_cond_init( &proc->cond_asynch_rxtx, NULL);
1348 1349 1350 1351 1352 1353

    pthread_attr_init( &proc->attr_FH);
    pthread_attr_init( &proc->attr_prach);
    pthread_attr_init( &proc->attr_asynch_rxtx);
    pthread_attr_init( &proc->attr_single);
    pthread_attr_init( &proc->attr_fep);
1354 1355
    pthread_attr_init( &proc->attr_td);
    pthread_attr_init( &proc->attr_te);
1356 1357
    pthread_attr_init( &proc_rxtx[0].attr_rxtx);
    pthread_attr_init( &proc_rxtx[1].attr_rxtx);
1358
#ifndef DEADLINE_SCHEDULER
knopp's avatar
knopp committed
1359 1360 1361 1362 1363 1364
    attr0       = &proc_rxtx[0].attr_rxtx;
    attr1       = &proc_rxtx[1].attr_rxtx;
    attr_FH     = &proc->attr_FH;
    attr_prach  = &proc->attr_prach;
    attr_asynch = &proc->attr_asynch_rxtx;
    attr_single = &proc->attr_single;
1365
    attr_fep    = &proc->attr_fep;
1366 1367
    attr_td     = &proc->attr_td;
    attr_te     = &proc->attr_te; 
knopp's avatar
knopp committed
1368 1369 1370 1371 1372 1373 1374
#endif

    if (eNB->single_thread_flag==0) {
      pthread_create( &proc_rxtx[0].pthread_rxtx, attr0, eNB_thread_rxtx, &proc_rxtx[0] );
      pthread_create( &proc_rxtx[1].pthread_rxtx, attr1, eNB_thread_rxtx, &proc_rxtx[1] );
      pthread_create( &proc->pthread_FH, attr_FH, eNB_thread_FH, &eNB->proc );
    }
1375
    else {
knopp's avatar
knopp committed
1376
      pthread_create(&proc->pthread_single, attr_single, eNB_thread_single, &eNB->proc);
1377
      init_fep_thread(eNB,attr_fep);
1378 1379
      init_td_thread(eNB,attr_td);
      init_te_thread(eNB,attr_te);
1380
    }
knopp's avatar
knopp committed
1381
    pthread_create( &proc->pthread_prach, attr_prach, eNB_thread_prach, &eNB->proc );
1382
    if ((eNB->node_timing == synch_to_other) ||
knopp's avatar
knopp committed
1383 1384
	(eNB->node_function == NGFI_RRU_IF5) ||
	(eNB->node_function == NGFI_RRU_IF4p5))
knopp's avatar
knopp committed
1385 1386
      pthread_create( &proc->pthread_asynch_rxtx, attr_asynch, eNB_thread_asynch_rxtx, &eNB->proc );

1387
    char name[16];
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
    if (eNB->single_thread_flag == 0) {
      snprintf( name, sizeof(name), "RXTX0 %d", i );
      pthread_setname_np( proc_rxtx[0].pthread_rxtx, name );
      snprintf( name, sizeof(name), "RXTX1 %d", i );
      pthread_setname_np( proc_rxtx[1].pthread_rxtx, name );
      snprintf( name, sizeof(name), "FH %d", i );
      pthread_setname_np( proc->pthread_FH, name );
    }
    else {
      snprintf( name, sizeof(name), " %d", i );
      pthread_setname_np( proc->pthread_single, name );
    }
1400
  }
1401 1402 1403 1404 1405 1406

 if (MAX_NUM_CCs >1){
    PHY_vars_eNB_g[inst][0]->proc.num_slaves=1;//hardcoded
    PHY_vars_eNB_g[inst][0]->proc.slave_proc = (eNB_proc_t**)malloc(1*sizeof(eNB_proc_t*));
    PHY_vars_eNB_g[inst][0]->proc.slave_proc[0]=&(PHY_vars_eNB_g[inst][1]->proc);
}
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
/*  for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {//TTN - we supposed that CC_id=0 will play the role of master
    eNB = PHY_vars_eNB_g[inst][CC_id];

    if (eNB->node_timing == synch_to_ext_device) { //CC_id=0
     // eNB = PHY_vars_eNB_g[inst][CC_id];

      eNB->proc.num_slaves = MAX_NUM_CCs-1;
      eNB->proc.slave_proc = (eNB_proc_t**)malloc(eNB->proc.num_slaves*sizeof(eNB_proc_t*));

      for (i=0; i< eNB->proc.num_slaves; i++) {
        eNB->proc.slave_proc[i] = &(PHY_vars_eNB_g[inst][i+1]->proc);
      }
    }
  }

