lte-enb.c 66.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/*******************************************************************************
    OpenAirInterface
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is
    included in this distribution in the file called "COPYING". If not,
    see <http://www.gnu.org/licenses/>.

   Contact Information
   OpenAirInterface Admin: openair_admin@eurecom.fr
   OpenAirInterface Tech : openair_tech@eurecom.fr
   OpenAirInterface Dev  : openair4g-devel@lists.eurecom.fr

   Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE

*******************************************************************************/

/*! \file lte-enb.c
 * \brief Top-level threads for eNodeB
 * \author R. Knopp, F. Kaltenberger, Navid Nikaein
 * \date 2012
 * \version 0.1
 * \company Eurecom
 * \email: knopp@eurecom.fr,florian.kaltenberger@eurecom.fr, navid.nikaein@eurecom.fr
 * \note
 * \warning
 */
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sched.h>
#include <linux/sched.h>
#include <signal.h>
#include <execinfo.h>
#include <getopt.h>
#include <sys/sysinfo.h>
#include "rt_wrapper.h"

#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all

#include "assertions.h"
#include "msc.h"

#include "PHY/types.h"

#include "PHY/defs.h"
#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all
//#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all

#include "../../ARCH/COMMON/common_lib.h"

//#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all

71
#include "PHY/LTE_TRANSPORT/if4_tools.h"
72
#include "PHY/LTE_TRANSPORT/if5_tools.h"
73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
#include "PHY/extern.h"
#include "SCHED/extern.h"
#include "LAYER2/MAC/extern.h"

#include "../../SIMU/USER/init_lte.h"

#include "LAYER2/MAC/defs.h"
#include "LAYER2/MAC/extern.h"
#include "LAYER2/MAC/proto.h"
#include "RRC/LITE/extern.h"
#include "PHY_INTERFACE/extern.h"

#ifdef SMBV
#include "PHY/TOOLS/smbv.h"
unsigned short config_frames[4] = {2,9,11,13};
#endif
#include "UTIL/LOG/log_extern.h"
#include "UTIL/OTG/otg_tx.h"
#include "UTIL/OTG/otg_externs.h"
#include "UTIL/MATH/oml.h"
#include "UTIL/LOG/vcd_signal_dumper.h"
#include "UTIL/OPT/opt.h"
#include "enb_config.h"
//#include "PHY/TOOLS/time_meas.h"

#ifndef OPENAIR2
#include "UTIL/OTG/otg_extern.h"
#endif

#if defined(ENABLE_ITTI)
# if defined(ENABLE_USE_MME)
#   include "s1ap_eNB.h"
#ifdef PDCP_USE_NETLINK
#   include "SIMULATION/ETH_TRANSPORT/proto.h"
#endif
# endif
#endif

Rohit Gupta's avatar
Rohit Gupta committed
112 113
#include "T.h"

114 115 116 117 118 119 120 121 122 123
//#define DEBUG_THREADS 1

//#define USRP_DEBUG 1
struct timing_info_t {
  //unsigned int frame, hw_slot, last_slot, next_slot;
  RTIME time_min, time_max, time_avg, time_last, time_now;
  //unsigned int mbox0, mbox1, mbox2, mbox_target;
  unsigned int n_samples;
} timing_info;

124 125
// Fix per CC openair rf/if device update
// extern openair0_device openair0;
126 127 128 129 130 131 132 133 134 135 136 137 138

#if defined(ENABLE_ITTI)
extern volatile int             start_eNB;
extern volatile int             start_UE;
#endif
extern volatile int                    oai_exit;

extern openair0_config_t openair0_cfg[MAX_CARDS];

extern pthread_cond_t sync_cond;
extern pthread_mutex_t sync_mutex;
extern int sync_var;

139
//pthread_t                       main_eNB_thread;
140 141 142

time_stats_t softmodem_stats_mt; // main thread
time_stats_t softmodem_stats_hw; //  hw acquisition
knopp's avatar
knopp committed
143
time_stats_t softmodem_stats_rxtx_sf; // total tx time
144
time_stats_t softmodem_stats_rx_sf; // total rx time
145 146 147
int32_t **rxdata;
int32_t **txdata;

148 149
uint8_t seqno; //sequence number

150 151 152 153 154 155 156 157 158 159
static int                      time_offset[4] = {0,0,0,0};

/* mutex, cond and variable to serialize phy proc TX calls
 * (this mechanism may be relaxed in the future for better
 * performances)
 */
static struct {
  pthread_mutex_t  mutex_phy_proc_tx;
  pthread_cond_t   cond_phy_proc_tx;
  volatile uint8_t phy_proc_CC_id;
160
} sync_phy_proc;
161 162 163

void exit_fun(const char* s);

164
void init_eNB(eNB_func_t node_function[], eNB_timing_t node_timing[],int nb_inst,eth_params_t *,int,int);
165
void stop_eNB(int nb_inst);
166 167


knopp's avatar
knopp committed
168
static inline void thread_top_init(char *thread_name,
169
				   int affinity,
knopp's avatar
knopp committed
170 171 172
				   uint64_t runtime,
				   uint64_t deadline,
				   uint64_t period) {
knopp's avatar
knopp committed
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

  MSC_START_USE();

#ifdef DEADLINE_SCHEDULER
  struct sched_attr attr;

  unsigned int flags = 0;

  attr.size = sizeof(attr);
  attr.sched_flags = 0;
  attr.sched_nice = 0;
  attr.sched_priority = 0;

  attr.sched_policy   = SCHED_DEADLINE;
  attr.sched_runtime  = runtime;
  attr.sched_deadline = deadline;
  attr.sched_period   = period; 

  if (sched_setattr(0, &attr, flags) < 0 ) {
    perror("[SCHED] eNB tx thread: sched_setattr failed\n");
193
    exit_fun("Error setting deadline scheduler");
knopp's avatar
knopp committed
194 195
  }

196
  LOG_I( HW, "[SCHED] eNB %s deadline thread started on CPU %d\n", thread_name,sched_getcpu() );
knopp's avatar
knopp committed
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

#else //LOW_LATENCY
  int policy, s, j;
  struct sched_param sparam;
  char cpu_affinity[1024];
  cpu_set_t cpuset;

  /* Set affinity mask to include CPUs 1 to MAX_CPUS */
  /* CPU 0 is reserved for UHD threads */
  /* CPU 1 is reserved for all RX_TX threads */
  /* Enable CPU Affinity only if number of CPUs >2 */
  CPU_ZERO(&cpuset);

#ifdef CPU_AFFINITY
  if (get_nprocs() > 2)
  {
213 214 215 216
    if (affinity == 0)
      CPU_SET(0,&cpuset);
    else
      for (j = 1; j < get_nprocs(); j++)
knopp's avatar
knopp committed
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        CPU_SET(j, &cpuset);
    s = pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
    if (s != 0)
    {
      perror( "pthread_setaffinity_np");
      exit_fun("Error setting processor affinity");
    }
  }
#endif //CPU_AFFINITY

  /* Check the actual affinity mask assigned to the thread */
  s = pthread_getaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
  if (s != 0) {
    perror( "pthread_getaffinity_np");
    exit_fun("Error getting processor affinity ");
  }
  memset(cpu_affinity,0,sizeof(cpu_affinity));
  for (j = 0; j < CPU_SETSIZE; j++)
    if (CPU_ISSET(j, &cpuset)) {  
      char temp[1024];
      sprintf (temp, " CPU_%d", j);
      strcat(cpu_affinity, temp);
    }

  memset(&sparam, 0, sizeof(sparam));
242
  sparam.sched_priority = sched_get_priority_max(SCHED_FIFO);
knopp's avatar
knopp committed
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
  policy = SCHED_FIFO ; 
  
  s = pthread_setschedparam(pthread_self(), policy, &sparam);
  if (s != 0) {
    perror("pthread_setschedparam : ");
    exit_fun("Error setting thread priority");
  }
  
  s = pthread_getschedparam(pthread_self(), &policy, &sparam);
  if (s != 0) {
    perror("pthread_getschedparam : ");
    exit_fun("Error getting thread priority");
  }

  LOG_I(HW, "[SCHED][eNB] %s started on CPU %d TID %ld, sched_policy = %s , priority = %d, CPU Affinity=%s \n",thread_name,sched_getcpu(),gettid(),
                   (policy == SCHED_FIFO)  ? "SCHED_FIFO" :
                   (policy == SCHED_RR)    ? "SCHED_RR" :
                   (policy == SCHED_OTHER) ? "SCHED_OTHER" :
                   "???",
                   sparam.sched_priority, cpu_affinity );

#endif //LOW_LATENCY

  mlockall(MCL_CURRENT | MCL_FUTURE);

