defs.h 13.8 KB
Newer Older
ghaddab's avatar
ghaddab committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*******************************************************************************
    OpenAirInterface 
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is 
   included in this distribution in the file called "COPYING". If not, 
   see <http://www.gnu.org/licenses/>.

  Contact Information
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
  OpenAirInterface Dev  : openair4g-devel@eurecom.fr
  
  Address      : Eurecom, Compus SophiaTech 450, route des chappes, 06451 Biot, France.

 *******************************************************************************/
29 30
#ifndef __SIMULATION_TOOLS_DEFS_H__
#define __SIMULATION_TOOLS_DEFS_H__
31
#include "PHY/defs.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

/** @defgroup _numerical_ Useful Numerical Functions
 *@{
The present clause specifies several numerical functions for testing of digital communication systems.

-# Generation of Uniform Random Bits
-# Generation of Quantized Gaussian Random Variables
-# Generation of Floating-point Gaussian Random Variables
-# Generic Multipath Channel Generator

 * @defgroup _channel_ Multipath channel generator
 * @ingroup _numerical_ 
 * @{

*/

#define NB_SAMPLES_CHANNEL_OFFSET 4

typedef struct {
  ///Number of tx antennas
52
  uint8_t nb_tx; 
53
  ///Number of rx antennas
54
  uint8_t nb_rx;
55
  ///number of taps
56
  uint8_t nb_taps; 
57 58 59 60 61
  ///linear amplitudes of taps
  double *amps; 
  ///Delays of the taps in mus. length(delays)=nb_taps. Has to be between 0 and Td. 
  double *delays; 
  ///length of impulse response. should be set to 11+2*bw*t_max 
62
  uint8_t channel_length; 
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
  ///channel state vector. size(state) = nb_taps * (n_tx * n_rx);
  struct complex **a; 
  ///interpolated (sample-spaced) channel impulse response. size(ch) = (n_tx * n_rx) * channel_length. ATTENTION: the dimensions of ch are the transposed ones of a. This is to allow the use of BLAS when applying the correlation matrices to the state.
  struct complex **ch; 
  ///Sampled frequency response (90 kHz resolution)
  struct complex **chF; 
  ///Maximum path delay in mus.
  double Td; 
  ///Channel bandwidth in MHz.
  double BW; 
  ///Ricean factor of first tap wrt other taps (0..1, where 0 means AWGN and 1 means Rayleigh channel).
  double ricean_factor; 
  ///Angle of arrival of wavefront (in radians). For Ricean channel only. This assumes that both RX and TX have linear antenna arrays with lambda/2 antenna spacing. Furhter it is assumed that the arrays are parallel to each other and that they are far enough apart so that we can safely assume plane wave propagation.  
  double aoa; 
  ///If set to 1, aoa is randomized according to a uniform random distribution 
78
  int8_t random_aoa;
79 80 81 82 83 84 85
  ///in Hz. if >0 generate a channel with a Clarke's Doppler profile with a maximum Doppler bandwidth max_Doppler. CURRENTLY NOT IMPLEMENTED!
  double max_Doppler; 
  ///Square root of the full correlation matrix size(R_tx) = nb_taps * (n_tx * n_rx) * (n_tx * n_rx).
  struct complex **R_sqrt; 
  ///path loss including shadow fading in dB 
  double path_loss_dB;
  ///additional delay of channel in samples. 
86
  int32_t channel_offset; 
87 88 89
  ///This parameter (0...1) allows for simple 1st order temporal variation. 0 means a new channel every call, 1 means keep channel constant all the time
  double forgetting_factor;
  ///needs to be set to 1 for the first call, 0 otherwise.
90
  uint8_t first_run;
91 92 93
  /// initial phase for frequency offset simulation 
  double ip;
  /// number of paths taken by transmit signal
94
  uint16_t nb_paths; 
95 96 97 98 99
  /// timing measurements
  time_stats_t random_channel;
  time_stats_t interp_time;
  time_stats_t interp_freq;
  time_stats_t convolution;
100 101 102 103
} channel_desc_t;