*/

1424 1425 1426 1427
  /* setup PHY proc TX sync mechanism */
  pthread_mutex_init(&sync_phy_proc.mutex_phy_proc_tx, NULL);
  pthread_cond_init(&sync_phy_proc.cond_phy_proc_tx, NULL);
  sync_phy_proc.phy_proc_CC_id = 0;
1428 1429
}

1430

1431

1432 1433 1434
/*!
 * \brief Terminate eNB TX and RX threads.
 */
1435
void kill_eNB_proc(int inst) {
1436

1437
  int *status;
1438 1439
  PHY_VARS_eNB *eNB;
  eNB_proc_t *proc;
knopp's avatar
knopp committed
1440
  eNB_rxtx_proc_t *proc_rxtx;
1441
  for (int CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
1442
    eNB=PHY_vars_eNB_g[inst][CC_id];
1443 1444
    
    proc = &eNB->proc;
knopp's avatar
knopp committed
1445
    proc_rxtx = &proc->proc_rxtx[0];
1446
    
1447
#ifdef DEBUG_THREADS
1448
    printf( "Killing TX CC_id %d thread %d\n", CC_id, i );
1449
#endif
1450
    
knopp's avatar
knopp committed
1451 1452
    proc_rxtx[0].instance_cnt_rxtx = 0; // FIXME data race!
    proc_rxtx[1].instance_cnt_rxtx = 0; // FIXME data race!
Raymond Knopp's avatar
Raymond Knopp committed
1453
    proc->instance_cnt_prach = 0;
1454
    proc->instance_cnt_FH = 0;
knopp's avatar
knopp committed
1455
    pthread_cond_signal( &proc_rxtx[0].cond_rxtx );    
Raymond Knopp's avatar
Raymond Knopp committed
1456 1457
    pthread_cond_signal( &proc_rxtx[1].cond_rxtx );
    pthread_cond_signal( &proc->cond_prach );
1458
    pthread_cond_signal( &proc->cond_FH );
1459
    pthread_cond_broadcast(&sync_phy_proc.cond_phy_proc_tx);
Raymond Knopp's avatar
Raymond Knopp committed
1460

1461 1462 1463 1464 1465 1466 1467
    pthread_join( proc->pthread_FH, (void**)&status ); 
    pthread_mutex_destroy( &proc->mutex_FH );
    pthread_cond_destroy( &proc->cond_FH );
            
    pthread_join( proc->pthread_prach, (void**)&status );    
    pthread_mutex_destroy( &proc->mutex_prach );
    pthread_cond_destroy( &proc->cond_prach );         
1468

1469
    int i;
Raymond Knopp's avatar
Raymond Knopp committed
1470
    for (i=0;i<2;i++) {
knopp's avatar
knopp committed
1471 1472 1473 1474
      pthread_join( proc_rxtx[i].pthread_rxtx, (void**)&status );
      pthread_mutex_destroy( &proc_rxtx[i].mutex_rxtx );
      pthread_cond_destroy( &proc_rxtx[i].cond_rxtx );
    }
1475
  }
1476 1477
}

1478

1479 1480 1481 1482
/* this function maps the phy_vars_eNB tx and rx buffers to the available rf chains.
   Each rf chain is is addressed by the card number and the chain on the card. The
   rf_map specifies for each CC, on which rf chain the mapping should start. Multiple
   antennas are mapped to successive RF chains on the same card. */
1483
int setup_eNB_buffers(PHY_VARS_eNB **phy_vars_eNB, openair0_config_t *openair0_cfg) {
1484 1485 1486 1487 1488

  int i, CC_id;
  int j;

  uint16_t N_TA_offset = 0;
1489

1490 1491 1492 1493
  LTE_DL_FRAME_PARMS *frame_parms;

  for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
    if (phy_vars_eNB[CC_id]) {
1494
      frame_parms = &(phy_vars_eNB[CC_id]->frame_parms);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
      printf(<