}

knopp's avatar
knopp committed
270
static inline void wait_sync(char *thread_name) {
knopp's avatar
knopp committed
271 272 273 274 275 276 277 278 279 280 281 282 283

  printf( "waiting for sync (%s)\n",thread_name);
  pthread_mutex_lock( &sync_mutex );
  
  while (sync_var<0)
    pthread_cond_wait( &sync_cond, &sync_mutex );
  
  pthread_mutex_unlock(&sync_mutex);
  
  printf( "got sync (%s)\n", thread_name);

}

284 285
void do_OFDM_mod_rt(int subframe,PHY_VARS_eNB *phy_vars_eNB) {
     
286 287
  unsigned int aa,slot_offset, slot_offset_F;
  int dummy_tx_b[7680*4] __attribute__((aligned(32)));
knopp's avatar
knopp committed
288
  int i,j, tx_offset;
289 290
  int slot_sizeF = (phy_vars_eNB->frame_parms.ofdm_symbol_size)*
                   ((phy_vars_eNB->frame_parms.Ncp==1) ? 6 : 7);
knopp's avatar
knopp committed
291 292
  int len,len2;
  int16_t *txdata;
293
//  int CC_id = phy_vars_eNB->proc.CC_id;
294

295 296
  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_ENB_SFGEN , 1 );

297 298
  slot_offset_F = (subframe<<1)*slot_sizeF;

299
  slot_offset = subframe*phy_vars_eNB->frame_parms.samples_per_tti;
300

301 302
  if ((subframe_select(&phy_vars_eNB->frame_parms,subframe)==SF_DL)||
      ((subframe_select(&phy_vars_eNB->frame_parms,subframe)==SF_S))) {
303 304
    //    LOG_D(HW,"Frame %d: Generating slot %d\n",frame,next_slot);

305 306 307
    for (aa=0; aa<phy_vars_eNB->frame_parms.nb_antennas_tx; aa++) {
      if (phy_vars_eNB->frame_parms.Ncp == EXTENDED) {
        PHY_ofdm_mod(&phy_vars_eNB->common_vars.txdataF[0][aa][slot_offset_F],
308
                     dummy_tx_b,
309
                     phy_vars_eNB->frame_parms.ofdm_symbol_size,
310
                     6,
311
                     phy_vars_eNB->frame_parms.nb_prefix_samples,
312
                     CYCLIC_PREFIX);
313 314 315
        PHY_ofdm_mod(&phy_vars_eNB->common_vars.txdataF[0][aa][slot_offset_F+slot_sizeF],
                     dummy_tx_b+(phy_vars_eNB->frame_parms.samples_per_tti>>1),
                     phy_vars_eNB->frame_parms.ofdm_symbol_size,
316
                     6,
317
                     phy_vars_eNB->frame_parms.nb_prefix_samples,
318 319
                     CYCLIC_PREFIX);
      } else {
320
        normal_prefix_mod(&phy_vars_eNB->common_vars.txdataF[0][aa][slot_offset_F],
321 322
                          dummy_tx_b,
                          7,
323
                          &(phy_vars_eNB->frame_parms));
324
	// if S-subframe generate first slot only
325
	if (subframe_select(&phy_vars_eNB->frame_parms,subframe) == SF_DL) 
326 327
	  normal_prefix_mod(&phy_vars_eNB->common_vars.txdataF[0][aa][slot_offset_F+slot_sizeF],
			    dummy_tx_b+(phy_vars_eNB->frame_parms.samples_per_tti>>1),
328
			    7,
329
			    &(phy_vars_eNB->frame_parms));
330 331 332
      }

      // if S-subframe generate first slot only
333 334
      if (subframe_select(&phy_vars_eNB->frame_parms,subframe) == SF_S)
	len = phy_vars_eNB->frame_parms.samples_per_tti>>1;
335
      else
336
	len = phy_vars_eNB->frame_parms.samples_per_tti;
337 338 339 340 341 342 343
      /*
      for (i=0;i<len;i+=4) {
	dummy_tx_b[i] = 0x100;
	dummy_tx_b[i+1] = 0x01000000;
	dummy_tx_b[i+2] = 0xff00;
	dummy_tx_b[i+3] = 0xff000000;
	}*/
knopp's avatar
knopp committed
344 345 346 347 348 349 350 351 352 353 354 355 356 357
      
      if (slot_offset+time_offset[aa]<0) {
	txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti)+tx_offset];
        len2 = -(slot_offset+time_offset[aa]);
	len2 = (len2>len) ? len : len2;
	for (i=0; i<(len2<<1); i++) {
	  txdata[i] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
	}
	if (len2<len) {
	  txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][0];
	  for (j=0; i<(len<<1); i++,j++) {
	    txdata[j++] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
	  }
	}
358
      }  
knopp's avatar
knopp committed
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
      else if ((slot_offset+time_offset[aa]+len)>(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti)) {
	tx_offset = (int)slot_offset+time_offset[aa];
	txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][tx_offset];
	len2 = -tx_offset+LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti;
	for (i=0; i<(len2<<1); i++) {
	  txdata[i] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
	}
	txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][0];
	for (j=0; i<(len<<1); i++,j++) {
	  txdata[j++] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
	}
      }
      else {
	tx_offset = (int)slot_offset+time_offset[aa];
	txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][tx_offset];
374

knopp's avatar
knopp committed
375 376 377 378 379
	for (i=0; i<(len<<1); i++) {
	  txdata[i] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
	}
      }
      
380
     // if S-subframe switch to RX in second subframe
knopp's avatar
knopp committed
381
      /*
382
     if (subframe_select(&phy_vars_eNB->frame_parms,subframe) == SF_S) {
383
       for (i=0; i<len; i++) {
384
	 phy_vars_eNB->common_vars.txdata[0][aa][tx_offset++] = 0x00010001;
385 386
       }
     }
knopp's avatar
knopp committed
387
      */
388
     if ((((phy_vars_eNB->frame_parms.tdd_config==0) ||
389 390 391 392
	   (phy_vars_eNB->frame_parms.tdd_config==1) ||
	   (phy_vars_eNB->frame_parms.tdd_config==2) ||
	   (phy_vars_eNB->frame_parms.tdd_config==6)) && 
	   (subframe==0)) || (subframe==5)) {
393 394 395
       // turn on tx switch N_TA_offset before
       //LOG_D(HW,"subframe %d, time to switch to tx (N_TA_offset %d, slot_offset %d) \n",subframe,phy_vars_eNB->N_TA_offset,slot_offset);
       for (i=0; i<phy_vars_eNB->N_TA_offset; i++) {
396 397 398
         tx_offset = (int)slot_offset+time_offset[aa]+i-phy_vars_eNB->N_TA_offset/2;
         if (tx_offset<0)
           tx_offset += LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti;
399
	 
400 401
         if (tx_offset>=(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti))
           tx_offset -= LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti;
402
	 
403
         phy_vars_eNB->common_vars.txdata[0][aa][tx_offset] = 0x00000000;
404 405 406 407
       }
     }
    }
  }
408 409 410 411
  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_ENB_SFGEN , 0 );
}

void tx_fh_if5(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc) {
412
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TST, proc->timestamp_tx&0xffffffff );
413 414 415
  send_IF5(eNB, proc->timestamp_tx, proc->subframe_tx, &seqno, IF5_RRH_GW_DL);
}

416 417 418 419 420
void tx_fh_if5_mobipass(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc) {
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TST, proc->timestamp_tx&0xffffffff );
  send_IF5(eNB, proc->timestamp_tx, proc->subframe_tx, &seqno, IF5_MOBIPASS); 
}

421 422 423 424
void tx_fh_if4p5(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc) {    
  send_IF4p5(eNB,proc->frame_tx, proc->subframe_tx, IF4p5_PDLFFT, 0);
}

425 426 427 428
void proc_tx_high0(PHY_VARS_eNB *eNB,
		   eNB_rxtx_proc_t *proc,
		   relaying_type_t r_type,
		   PHY_VARS_RN *rn) {
429

knopp's avatar
knopp committed
430 431 432
  int offset = proc == &eNB->proc.proc_rxtx[0] ? 0 : 1;

  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_TX0_ENB+offset, proc->frame_tx );
433
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_TX0_ENB+offset, proc->subframe_tx );
knopp's avatar
knopp committed
434

435
  phy_procedures_eNB_TX(eNB,proc,r_type,rn,1);
436 437 438 439 440 441 442 443 444 445 446 447 448 449