typedef struct {
  /// Number of sectors (set to 1 in case of an omnidirectional antenna)
104
  uint8_t n_sectors;
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  /// Antenna orientation for each sector (for non-omnidirectional antennas) in radians wrt north
  double alpha_rad[3];
  /// Antenna 3dB beam width (in radians) 
  double phi_rad;
  /// Antenna gain (dBi)
  double ant_gain_dBi;
  /// Tx power (dBm)
  double tx_power_dBm;
  /// Rx noise level (dB)
  double rx_noise_level;
  ///x coordinate (cartesian, in m)
  double x; 
  ///y coordinate (cartesian, in m)
  double y; 
  ///z coordinate (antenna height, in m)
  double z;
  /// direction of travel in radians wrt north
  double direction_rad;
  /// speed of node (m/s)
  double speed;
} node_desc_t;

typedef enum {
  rural=0,
  urban,
  indoor
} scenario_t;
  
typedef struct {
  /// Scenario classifcation
  scenario_t scenario;
  /// Carrier frequency in Hz
  double carrier_frequency;
  /// Bandwidth (in Hz)
  double bandwidth;
  /// path loss at 0m distance in dB
  double path_loss_0;
  /// path loss exponent 
  double path_loss_exponent;
  /// shadow fading standard deviation [dB] (assuming log-normal shadow fading with 0 mean)
  double shadow_fading_std;
  /// correlation distance of shadow fading 
  double shadow_fading_correlation_distance;
  /// Shadowing correlation between cells
  double shadow_fading_correlation_cells;
  /// Shadowing correlation between sectors
  double shadow_fading_correlation_sectors;
  /// Rice factor???
  /// Walls (penetration loss)
  /// Nodes in the scenario
  node_desc_t* nodes;
} scenario_desc_t;

typedef enum {
  custom=0, 
  SCM_A,
  SCM_B,
  SCM_C,
  SCM_D,
  EPA,
  EVA,
  ETU,
  MBSFN,
  Rayleigh8,
  Rayleigh1,
  Rayleigh1_800,
  Rayleigh1_corr,
  Rayleigh1_anticorr,
  Rice8,
  Rice1,
  Rice1_corr,
  Rice1_anticorr,
  AWGN
} SCM_t;

/** 
\brief This routine initializes a new channel descriptor
\param nb_tx Number of TX antennas
\param nb_rx Number of RX antennas
\param nb_taps Number of taps
\param channel_length Length of the interpolated channel impulse response
\param amps Linear amplitudes of the taps (length(amps)=channel_length). The values should sum up to 1.
\param delays Delays of the taps. If delays==NULL the taps are assumed to be spaced equidistantly between 0 and t_max. 
\param R_sqrt Channel correlation matrix. If R_sqrt==NULL, no channel correlation is applied.
\param Td Maximum path delay in mus.
\param BW Channel bandwidth in MHz.
\param ricean_factor Ricean factor applied to all taps.
\param aoa Anlge of arrival
\param forgetting_factor This parameter (0...1) allows for simple 1st order temporal variation
\param max_Doppler This is the maximum Doppler frequency for Jakes' Model
\param channel_offset This is a time delay to apply to channel
\param path_loss_dB This is the path loss in dB
\param random_aoa If set to 1, AoA of ricean component is randomized
*/

200
//channel_desc_t *new_channel_desc(uint8_t nb_tx,uint8_t nb_rx, uint8_t nb_taps, uint8_t channel_length, double *amps, double* delays, struct complex** R_sqrt, double Td, double BW, double ricean_factor, double aoa, double forgetting_factor, double max_Doppler, int32_t channel_offset, double path_loss_dB,uint8_t random_aoa);
201

202 203
channel_desc_t *new_channel_desc_scm(uint8_t nb_tx,
				     uint8_t nb_rx, 
204 205 206
				     SCM_t channel_model, 
				     double BW, 
				     double forgetting_factor,
207
				     int32_t channel_offset, 
208 209 210 211 212 213 214 215
				     double path_loss_dB);



