pucchsim.c 21.1 KB
Newer Older
ghaddab's avatar
ghaddab committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*******************************************************************************
    OpenAirInterface 
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is 
   included in this distribution in the file called "COPYING". If not, 
   see <http://www.gnu.org/licenses/>.

  Contact Information
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
  OpenAirInterface Dev  : openair4g-devel@eurecom.fr
  
ghaddab's avatar
ghaddab committed
26
  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
ghaddab's avatar
ghaddab committed
27 28

 *******************************************************************************/
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#include <string.h>
#include <math.h>
#include <unistd.h>
#include "SIMULATION/TOOLS/defs.h"
#include "SIMULATION/RF/defs.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#include "PHY/vars.h"
#include "MAC_INTERFACE/vars.h"
#ifdef IFFT_FPGA
#include "PHY/LTE_REFSIG/mod_table.h"
#endif
#ifdef EMOS
#include "SCHED/phy_procedures_emos.h"
#endif
#include "SCHED/defs.h"
#include "SCHED/vars.h"
#include "ARCH/CBMIMO1/DEVICE_DRIVER/vars.h"
#include "LAYER2/MAC/vars.h"

#include "OCG_vars.h"
#include "UTIL/LOG/log_extern.h"

#define BW 5.0

int current_dlsch_cqi; //FIXME! 

PHY_VARS_eNB *PHY_vars_eNB;
PHY_VARS_UE *PHY_vars_UE;

#define DLSCH_RB_ALLOC 0x1fbf // igore DC component,RB13



63
void lte_param_init(unsigned char N_tx, unsigned char N_rx,unsigned char transmission_mode,unsigned char extended_prefix_flag,uint16_t Nid_cell,uint8_t N_RB_DL,uint8_t osf) {
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

  LTE_DL_FRAME_PARMS *lte_frame_parms;

  printf("Start lte_param_init\n");
  PHY_vars_eNB = malloc(sizeof(PHY_VARS_eNB));

  PHY_vars_UE = malloc(sizeof(PHY_VARS_UE));
  //PHY_config = malloc(sizeof(PHY_CONFIG));
  mac_xface = malloc(sizeof(MAC_xface));

  randominit(0);
  set_taus_seed(0);
  
  lte_frame_parms = &(PHY_vars_eNB->lte_frame_parms);

  lte_frame_parms->N_RB_DL            = N_RB_DL;   //50 for 10MHz and 25 for 5 MHz
  lte_frame_parms->N_RB_UL            = N_RB_DL;   
  lte_frame_parms->Ncp                = extended_prefix_flag;
  lte_frame_parms->Nid_cell           = Nid_cell;
  lte_frame_parms->nushift            = 0;
  lte_frame_parms->nb_antennas_tx     = N_tx;
  lte_frame_parms->nb_antennas_rx     = N_rx;
  //  lte_frame_parms->Csrs = 2;
  //  lte_frame_parms->Bsrs = 0;
  //  lte_frame_parms->kTC = 0;
  //  lte_frame_parms->n_RRC = 0;
  lte_frame_parms->mode1_flag = (transmission_mode == 1)? 1 : 0;
  lte_frame_parms->tdd_config = 3;
  lte_frame_parms->frame_type = 0;
  init_frame_parms(lte_frame_parms,osf);
  
  //copy_lte_parms_to_phy_framing(lte_frame_parms, &(PHY_config->PHY_framing));
  
  phy_init_top(lte_frame_parms); //allocation
  
  lte_frame_parms->twiddle_fft      = twiddle_fft;
  lte_frame_parms->twiddle_ifft     = twiddle_ifft;
  lte_frame_parms->rev              = rev;
  
  PHY_vars_UE->lte_frame_parms = *lte_frame_parms;


  phy_init_lte_ue(PHY_vars_UE,1,0);

  phy_init_lte_eNB(PHY_vars_eNB,0,0,0);

  phy_init_lte_top(lte_frame_parms);

  


  printf("Done lte_param_init\n");

}


int main(int argc, char **argv) {

  char c;

  int i,l,aa;
  double sigma2, sigma2_dB=0,SNR,snr0=-2.0,snr1=0.0;
126
  uint8_t snr1set=0;
127 128 129 130 131 132 133 134 135
  //mod_sym_t **txdataF;
#ifdef IFFT_FPGA
  int **txdataF2;
#endif
  int **txdata;
  double **s_re,**s_im,**r_re,**r_im;
  double ricean_factor=0.0000005,iqim=0.0;

  int trial, n_trials, ntrials=1, n_errors;
136
  uint8_t transmission_mode = 1,n_tx=1,n_rx=1;
137
  unsigned char eNB_id = 0;
138
  uint16_t Nid_cell=0;
139 140 141

  int n_frames=1;
  channel_desc_t *UE2eNB;
142 143
  uint32_t nsymb,tx_lev;
  uint8_t extended_prefix_flag=0;
144 145 146 147 148 149 150 151 152