  /* we're done, let the next one proceed */
  if (pthread_mutex_lock(&sync_phy_proc.mutex_phy_proc_tx) != 0) {
    LOG_E(PHY, "[SCHED][eNB] error locking PHY proc mutex for eNB TX proc\n");
    exit_fun("nothing to add");
  }	
  sync_phy_proc.phy_proc_CC_id++;
  sync_phy_proc.phy_proc_CC_id %= MAX_NUM_CCs;
  pthread_cond_broadcast(&sync_phy_proc.cond_phy_proc_tx);
  if (pthread_mutex_unlock(&sync_phy_proc.mutex_phy_proc_tx) != 0) {
    LOG_E(PHY, "[SCHED][eNB] error unlocking PHY proc mutex for eNB TX proc\n");
    exit_fun("nothing to add");
  }

450 451 452 453 454 455
}

void proc_tx_high(PHY_VARS_eNB *eNB,
		  eNB_rxtx_proc_t *proc,
		  relaying_type_t r_type,
		  PHY_VARS_RN *rn) {
456

knopp's avatar
knopp committed
457

458 459 460 461 462 463 464 465 466 467 468 469
  // do PHY high
  proc_tx_high0(eNB,proc,r_type,rn);

  // if TX fronthaul go ahead 
  if (eNB->tx_fh) eNB->tx_fh(eNB,proc);

}

void proc_tx_full(PHY_VARS_eNB *eNB,
		  eNB_rxtx_proc_t *proc,
		  relaying_type_t r_type,
		  PHY_VARS_RN *rn) {
470

471 472 473 474 475 476

  // do PHY high
  proc_tx_high0(eNB,proc,r_type,rn);
  // do OFDM modulation
  do_OFDM_mod_rt(proc->subframe_tx,eNB);
  // if TX fronthaul go ahead 
477 478 479 480 481 482
  if (eNB->tx_fh) eNB->tx_fh(eNB,proc);



}

483 484 485 486
void proc_tx_rru_if4p5(PHY_VARS_eNB *eNB,
		       eNB_rxtx_proc_t *proc,
		       relaying_type_t r_type,
		       PHY_VARS_RN *rn) {
487 488 489 490 491

  uint32_t symbol_number=0;
  uint32_t symbol_mask, symbol_mask_full;
  uint16_t packet_type;

knopp's avatar
knopp committed
492 493 494
  int offset = proc == &eNB->proc.proc_rxtx[0] ? 0 : 1;

  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_TX0_ENB+offset, proc->frame_tx );
495
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_TX0_ENB+offset, proc->subframe_tx );
knopp's avatar
knopp committed
496

497 498 499 500 501
  /// **** recv_IF4 of txdataF from RCC **** ///             
  symbol_number = 0;
  symbol_mask = 0;
  symbol_mask_full = (1<<eNB->frame_parms.symbols_per_tti)-1;
  
knopp's avatar
knopp committed
502

503 504 505 506 507 508 509 510 511
  do { 
    recv_IF4p5(eNB, &proc->frame_tx, &proc->subframe_tx, &packet_type, &symbol_number);
    symbol_mask = symbol_mask | (1<<symbol_number);
  } while (symbol_mask != symbol_mask_full); 

  do_OFDM_mod_rt(proc->subframe_tx, eNB);
}

void proc_tx_rru_if5(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc) {
knopp's avatar
knopp committed
512 513 514
  int offset = proc == &eNB->proc.proc_rxtx[0] ? 0 : 1;

  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_TX0_ENB+offset, proc->frame_tx );
515
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_TX0_ENB+offset, proc->subframe_tx );
516 517
  /// **** recv_IF5 of txdata from BBU **** ///       
  recv_IF5(eNB, &proc->timestamp_tx, proc->subframe_tx, IF5_RRH_GW_DL);
518 519
}

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
int wait_CCs(eNB_rxtx_proc_t *proc) {

  struct timespec wait;

  wait.tv_sec=0;
  wait.tv_nsec=5000000L;

  if (pthread_mutex_timedlock(&sync_phy_proc.mutex_phy_proc_tx,&wait) != 0) {
    LOG_E(PHY, "[SCHED][eNB] error locking PHY proc mutex for eNB TX\n");
    exit_fun("nothing to add");
    return(-1);
  }
  
  // wait for our turn or oai_exit
  while (sync_phy_proc.phy_proc_CC_id != proc->CC_id && !oai_exit) {
    pthread_cond_wait(&sync_phy_proc.cond_phy_proc_tx,
		      &sync_phy_proc.mutex_phy_proc_tx);
  }
  
  if (pthread_mutex_unlock(&sync_phy_proc.mutex_phy_proc_tx) != 0) {
    LOG_E(PHY, "[SCHED][eNB] error unlocking PHY proc mutex for eNB TX\n");
    exit_fun("nothing to add");
    return(-1);
  }
  return(0);
}
546

knopp's avatar
knopp committed
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
static inline int rxtx(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc, char *thread_name) {

  start_meas(&softmodem_stats_rxtx_sf);
  // ****************************************
  // Common RX procedures subframe n
  phy_procedures_eNB_common_RX(eNB);
  
  // UE-specific RX processing for subframe n
  if (eNB->proc_uespec_rx) eNB->proc_uespec_rx(eNB, proc, no_relay );
  
  // *****************************************
  // TX processing for subframe n+4
  // run PHY TX procedures the one after the other for all CCs to avoid race conditions
  // (may be relaxed in the future for performance reasons)
  // *****************************************
562
  //if (wait_CCs(proc)<0) return(-1);
knopp's avatar
knopp committed
563 564 565 566 567 568 569 570 571 572 573 574
  
  if (oai_exit) return(-1);
  
  if (eNB->proc_tx)	eNB->proc_tx(eNB, proc, no_relay, NULL );
  
  if (release_thread(&proc->mutex_rxtx,&proc->instance_cnt_rxtx,thread_name)<0) return(-1);

  stop_meas( &softmodem_stats_rxtx_sf );
  
  return(0);
}

575
/*!
knopp's avatar
knopp committed
576
 * \brief The RX UE-specific and TX thread of eNB.
577 578 579
 * \param param is a \ref eNB_proc_t structure which contains the info what to process.
 * \returns a pointer to an int. The storage is not on the heap and must not be freed.
 */
580 581
static void* eNB_thread_rxtx( void* param ) {

knopp's avatar
knopp committed
582
  static int eNB_thread_rxtx_status;
583

knopp's avatar
knopp committed
584
  eNB_rxtx_proc_t *proc = (eNB_rxtx_proc_t*)param;
585 586
  PHY_VARS_eNB *eNB = PHY_vars_eNB_g[0][proc->CC_id];

knopp's avatar
knopp committed
587 588
  char thread_name[100];

589

590
  // set default return value
knopp's avatar
knopp committed
591
  eNB_thread_rxtx_status = 0;
592

knopp's avatar
knopp committed
593
  sprintf(thread_name,"RXn_TXnp4_%d\n",&eNB->proc.proc_rxtx[0] == proc ? 0 : 1);
594
  thread_top_init(thread_name,1,850000L,1000000L,2000000L);
595 596

  while (!oai_exit) {
knopp's avatar
knopp committed
597
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RXTX0+(proc->subframe_rx&1), 0 );
598

knopp's avatar
knopp committed
599
    if (wait_on_condition(&proc->mutex_rxtx,&proc->cond_rxtx,&proc->instance_cnt_rxtx,thread_name)<0) break;
600

knopp's avatar
knopp committed
601
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RXTX0+(proc->subframe_rx&1), 1 );
602

knopp's avatar
knopp committed
603
    
604
  
605 606
    if (oai_exit) break;

knopp's avatar
knopp committed
607
    if (rxtx(eNB,proc,thread_name) < 0) break;
608

knopp's avatar
knopp committed
609
  } // while !oai_exit
610

knopp's avatar
knopp committed
611
  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RXTX0+(proc->subframe_rx&1), 0 );
612

Raymond Knopp's avatar
Raymond Knopp committed
613
  printf( "Exiting eNB thread RXn_TXnp4\n");
614

knopp's avatar
knopp committed
615 616
  eNB_thread_rxtx_status = 0;
  return &eNB_thread_rxtx_status;
617 618
}

619
#if defined(ENABLE_ITTI) && defined(ENABLE_USE_MME)
620 621 622
/* Wait for eNB application initialization to be complete (eNB registration to MME) */
static void wait_system_ready (char *message, volatile int *start_flag) {
  
623
  static char *indicator[] = {".    ", "..   ", "...  ", ".... ", ".....",
624
			      " ....", "  ...", "   ..", "    .", "     "};
625 626 627 628 629 630 631
  int i = 0;
  
  while ((!oai_exit) && (*start_flag == 0)) {
    LOG_N(EMU, message, indicator[i]);
    fflush(stdout);
    i = (i + 1) % (sizeof(indicator) / sizeof(indicator[0]));
    usleep(200000);
632
  }
633 634
  