/** \fn void random_channel(channel_desc_t *desc)
\brief This routine generates a random channel response (time domain) according to a tapped delay line model. 
\param desc Pointer to the channel descriptor
*/
216
int random_channel(channel_desc_t *desc, uint8_t abstraction_flag);
217 218 219 220 221 222

/**\fn void multipath_channel(channel_desc_t *desc,
		       double **tx_sig_re, 
		       double **tx_sig_im, 
		       double **rx_sig_re,
		       double **rx_sig_im,
223 224
		       uint32_t length,
		       uint8_t keep_channel)
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

\brief This function generates and applys a random frequency selective random channel model.
@param desc Pointer to channel descriptor
@param tx_sig_re input signal (real component) 
@param tx_sig_im input signal (imaginary component) 
@param rx_sig_re output signal (real component)
@param rx_sig_im output signal (imaginary component)
@param length Length of input signal
@param keep_channel Set to 1 to keep channel constant for null-B/F
*/

void multipath_channel(channel_desc_t *desc,
		       double **tx_sig_re, 
		       double **tx_sig_im, 
		       double **rx_sig_re,
		       double **rx_sig_im,
241 242
		       uint32_t length,
		       uint8_t keep_channel);
243 244 245 246 247 248
/*
\fn double compute_pbch_sinr(channel_desc_t *desc,
                             channel_desc_t *desc_i1, 
			     channel_desc_t *desc_i2,
			     double snr_dB,double snr_i1_dB,
			     double snr_i2_dB,
249
			     uint16_t nb_rb)
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

\brief This function computes the average SINR over all frequency resources of the PBCH.  It is used for PHY abstraction of the PBCH BLER
@param desc Pointer to channel descriptor of eNB
@param desc Pointer to channel descriptor of interfering eNB 1
@param desc Pointer to channel descriptor of interfering eNB 2
@param snr_dB SNR of eNB
@param snr_i1_dB SNR of interfering eNB 1
@param snr_i2_dB SNR of interfering eNB 2
@param nb_rb Number of RBs in system
*/
double compute_pbch_sinr(channel_desc_t *desc,
			 channel_desc_t *desc_i1, 
			 channel_desc_t *desc_i2,
			 double snr_dB,double snr_i1_dB,
			 double snr_i2_dB,
265
			 uint16_t nb_rb);
266 267 268 269 270 271

double compute_sinr(channel_desc_t *desc,
			 channel_desc_t *desc_i1, 
			 channel_desc_t *desc_i2,
			 double snr_dB,double snr_i1_dB,
			 double snr_i2_dB,
272
			 uint16_t nb_rb);
273 274

double pbch_bler(double sinr);
275 276 277

void load_pbch_desc(FILE *pbch_file_fd);

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/**@}*/

/**
 * @defgroup _taus_ Tausworthe Uniform Random Variable Generator
 * @ingroup _numerical_ 
 * @{
\fn inline unsigned int taus()
\brief Tausworthe Uniform Random Generator.  This is based on the hardware implementation described in 
  Lee et al, "A Hardware Gaussian Noise Generator Usign the Box-Muller Method and its Error Analysis," IEEE Trans. on Computers, 2006.
*/
inline unsigned int taus(void);


/** 
\fn void set_taus_seed(unsigned int seed_init)
\brief Sets the seed for the Tausworthe generator.
@param seed_init 0 means generate based on CPU time, otherwise provide the seed
*/
void set_taus_seed(unsigned int seed_init);
/**@} */