  LOG_D(EMU,"\n");
635 636
}
#endif
637

knopp's avatar
knopp committed
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656

// asynchronous UL with IF4p5 (RCC,RAU,eNodeB_BBU)
void fh_if5_asynch_UL(PHY_VARS_eNB *eNB,int *frame,int *subframe) {

  eNB_proc_t *proc       = &eNB->proc;
  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;

  recv_IF5(eNB, &proc->timestamp_rx, *subframe, IF5_RRH_GW_UL); 

  proc->subframe_rx = (proc->timestamp_rx/fp->samples_per_tti)%10;
  proc->frame_rx    = (proc->timestamp_rx/(10*fp->samples_per_tti))&1023;

  if (proc->first_rx != 0) {
    proc->first_rx = 0;
    *subframe = proc->subframe_rx;
    *frame    = proc->frame_rx; 
  }
  else {
    if (proc->subframe_rx != *subframe) {
657
      LOG_E(PHY,"fh_if5_asynch_UL: subframe_rx %d is not what we expect %d\n",proc->subframe_rx,*subframe);
knopp's avatar
knopp committed
658 659 660
      exit_fun("Exiting");
    }
    if (proc->frame_rx != *frame) {
661
      LOG_E(PHY,"fh_if5_asynch_UL: subframe_rx %d is not what we expect %d\n",proc->frame_rx,*frame);  
knopp's avatar
knopp committed
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
      exit_fun("Exiting");
    }
  }
} // eNodeB_3GPP_BBU 

// asynchronous UL with IF4p5 (RCC,RAU,eNodeB_BBU)
void fh_if4p5_asynch_UL(PHY_VARS_eNB *eNB,int *frame,int *subframe) {

  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
  eNB_proc_t *proc       = &eNB->proc;

  uint16_t packet_type;
  uint32_t symbol_number,symbol_mask,symbol_mask_full,prach_rx;


  symbol_number = 0;
  symbol_mask = 0;
  symbol_mask_full = (1<<fp->symbols_per_tti)-1;
  prach_rx = 0;

  do {   // Blocking, we need a timeout on this !!!!!!!!!!!!!!!!!!!!!!!
    recv_IF4p5(eNB, &proc->frame_rx, &proc->subframe_rx, &packet_type, &symbol_number);
    if (proc->first_rx != 0) {
      *frame = proc->frame_rx;
      *subframe = proc->subframe_rx;
      proc->first_rx = 0;
    }
    else {
      if (proc->frame_rx != *frame) {
691
	LOG_E(PHY,"fh_if4p5_asynch_UL: frame_rx %d is not what we expect %d\n",proc->frame_rx,*frame);
knopp's avatar
knopp committed
692 693 694
	exit_fun("Exiting");
      }
      if (proc->subframe_rx != *subframe) {
695
	LOG_E(PHY,"fh_if4p5_asynch_UL: subframe_rx %d is not what we expect %d\n",proc->subframe_rx,*subframe);
knopp's avatar
knopp committed
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
	exit_fun("Exiting");
      }
    }
    if (packet_type == IF4p5_PULFFT) {
      symbol_mask = symbol_mask | (1<<symbol_number);
      prach_rx = (is_prach_subframe(fp, proc->frame_rx, proc->subframe_rx)>0) ? 1 : 0;                            
    } else if (packet_type == IF4p5_PRACH) {
      prach_rx = 0;
    }
  } while( (symbol_mask != symbol_mask_full) || (prach_rx == 1));    
  

} 


void fh_if5_asynch_DL(PHY_VARS_eNB *eNB,int *frame,int *subframe) {

  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
  eNB_proc_t *proc       = &eNB->proc;
  int subframe_tx,frame_tx;
  openair0_timestamp timestamp_tx;

  recv_IF5(eNB, &timestamp_tx, *subframe, IF5_RRH_GW_DL); 
      //      printf("Received subframe %d (TS %llu) from RCC\n",subframe_tx,timestamp_tx);

  subframe_tx = (timestamp_tx/fp->samples_per_tti)%10;
  frame_tx    = (timestamp_tx/(fp->samples_per_tti*10))&1023;

  if (proc->first_tx != 0) {
    *subframe = subframe_tx;
    *frame    = frame_tx;
    proc->first_tx = 0;
  }
  else {
    if (subframe_tx != *subframe) {
731
      LOG_E(PHY,"fh_if5_asynch_DL: subframe_tx %d is not what we expect %d\n",subframe_tx,*subframe);
knopp's avatar
knopp committed
732 733 734
      exit_fun("Exiting");
    }
    if (frame_tx != *frame) { 
735
      LOG_E(PHY,"fh_if5_asynch_DL: frame_tx %d is not what we expect %d\n",frame_tx,*frame);
knopp's avatar
knopp committed
736 737 738 739 740 741 742 743 744 745 746
      exit_fun("Exiting");
    }
  }
}

void fh_if4p5_asynch_DL(PHY_VARS_eNB *eNB,int *frame,int *subframe) {

  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
  eNB_proc_t *proc       = &eNB->proc;

  uint16_t packet_type;
747
  uint32_t symbol_number,symbol_mask_full;
knopp's avatar
knopp committed
748 749 750 751 752 753 754 755 756 757 758 759 760 761
  int subframe_tx,frame_tx;

  symbol_number = 0;
  symbol_mask_full = (1<<fp->symbols_per_tti)-1;

  do {   // Blocking, we need a timeout on this !!!!!!!!!!!!!!!!!!!!!!!
    recv_IF4p5(eNB, &frame_tx, &subframe_tx, &packet_type, &symbol_number);
    if (proc->first_tx != 0) {
      *frame    = frame_tx;
      *subframe = subframe_tx;
      proc->first_tx = 0;
    }
    else {
      if (frame_tx != *frame) {
762
	LOG_E(PHY,"fh_if4p5_asynch_DL: frame_tx %d is not what we expect %d\n",frame_tx,*frame);
763 764
	*frame = frame_tx;
	//	exit_fun("Exiting");
knopp's avatar
knopp committed
765 766
      }
      if (subframe_tx != *subframe) {
767 768 769
	LOG_E(PHY,"fh_if4p5_asynch_DL: (frame %d) subframe_tx %d is not what we expect %d\n",frame_tx,subframe_tx,*subframe);
	//*subframe = subframe_tx;
	//exit_fun("Exiting");
knopp's avatar
knopp committed
770 771 772
      }
    }
    if (packet_type == IF4p5_PDLFFT) {
773
      proc->symbol_mask[subframe_tx] =proc->symbol_mask[subframe_tx] | (1<<symbol_number);
knopp's avatar
knopp committed
774 775 776 777 778
    }
    else {
      LOG_E(PHY,"Illegal IF4p5 packet type (should only be IF4p5_PDLFFT%d\n",packet_type);
      exit_fun("Exiting");
    }
779 780 781 782
  } while (proc->symbol_mask[*subframe] != symbol_mask_full);    

  // intialize this to zero after we're done with the subframe
  proc->symbol_mask[*subframe] = 0;
knopp's avatar
knopp committed
783
  
784
  do_OFDM_mod_rt(*subframe, eNB);
knopp's avatar
knopp committed
785 786
} 

787
/*!
788
 * \brief The Asynchronous RX/TX FH thread of RAU/RCC/eNB/RRU.
789 790 791 792
 * This handles the RX FH for an asynchronous RRU/UE
 * \param param is a \ref eNB_proc_t structure which contains the info what to process.
 * \returns a pointer to an int. The storage is not on the heap and must not be freed.
 */
793
static void* eNB_thread_asynch_rxtx( void* param ) {
794

795
  static int eNB_thread_asynch_rxtx_status;
796

797 798
  eNB_proc_t *proc = (eNB_proc_t*)param;
  PHY_VARS_eNB *eNB = PHY_vars_eNB_g[0][proc->CC_id];
knopp's avatar
knopp committed
799 800


knopp's avatar
knopp committed
801
  int subframe=0, frame=0; 
802

803
  thread_top_init("thread_asynch",1,870000L,1000000L,1000000L);
804 805 806

  // wait for top-level synchronization and do one acquisition to get timestamp for setting frame/subframe

knopp's avatar
knopp committed
807
  wait_sync("thread_asynch");
808

809 810
  // wait for top-level synchronization and do one acquisition to get timestamp for setting frame/subframe
  printf( "waiting for devices (eNB_thread_asynch_rx)\n");
811

knopp's avatar
knopp committed
812
  wait_on_condition(&proc->mutex_asynch_rxtx,&proc->cond_asynch_rxtx,&proc->instance_cnt_asynch_rxtx,"thread_asynch");
813

814 815 816
  printf( "devices ok (eNB_thread_asynch_rx)\n");


knopp's avatar
knopp committed
817 818 819
  while (!oai_exit) { 
   
    if (oai_exit) break;   
820

knopp's avatar
knopp committed
821 822 823 824 825 826 827
    if (subframe==9) { 
      subframe=0;
      frame++;
      frame&=1023;
    } else {
      subframe++;
    }      
828

knopp's avatar
knopp committed
829 830 831
    if (eNB->fh_asynch) eNB->fh_asynch(eNB,&frame,&subframe);
    else AssertFatal(1==0, "Unknown eNB->node_function %d",eNB->node_function);
    
832
  }
833

834 835
  eNB_thread_asynch_rxtx_status=0;
  return(&eNB_thread_asynch_rxtx_status);
836
}
837

838

knopp's avatar
knopp committed
839 840 841 842 843 844



void rx_rf(PHY_VARS_eNB *eNB,int *frame,int *subframe) {

  eNB_proc_t *proc = &eNB->proc;
845 846 847 848
  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
  void *rxp[fp->nb_antennas_rx],*txp[fp->nb_antennas_tx]; 
  unsigned int rxs,txs;
  int i;
849
  int tx_sfoffset = 3;//(eNB->single_thread_flag == 1) ? 3 : 3;
850 851
  openair0_timestamp old_ts;

852 853
  if (proc->first_rx==0) {
    
854
    // Transmit TX buffer based on timestamp from RX
855
    //    printf("trx_write -> USRP TS %llu (sf %d)\n", (proc->timestamp_rx+(3*fp->samples_per_tti)),(proc->subframe_rx+2)%10);
856
    VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TST, (proc->timestamp_rx+(tx_sfoffset*fp->samples_per_tti)-openair0_cfg[0].tx_sample_advance)&0xffffffff );
857 858 859 860
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE, 1 );
    // prepare tx buffer pointers
	
    for (i=0; i<fp->nb_antennas_tx; i++)
861
      txp[i] = (void*)&eNB->common_vars.txdata[0][i][((proc->subframe_rx+tx_sfoffset)%10)*fp->samples_per_tti];
862 863
    
    txs = eNB->rfdevice.trx_write_func(&eNB->rfdevice,
864
				       proc->timestamp_rx+(tx_sfoffset*fp->samples_per_tti)-openair0_cfg[0].tx_sample_advance,
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
				       txp,
				       fp->samples_per_tti,
				       fp->nb_antennas_tx,
				       1);
    
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE, 0 );
    
    
    
    if (txs !=  fp->samples_per_tti) {
      LOG_E(PHY,"TX : Timeout (sent %d/%d)\n",txs, fp->samples_per_tti);
      exit_fun( "problem transmitting samples" );
    }	
  }
  
  for (i=0; i<fp->nb_antennas_rx; i++)
    rxp[i] = (void*)&eNB->common_vars.rxdata[0][i][*subframe*fp->samples_per_tti];
  
  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ, 1 );
884

885 886
  old_ts = proc->timestamp_rx;

887 888 889 890 891
  rxs = eNB->rfdevice.trx_read_func(&eNB->rfdevice,
				    &(proc->timestamp_rx),
				    rxp,
				    fp->samples_per_tti,
				    fp->nb_antennas_rx);
892

893
  if (rxs != fp->samples_per_tti)
894
    LOG_E(PHY,"rx_rf: Asked for %d samples, got %d from USRP\n",fp->samples_per_tti,rxs);
895

896
  VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ, 0 );
knopp's avatar
knopp committed
897 898 899
 
  if (proc->first_rx == 1)
    eNB->ts_offset = proc->timestamp_rx;
900 901
  else {
    if (proc->timestamp_rx - old_ts != fp->samples_per_tti) {
902 903
      LOG_I(PHY,"rx_rf: rfdevice timing drift of %d samples\n",proc->timestamp_rx - old_ts - fp->samples_per_tti);
      eNB->ts_offset += (proc->timestamp_rx - old_ts - fp->samples_per_tti);
904 905
    }
  }
knopp's avatar
knopp committed
906 907
  proc->frame_rx    = ((proc->timestamp_rx-eNB->ts_offset) / (fp->samples_per_tti*10))&1023;
  proc->subframe_rx = ((proc->timestamp_rx-eNB->ts_offset) / fp->samples_per_tti)%10;
908 909
  // synchronize first reception to frame 0 subframe 0

910
  proc->timestamp_tx = proc->timestamp_rx+(4*fp->samples_per_tti);
911
  //  printf("trx_read <- USRP TS %lu (offset %d sf %d, f %d, first_rx %d)\n", proc->timestamp_rx,eNB->ts_offset,proc->subframe_rx,proc->frame_rx,proc->first_rx);  
912 913 914
  
  if (proc->first_rx == 0) {
    if (proc->subframe_rx != *subframe){
915
      LOG_E(PHY,"rx_rf: Received Timestamp (%llu) doesn't correspond to the time we think it is (proc->subframe_rx %d, subframe %d)\n",proc->timestamp_rx,proc->subframe_rx,*subframe);
916 917 918 919
      exit_fun("Exiting");
    }
    
    if (proc->frame_rx != *frame) {
920
      LOG_E(PHY,"rx_rf: Received Timestamp (%llu) doesn't correspond to the time we think it is (proc->frame_rx %d frame %d)\n",proc->timestamp_rx,proc->frame_rx,*frame);
921 922 923 924 925 926 927 928 929 930 931 932
      exit_fun("Exiting");
    }
  } else {
    proc->first_rx = 0;
    *frame = proc->frame_rx;
    *subframe = proc->subframe_rx;        
  }
  
  //printf("timestamp_rx %lu, frame %d(%d), subframe %d(%d)\n",proc->timestamp_rx,proc->frame_rx,frame,proc->subframe_rx,subframe);
  
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TS, proc->timestamp_rx&0xffffffff );
  
933 934 935 936 937
  if (rxs != fp->samples_per_tti)
    exit_fun( "problem receiving samples" );
  

  
938 939
}

knopp's avatar
knopp committed
940
void rx_fh_if5(PHY_VARS_eNB *eNB,int *frame, int *subframe) {
941 942

  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
knopp's avatar
knopp committed
943
  eNB_proc_t *proc = &eNB->proc;
944 945 946 947 948 949 950

  recv_IF5(eNB, &proc->timestamp_rx, *subframe, IF5_RRH_GW_UL); 

  proc->frame_rx    = (proc->timestamp_rx / (fp->samples_per_tti*10))&1023;
  proc->subframe_rx = (proc->timestamp_rx / fp->samples_per_tti)%10;
  
  if (proc->first_rx == 0) {
951
    if (proc->subframe_rx != *subframe){
952 953 954 955
      LOG_E(PHY,"Received Timestamp doesn't correspond to the time we think it is (proc->subframe_rx %d, subframe %d)\n",proc->subframe_rx,subframe);
      exit_fun("Exiting");
    }
    
956
    if (proc->frame_rx != *frame) {
957 958 959 960 961
      LOG_E(PHY,"Received Timestamp doesn't correspond to the time we think it is (proc->frame_rx %d frame %d)\n",proc->frame_rx,frame);
      exit_fun("Exiting");
    }
  } else {
    proc->first_rx = 0;
962 963
    *frame = proc->frame_rx;
    *subframe = proc->subframe_rx;        
964 965 966 967 968 969
  }      
  
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TS, proc->timestamp_rx&0xffffffff );

}

knopp's avatar
knopp committed
970

971
void rx_fh_if4p5(PHY_VARS_eNB *eNB,int *frame,int *subframe) {
972 973

  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
974
  eNB_proc_t *proc = &eNB->proc;
975 976 977 978 979 980 981 982 983 984

  int prach_rx;

  uint16_t packet_type;
  uint32_t symbol_number=0;
  uint32_t symbol_mask, symbol_mask_full;

  symbol_mask = 0;
  symbol_mask_full = (1<<fp->symbols_per_tti)-1;
  prach_rx = 0;
985

986 987
  do {   // Blocking, we need a timeout on this !!!!!!!!!!!!!!!!!!!!!!!
    recv_IF4p5(eNB, &proc->frame_rx, &proc->subframe_rx, &packet_type, &symbol_number);
988

989 990 991 992 993 994
    if (packet_type == IF4p5_PULFFT) {
      symbol_mask = symbol_mask | (1<<symbol_number);
      prach_rx = (is_prach_subframe(fp, proc->frame_rx, proc->subframe_rx)>0) ? 1 : 0;                            
    } else if (packet_type == IF4p5_PRACH) {
      prach_rx = 0;
    }
995

996
  } while( (symbol_mask != symbol_mask_full) || (prach_rx == 1));    
997 998 999 1000 1001 1002