/** @defgroup _gauss_ Generation of Quantized Gaussian Random Variables 
 * @ingroup _numerical_
 * @{
This set of routines are used to generate quantized (i.e. fixed-point) Gaussian random noise efficiently. 
The use of these routines allows for rapid computer simulation of digital communication systems. The method 
is based on a lookup-table of the quantized normal probability distribution.  The routines assume that the 
continuous-valued Gaussian random-variable,\f$x\f$ is quantized
to \f$N\f$ bits over the interval \f$[-L\sigma,L\sigma)\f$ where \f$N\f$ and \f$L\f$ control the precision 
and range of the quantization.  The 
random variable, \f$l\in\{-2^{N-1},-2^{N-1}+1,\cdots,0,1,\cdots,2^{N-1}-1\}\f$ corresponds to the event, 
\f$E_l = 
\begin{cases} 
x\in\left[-\infty,-L\sigma\right) & l=-2^{N-1}, \\  
x\in\left[\frac{lL\sigma}{2^{N-1}},\frac{(l+1)L\sigma}{2^{N-1}}\right) & <l>-2^{N-1}, \\  
x\in\left[L\sigma,\infty\right) & l>-2^{N-1},
\end{cases}\f$
which occurs with probability
\f$\Pr(E_l) = 
\begin{cases} 
\mathrm{erfc}(L) & l=-2^{N-1}, \\  
\mathrm{erfc}(L) & l>-2^{N-1}, \\  
\mathrm{erf}\left(\frac{lL}{2^{N-1}}\right) \mathrm{erfc}\left(\frac{(l-1)L}{2^{N-1}}\right)& l>-2^{N-1}.
\end{cases}\f$
*/


/** \fn unsigned int *generate_gauss_LUT(unsigned char Nbits,unsigned char L)
\brief This routine generates a Gaussian pdf lookup table (LUT).  The table has \f$2^{\mathrm{Nbits}-1}\f$ entries which represent
the right half of the pdf.  The data stored in position \f$i\f$ is actually the scaled cumulative probability distribution, 
\f$2^{31}\mathrm{erf}\left(\frac{iL}{2^{N-1}}\right)\f$.  This represents the average number of times that the random variable
falls in the interval \f$\left[0,\frac{i}{2^{N-1}}\right)\f$.  This format allows for rapid conversion of uniform 32-bit
random variables to \f$N\f$-bit Gaussian random variables using binary search.
@see gauss
@param Nbits Number of bits for the output variable
@param L Number of standard deviations in range
*/
unsigned int *generate_gauss_LUT(unsigned char Nbits,unsigned char L);
 
/** \fn int gauss(unsigned int *gauss_LUT,unsigned char Nbits);
\brief This routine returns a zero-mean unit-variance Gaussian random variable.  
 Given a 32-bit uniform random variable, 
\f$\mathrm{u}\f$ (from \ref _taus_, we first extract the sign and then search in the monotonically increasing Gaussian LUT for 
the two entries \f$(i,i+1)\f$ for which 
\f$ 2^{31}\mathrm{erf}\left(\frac{i}{2^{Nbits-1}}\right) < |u| \leq 2^{31}\mathrm{erf}\left(\frac{i+1}{2^{Nbits-1}}\right) \f$ and assign 
the value \f$\mathrm{sgn}(u)i\f$.  The search requires at most \f$Nbits-1\f$ comparisons.
@see generate_gauss_LUT
@see taus
@param gauss_LUT pointer to lookup-table
@param Nbits number of bits for output variable ( between 1 and 16) 
*/
int gauss(unsigned int *gauss_LUT,unsigned char Nbits);

double gaussdouble(double,double);
void randominit(unsigned int seed_init);
double uniformrandom(void);
354 355 356
void freq_channel(channel_desc_t *desc,uint16_t nb_rb, int16_t n_samples);
void init_freq_channel(channel_desc_t *desc,uint16_t nb_rb,int16_t n_samples);
uint8_t multipath_channel_nosigconv(channel_desc_t *desc);
357 358 359 360 361
void multipath_tv_channel(channel_desc_t *desc,
		       double **tx_sig_re, 
		       double **tx_sig_im, 
		       double **rx_sig_re,
		       double **rx_sig_im,
362 363
		       uint16_t length,
		       uint8_t keep_channel);
364 365 366 367 368 369

/**@} */
/**@} */
#endif