  //caculate timestamp_rx, timestamp_tx based on frame and subframe
   proc->timestamp_rx = ((proc->frame_rx * 10)  + proc->subframe_rx ) * fp->samples_per_tti ;
   proc->timestamp_tx = proc->timestamp_rx +  (4*fp->samples_per_tti);
 
 
1003 1004
  if (proc->first_rx == 0) {
    if (proc->subframe_rx != *subframe){
wluhan's avatar
wluhan committed
1005
      LOG_E(PHY,"Received Timestamp (IF4p5) doesn't correspond to the time we think it is (proc->subframe_rx %d, subframe %d,CCid %d)\n",proc->subframe_rx,*subframe,eNB->CC_id);
1006 1007 1008
      exit_fun("Exiting");
    }
    if (proc->frame_rx != *frame) {
wluhan's avatar
wluhan committed
1009
      LOG_E(PHY,"Received Timestamp (IF4p5) doesn't correspond to the time we think it is (proc->frame_rx %d frame %d,CCid %d)\n",proc->frame_rx,*frame,eNB->CC_id);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
      exit_fun("Exiting");
    }
  } else {
    proc->first_rx = 0;
    *frame = proc->frame_rx;
    *subframe = proc->subframe_rx;        
  }
  
  VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TS, proc->timestamp_rx&0xffffffff );
  
}

knopp's avatar
knopp committed
1022 1023
void rx_fh_slave(PHY_VARS_eNB *eNB,int *frame,int *subframe) {
  // This case is for synchronization to another thread
1024
  // it just waits for an external event.  The actual rx_fh is handle by the asynchronous RX thread
knopp's avatar
knopp committed
1025 1026
  eNB_proc_t *proc=&eNB->proc;

knopp's avatar
knopp committed
1027 1028 1029 1030 1031
  if (wait_on_condition(&proc->mutex_FH,&proc->cond_FH,&proc->instance_cnt_FH,"rx_fh_slave") < 0)
    return;

  release_thread(&proc->mutex_FH,&proc->instance_cnt_FH,"rx_fh_slave");

knopp's avatar
knopp committed
1032 1033 1034 1035
  
}


1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
int wakeup_rxtx(eNB_proc_t *proc,eNB_rxtx_proc_t *proc_rxtx,LTE_DL_FRAME_PARMS *fp) {

  int i;
  struct timespec wait;
  
  wait.tv_sec=0;
  wait.tv_nsec=5000000L;

  /* accept some delay in processing - up to 5ms */
  for (i = 0; i < 10 && proc_rxtx->instance_cnt_rxtx == 0; i++) {
    LOG_W( PHY,"[eNB] Frame %d, eNB RXn-TXnp4 thread busy!! (cnt_rxtx %i)\n", proc_rxtx->frame_tx, proc_rxtx->instance_cnt_rxtx);
    usleep(500);
  }
  if (proc_rxtx->instance_cnt_rxtx == 0) {
    exit_fun( "TX thread busy" );
    return(-1);
  }

  // wake up TX for subframe n+4
  // lock the TX mutex and make sure the thread is ready
  if (pthread_mutex_timedlock(&proc_rxtx->mutex_rxtx,&wait) != 0) {
    LOG_E( PHY, "[eNB] ERROR pthread_mutex_lock for eNB RXTX thread %d (IC %d)\n", proc_rxtx->subframe_rx&1,proc_rxtx->instance_cnt_rxtx );
    exit_fun( "error locking mutex_rxtx" );
    return(-1);
  }
  
  ++proc_rxtx->instance_cnt_rxtx;
  
  // We have just received and processed the common part of a subframe, say n. 
  // TS_rx is the last received timestamp (start of 1st slot), TS_tx is the desired 
  // transmitted timestamp of the next TX slot (first).
  // The last (TS_rx mod samples_per_frame) was n*samples_per_tti, 
knopp's avatar
knopp committed
1068 1069
  // we want to generate subframe (n+4), so TS_tx = TX_rx+4*samples_per_tti,
  // and proc->subframe_tx = proc->subframe_rx+4
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
  proc_rxtx->timestamp_tx = proc->timestamp_rx + (4*fp->samples_per_tti);
  proc_rxtx->frame_rx     = proc->frame_rx;
  proc_rxtx->subframe_rx  = proc->subframe_rx;
  proc_rxtx->frame_tx     = (proc_rxtx->subframe_rx > 5) ? (proc_rxtx->frame_rx+1)&1023 : proc_rxtx->frame_rx;
  proc_rxtx->subframe_tx  = (proc_rxtx->subframe_rx + 4)%10;
  
  // the thread can now be woken up
  if (pthread_cond_signal(&proc_rxtx->cond_rxtx) != 0) {
    LOG_E( PHY, "[eNB] ERROR pthread_cond_signal for eNB RXn-TXnp4 thread\n");
    exit_fun( "ERROR pthread_cond_signal" );
    return(-1);
  }
  
  pthread_mutex_unlock( &proc_rxtx->mutex_rxtx );

  return(0);
}

void wakeup_slaves(eNB_proc_t *proc) {

  int i;
  struct timespec wait;
  
  wait.tv_sec=0;
  wait.tv_nsec=5000000L;
  
  for (i=0;i<proc->num_slaves;i++) {
    eNB_proc_t *slave_proc = proc->slave_proc[i];
    // wake up slave FH thread
    // lock the FH mutex and make sure the thread is ready
    if (pthread_mutex_timedlock(&slave_proc->mutex_FH,&wait) != 0) {
      LOG_E( PHY, "[eNB] ERROR pthread_mutex_lock for eNB CCid %d slave CCid %d (IC %d)\n",proc->CC_id,slave_proc->CC_id);
      exit_fun( "error locking mutex_rxtx" );
      break;
    }
    
    int cnt_slave            = ++slave_proc->instance_cnt_FH;
    slave_proc->frame_rx     = proc->frame_rx;
    slave_proc->subframe_rx  = proc->subframe_rx;
    slave_proc->timestamp_rx = proc->timestamp_rx;
1110 1111
    slave_proc->timestamp_tx = proc->timestamp_tx; 

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
    pthread_mutex_unlock( &slave_proc->mutex_FH );
    
    if (cnt_slave == 0) {
      // the thread was presumably waiting where it should and can now be woken up
      if (pthread_cond_signal(&slave_proc->cond_FH) != 0) {
	LOG_E( PHY, "[eNB] ERROR pthread_cond_signal for eNB CCid %d, slave CCid %d\n",proc->CC_id,slave_proc->CC_id);
          exit_fun( "ERROR pthread_cond_signal" );
	  break;
      }
    } else {
1122
      LOG_W( PHY,"[eNB] Frame %d, slave CC_id %d thread busy!! (cnt_FH %i)\n",slave_proc->frame_rx,slave_proc->CC_id, cnt_slave);
1123 1124 1125 1126 1127 1128
      exit_fun( "FH thread busy" );
      break;
    }             
  }
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
uint32_t sync_corr[307200] __attribute__((aligned(32)));

// This thread run the initial synchronization like a UE
void *eNB_thread_synch(void *arg) {

  PHY_VARS_eNB *eNB = (PHY_VARS_eNB*)arg;
  LTE_DL_FRAME_PARMS *fp=&eNB->frame_parms;
  int32_t sync_pos,sync_pos2;
  uint32_t peak_val;

  thread_top_init("eNB_thread_synch",0,5000000,10000000,10000000);

  wait_sync("eNB_thread_synch");

  // initialize variables for PSS detection
  lte_sync_time_init(&eNB->frame_parms);

  while (!oai_exit) {

    // wait to be woken up
    pthread_mutex_lock(&eNB->proc.mutex_synch);
    while (eNB->proc.instance_cnt_synch < 0)
      pthread_cond_wait(&eNB->proc.cond_synch,&eNB->proc.mutex_synch);
    pthread_mutex_unlock(&eNB->proc.mutex_synch);

    // if we're not in synch, then run initial synch
    if (eNB->in_synch == 0) { 
      // run intial synch like UE
      LOG_I(PHY,"Running initial synchronization\n");
      
      sync_pos = lte_sync_time_eNB(eNB->common_vars.rxdata[0],
				   fp,
				   fp->samples_per_tti*5,
				   &peak_val,
				   sync_corr);
      LOG_I(PHY,"eNB synch: %d, val %d\n",sync_pos,peak_val);

      if (sync_pos >= 0) {
	if (sync_pos >= fp->nb_prefix_samples)
	  sync_pos2 = sync_pos - fp->nb_prefix_samples;
	else
	  sync_pos2 = sync_pos + (fp->samples_per_tti*10) - fp->nb_prefix_samples;
	
	if (fp->frame_type == FDD) {
	  
	  // PSS is hypothesized in last symbol of first slot in Frame
	  int sync_pos_slot = (fp->samples_per_tti>>1) - fp->ofdm_symbol_size - fp->nb_prefix_samples;
	  
	  if (sync_pos2 >= sync_pos_slot)
	    eNB->rx_offset = sync_pos2 - sync_pos_slot;
	  else
	    eNB->rx_offset = (fp->samples_per_tti*10) + sync_pos2 - sync_pos_slot;
	}
	else {
	  
	}

	LOG_I(PHY,"Estimated sync_pos %d, peak_val %d => timing offset %d\n",sync_pos,peak_val,eNB->rx_offset);
	
1188 1189
	/*
	if ((peak_val > 300000) && (sync_pos > 0)) {
1190 1191 1192 1193
	//      if (sync_pos++ > 3) {
	write_output("eNB_sync.m","sync",(void*)&sync_corr[0],fp->samples_per_tti*5,1,2);
	write_output("eNB_rx.m","rxs",(void*)eNB->common_vars.rxdata[0][0],fp->samples_per_tti*10,1,1);
	exit(-1);
1194 1195 1196
	}
	*/
	eNB->in_synch=1;
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
      }
    }

    // release thread
    pthread_mutex_lock(&eNB->proc.mutex_synch);
    eNB->proc.instance_cnt_synch--;
    pthread_mutex_unlock(&eNB->proc.mutex_synch);
  } // oai_exit

  lte_sync_time_free();

}

int wakeup_synch(PHY_VARS_eNB *eNB){

  struct timespec wait;
  
  wait.tv_sec=0;
  wait.tv_nsec=5000000L;

  // wake up synch thread
  // lock the synch mutex and make sure the thread is ready
  if (pthread_mutex_timedlock(&eNB->proc.mutex_synch,&wait) != 0) {
    LOG_E( PHY, "[eNB] ERROR pthread_mutex_lock for eNB synch thread (IC %d)\n", eNB->proc.instance_cnt_synch );
    exit_fun( "error locking mutex_synch" );
    return(-1);
  }
  
  ++eNB->proc.instance_cnt_synch;
  
  // the thread can now be woken up
  if (pthread_cond_signal(&eNB->proc.cond_synch) != 0) {
    LOG_E( PHY, "[eNB] ERROR pthread_cond_signal for eNB synch thread\n");
    exit_fun( "ERROR pthread_cond_signal" );
    return(-1);
  }
  
  pthread_mutex_unlock( &eNB->proc.mutex_synch );

  return(0);
}

1239
/*!
1240 1241 1242
 * \brief The Fronthaul thread of RRU/RAU/RCC/eNB
 * In the case of RRU/eNB, handles interface with external RF
 * In the case of RAU/RCC, handles fronthaul interface with RRU/RAU
1243 1244 1245
 * \param param is a \ref eNB_proc_t structure which contains the info what to process.
 * \returns a pointer to an int. The storage is not on the heap and must not be freed.
 */
knopp's avatar
knopp committed
1246

1247
static void* eNB_thread_FH( void* param ) {
1248
  
1249
  static int eNB_thread_FH_status;
1250 1251

  eNB_proc_t *proc = (eNB_proc_t*)param;
1252 1253
  PHY_VARS_eNB *eNB = PHY_vars_eNB_g[0][proc->CC_id];
  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
1254

Sandeep Kumar's avatar
Sandeep Kumar committed
1255
  int subframe=0, frame=0; 
1256

1257
  // set default return value
1258
  eNB_thread_FH_status = 0;
1259

1260
  thread_top_init("eNB_thread_FH",0,870000,1000000,1000000);
1261

knopp's avatar
knopp committed
1262
  wait_sync("eNB_thread_FH");
1263

1264
#if defined(ENABLE_ITTI) && defined(ENABLE_USE_MME)
knopp's avatar
knopp committed
1265 1266
  if (eNB->node_function < NGFI_RRU_IF5)
    wait_system_ready ("Waiting for eNB application to be ready %s\r", &start_eNB);
1267
#endif 
1268

1269 1270 1271
  // Start IF device if any
  if (eNB->start_if) 
    if (eNB->start_if(eNB) != 0)
1272
      LOG_E(HW,"Could not start the IF device\n");
1273

knopp's avatar
knopp committed
1274 1275 1276 1277 1278
  // Start RF device if any
  if (eNB->start_rf)
    if (eNB->start_rf(eNB) != 0)
      LOG_E(HW,"Could not start the RF device\n");

knopp's avatar
knopp committed
1279
  // wakeup asnych_rxtx thread because the devices are ready at this point
1280 1281 1282 1283 1284
  pthread_mutex_lock(&proc->mutex_asynch_rxtx);
  proc->instance_cnt_asynch_rxtx=0;
  pthread_mutex_unlock(&proc->mutex_asynch_rxtx);
  pthread_cond_signal(&proc->cond_asynch_rxtx);

1285 1286
  // This is a forever while loop, it loops over subframes which are scheduled by incoming samples from HW devices
  while (!oai_exit) {
1287

knopp's avatar
knopp committed
1288 1289
    // these are local subframe/frame counters to check that we are in synch with the fronthaul timing.
    // They are set on the first rx/tx in the underly FH routines.
1290 1291 1292 1293 1294 1295 1296 1297
    if (subframe==9) { 
      subframe=0;
      frame++;
      frame&=1023;
    } else {
      subframe++;
    }      

knopp's avatar
knopp committed
1298 1299 1300 1301
 
    // synchronization on FH interface, acquire signals/data and block
    if (eNB->rx_fh) eNB->rx_fh(eNB,&frame,&subframe);
    else AssertFatal(1==0, "No fronthaul interface : eNB->node_function %d",eNB->node_function);
1302

Cedric Roux's avatar
Cedric Roux committed
1303 1304
    T(T_ENB_MASTER_TICK, T_INT(0), T_INT(proc->frame_rx), T_INT(proc->subframe_rx));

1305 1306
    // At this point, all information for subframe has been received on FH interface
    // If this proc is to provide synchronization, do so
1307
    wakeup_slaves(proc);
1308 1309
      
    // wake up RXn_TXnp4 thread for the subframe
1310
    // choose even or odd thread for RXn-TXnp4 processing 
1311
    if (wakeup_rxtx(proc,&proc->proc_rxtx[proc->subframe_rx&1],fp) < 0)
1312
      break;
1313

knopp's avatar
knopp committed
1314
    // artifical sleep for very slow fronthaul
1315 1316
    if (eNB->frame_parms.N_RB_DL==6)
      rt_sleep_ns(800000LL);
1317 1318 1319
  }
    
  printf( "Exiting FH thread \n");
knopp's avatar
knopp committed
1320
 
1321 1322
  eNB_thread_FH_status = 0;
  return &eNB_thread_FH_status;
1323 1324 1325 1326 1327 1328 1329 1330
}


/*!
 * \brief The prach receive thread of eNB.
 * \param param is a \ref eNB_proc_t structure which contains the info what to process.
 * \returns a pointer to an int. The storage is not on the heap and must not be freed.
 */
1331
static void* eNB_thread_prach( void* param ) {
1332 1333 1334 1335
  static int eNB_thread_prach_status;

  eNB_proc_t *proc = (eNB_proc_t*)param;
  PHY_VARS_eNB *eNB= PHY_vars_eNB_g[0][proc->CC_id];
Raymond Knopp's avatar
Raymond Knopp committed
1336

1337 1338 1339
  // set default return value
  eNB_thread_prach_status = 0;

1340
  thread_top_init("eNB_thread_prach",1,500000L,1000000L,20000000L);
1341

1342 1343 1344 1345
  while (!oai_exit) {
    
    if (oai_exit) break;

knopp's avatar
knopp committed
1346
    if (wait_on_condition(&proc->mutex_prach,&proc->cond_prach,&proc->instance_cnt_prach,"eNB_prach_thread") < 0) break;
knopp's avatar
knopp committed
1347
    
1348
    prach_procedures(eNB);
1349
    
knopp's avatar
knopp committed
1350
    if (release_thread(&proc->mutex_prach,&proc->instance_cnt_prach,"eNB_prach_thread") < 0) break;
1351
  }
1352

1353
  printf( "Exiting eNB thread PRACH\n");
Raymond Knopp's avatar
Raymond Knopp committed
1354

1355 1356
  eNB_thread_prach_status = 0;
  return &eNB_thread_prach_status;
1357 1358
}

1359 1360


knopp's avatar
knopp committed
1361 1362 1363 1364 1365 1366 1367
static void* eNB_thread_single( void* param ) {

  static int eNB_thread_single_status;

  eNB_proc_t *proc = (eNB_proc_t*)param;
  eNB_rxtx_proc_t *proc_rxtx = &proc->proc_rxtx[0];
  PHY_VARS_eNB *eNB = PHY_vars_eNB_g[0][proc->CC_id];
1368 1369 1370
  LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;

  void *rxp[2],*rxp2[2];
knopp's avatar
knopp committed
1371 1372 1373

  int subframe=0, frame=0; 

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
  int32_t dummy_rx[fp->nb_antennas_rx][fp->samples_per_tti] __attribute__((aligned(32)));

  int ic;

  int rxs;

  int i;

  // initialize the synchronization buffer to the common_vars.rxdata
  for (int i=0;i<fp->nb_antennas_rx;i++)
    rxp[i] = &eNB->common_vars.rxdata[0][i][0];

knopp's avatar
knopp committed
1386 1387 1388
  // set default return value
  eNB_thread_single_status = 0;

1389
  thread_top_init("eNB_thread_single",0,870000,1000000,1000000);
knopp's avatar
knopp committed
1390 1391 1392

  wait_sync("eNB_thread_single");

1393
#if defined(ENABLE_ITTI) && defined(ENABLE_USE_MME)
knopp's avatar
knopp committed
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
  if (eNB->node_function < NGFI_RRU_IF5)
    wait_system_ready ("Waiting for eNB application to be ready %s\r", &start_eNB);
#endif 

  // Start IF device if any
  if (eNB->start_if) 
    if (eNB->start_if(eNB) != 0)
      LOG_E(HW,"Could not start the IF device\n");

  // Start RF device if any
  if (eNB->start_rf)
    if (eNB->start_rf(eNB) != 0)
      LOG_E(HW,"Could not start the RF device\n");

  // wakeup asnych_rxtx thread because the devices are ready at this point
  pthread_mutex_lock(&proc->mutex_asynch_rxtx);
  proc->instance_cnt_asynch_rxtx=0;
  pthread_mutex_unlock(&proc->mutex_asynch_rxtx);
  pthread_cond_signal(&proc->cond_asynch_rxtx);

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456


  // if this is a slave eNB, try to synchronize on the DL frequency
  if ((eNB->is_slave) &&
      ((eNB->node_function >= NGFI_RRU_IF5))) {
    // if FDD, switch RX on DL frequency
    
    double temp_freq1 = eNB->rfdevice.openair0_cfg->rx_freq[0];
    double temp_freq2 = eNB->rfdevice.openair0_cfg->tx_freq[0];
    for (i=0;i<4;i++) {
      eNB->rfdevice.openair0_cfg->rx_freq[i] = eNB->rfdevice.openair0_cfg->tx_freq[i];
      eNB->rfdevice.openair0_cfg->tx_freq[i] = temp_freq1;
    }
    eNB->rfdevice.trx_set_freq_func(&eNB->rfdevice,eNB->rfdevice.openair0_cfg,0);

    while ((eNB->in_synch ==0)&&(!oai_exit)) {
      // read in frame
      rxs = eNB->rfdevice.trx_read_func(&eNB->rfdevice,
					&(proc->timestamp_rx),
					rxp,
					fp->samples_per_tti*10,
					fp->nb_antennas_rx);
      // wakeup synchronization processing thread
      wakeup_synch(eNB);
      ic=0;
      
      while ((ic>=0)&&(!oai_exit)) {
	// continuously read in frames, 1ms at a time, 
	// until we are done with the synchronization procedure
	
	for (i=0; i<fp->nb_antennas_rx; i++)
	  rxp2[i] = (void*)&dummy_rx[i][0];
	for (i=0;i<10;i++)
	  rxs = eNB->rfdevice.trx_read_func(&eNB->rfdevice,
					    &(proc->timestamp_rx),
					    rxp2,
					    fp->samples_per_tti,
					    fp->nb_antennas_rx);
	pthread_mutex_lock(&eNB->proc.mutex_synch);
	ic = eNB->proc.instance_cnt_synch;
	pthread_mutex_unlock(&eNB->proc.mutex_synch);
      } // ic>=0
    } // in_synch==0
1457 1458 1459 1460 1461 1462 1463
    // read in rx_offset samples
    LOG_I(PHY,"Resynchronizing by %d samples\n",eNB->rx_offset);
    rxs = eNB->rfdevice.trx_read_func(&eNB->rfdevice,
				      &(proc->timestamp_rx),
				      rxp,
				      eNB->rx_offset,
				      fp->nb_antennas_rx);
1464 1465
    for (i=0;i<4;i++) {
      eNB->rfdevice.openair0_cfg->rx_freq[i] = temp_freq1;
1466
      eNB->rfdevice.openair0_cfg->tx_freq[i] = temp_freq2;
1467
    }
1468
    eNB->rfdevice.trx_set_freq_func(&eNB->rfdevice,eNB->rfdevice.openair0_cfg,1);
1469 1470 1471
  } // if RRU and slave


knopp's avatar
knopp committed
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
  // This is a forever while loop, it loops over subframes which are scheduled by incoming samples from HW devices
  while (!oai_exit) {

    // these are local subframe/frame counters to check that we are in synch with the fronthaul timing.
    // They are set on the first rx/tx in the underly FH routines.
    if (subframe==9) { 
      subframe=0;
      frame++;
      frame&=1023;
    } else {
      subframe++;
    }      

wluhan's avatar
wluhan committed
1485 1486
    LOG_D(PHY,"eNB thread single %p (proc %p, CC_id %d), frame %d (%p), subframe %d (%p)\n",
	  pthread_self(), proc, eNB->CC_id, frame,&frame,subframe,&subframe);
knopp's avatar
knopp committed
1487 1488 1489 1490 1491 1492 1493
 
    // synchronization on FH interface, acquire signals/data and block
    if (eNB->rx_fh) eNB->rx_fh(eNB,&frame,&subframe);
    else AssertFatal(1==0, "No fronthaul interface : eNB->node_function %d",eNB->node_function);

    T(T_ENB_MASTER_TICK, T_INT(0), T_INT(proc->frame_rx), T_INT(proc->subframe_rx));

1494 1495 1496 1497 1498
    proc_rxtx->subframe_rx = proc->subframe_rx;
    proc_rxtx->frame_rx    = proc->frame_rx;
    proc_rxtx->subframe_tx = (proc->subframe_rx+4)%10;
    proc_rxtx->frame_tx    = (proc->subframe_rx < 6) ? proc->frame_rx : (proc->frame_rx+1)&1023; 
    proc_rxtx->timestamp_tx = proc->timestamp_tx;
1499

knopp's avatar
knopp committed
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
    // At this point, all information for subframe has been received on FH interface
    // If this proc is to provide synchronization, do so
    wakeup_slaves(proc);

    if (rxtx(eNB,proc_rxtx,"eNB_thread_single") < 0) break;
  }
  

  printf( "Exiting eNB_single thread \n");
 
  eNB_thread_single_status = 0;
  return &eNB_thread_single_status;

}

1515
extern void init_fep_thread(PHY_VARS_eNB *, pthread_attr_t *);
knopp's avatar
knopp committed
1516 1517
extern void init_td_thread(PHY_VARS_eNB *, pthread_attr_t *);
extern void init_te_thread(PHY_VARS_eNB *, pthread_attr_t *);
1518

1519
void init_eNB_proc(int inst) {
1520
  
1521 1522
  int i;
  int CC_id;
1523 1524
  PHY_VARS_eNB *eNB;
  eNB_proc_t *proc;
knopp's avatar
knopp committed
1525
  eNB_rxtx_proc_t *proc_rxtx;
1526
  pthread_attr_t *attr0=NULL,*attr1=NULL,*attr_FH=NULL,*attr_prach=NULL,*attr_asynch=NULL,*attr_single=NULL,*attr_fep=NULL,*attr_td=NULL,*attr_te=NULL,*attr_synch=NULL;
knopp's avatar
knopp committed
1527

1528 1529 1530 1531
  for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
    eNB = PHY_vars_eNB_g[inst][CC_id];
    LOG_I(PHY,"Initializing eNB %d CC_id %d (%s,%s),\n",inst,CC_id,eNB_functions[eNB->node_function],eNB_timing[eNB->node_timing]);
    proc = &eNB->proc;
knopp's avatar
knopp committed
1532

1533 1534 1535
    proc_rxtx = proc->proc_rxtx;
    proc_rxtx[0].instance_cnt_rxtx = -1;
    proc_rxtx[1].instance_cnt_rxtx = -1;
1536 1537
    proc->instance_cnt_prach       = -1;
    proc->instance_cnt_FH          = -1;
1538
    proc->instance_cnt_asynch_rxtx = -1;
1539
    proc->CC_id = CC_id;    
1540 1541
    proc->instance_cnt_synch        =  -1;

knopp's avatar
knopp committed
1542 1543 1544
    proc->first_rx=1;
    proc->first_tx=1;
<