  LTE_DL_FRAME_PARMS *frame_parms;
#ifdef EMOS
  fifo_dump_emos emos_dump;
#endif

  SCM_t channel_model=Rayleigh1_corr;

  //  double pucch_sinr;
153 154
  uint8_t osf=1,N_RB_DL=25;
  uint32_t pucch_tx=0,pucch1_missed=0,pucch1_false=0,sig;
155 156
  PUCCH_FMT_t pucch_format = pucch_format1;
  PUCCH_CONFIG_DEDICATED pucch_config_dedicated;
157 158
  uint8_t subframe=0;
  uint8_t pucch_payload,pucch_payload_rx;
159
  double tx_gain=1.0;
160
  int32_t stat;
161
  double stat_no_sig,stat_sig;
162 163
  uint8_t N0=40;
  uint8_t pucch1_thres=13;
164

165 166
  uint16_t n1_pucch = 0;
  uint16_t n2_pucch = 0;
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

  number_of_cards = 1;
  openair_daq_vars.rx_rf_mode = 1;
  
  /*
    rxdataF    = (int **)malloc16(2*sizeof(int*));
    rxdataF[0] = (int *)malloc16(FRAME_LENGTH_BYTES);
    rxdataF[1] = (int *)malloc16(FRAME_LENGTH_BYTES);
    
    rxdata    = (int **)malloc16(2*sizeof(int*));
    rxdata[0] = (int *)malloc16(FRAME_LENGTH_BYTES);
    rxdata[1] = (int *)malloc16(FRAME_LENGTH_BYTES);
  */

    while ((c = getopt (argc, argv, "har:pf:g:n:s:S:x:y:z:N:F:T:R:")) != -1)
    {
      switch (c)
	{
	case 'a':
	  printf("Running AWGN simulation\n");
	  channel_model = AWGN;
	  ntrials=1;
	  break;
	case 'f':
	  if (atoi(optarg)==0)
	    pucch_format = pucch_format1;
	  else if (atoi(optarg)==1)
	    pucch_format = pucch_format1a;
	  else if (atoi(optarg)==2)
	    pucch_format = pucch_format1b;
	  else {
	    printf("Unsupported pucch_format %d\n",atoi(optarg));
	    exit(-1);
	  }
	  break;
	case 'g':
	  switch((char)*optarg) {
	  case 'A': 
	    channel_model=SCM_A;
	    break;
	  case 'B': 
	    channel_model=SCM_B;
	    break;
	  case 'C': 
	    channel_model=SCM_C;
	    break;
	  case 'D': 
	    channel_model=SCM_D;
	    break;
	  case 'E': 
	    channel_model=EPA;
	    break;
	  case 'F': 
	    channel_model=EVA;
	    break;
	  case 'G': 
	    channel_model=ETU;
	    break;
	  case 'H':
	    channel_model=Rayleigh8;
	  case 'I':
	    channel_model=Rayleigh1;
	  case 'J':
	    channel_model=Rayleigh1_corr;
	  case 'K':
	    channel_model=Rayleigh1_anticorr;
	  case 'L':
	    channel_model=Rice8;
	  case 'M':
	    channel_model=Rice1;
	  break;
	  default:
	    msg("Unsupported channel model!\n");
	    exit(-1);
	  }
	break;
	case 'n':
	  n_frames = atoi(optarg);
	  break;
	case 's':
	  snr0 = atof(optarg);
	  msg("Setting SNR0 to %f\n",snr0);
	  break;
	case 'S':
	  snr1 = atof(optarg);
	  snr1set=1;
	  msg("Setting SNR1 to %f\n",snr1);
	  break;
	case 'p':
	  extended_prefix_flag=1;
	  break;
	case 'r':
	  ricean_factor = pow(10,-.1*atof(optarg));
	  if (ricean_factor>1) {
	    printf("Ricean factor must be between 0 and 1\n");
	    exit(-1);
	  }
	  break;
	case 'x':
	  transmission_mode=atoi(optarg);
	  if ((transmission_mode!=1) &&
	      (transmission_mode!=2) &&
	      (transmission_mode!=6)) {
	    msg("Unsupported transmission mode %d\n",transmission_mode);
	    exit(-1);
	  }
	  break;
	case 'y':
	  n_tx=atoi(optarg);
	  if ((n_tx==0) || (n_tx>2)) {
	    msg("Unsupported number of tx antennas %d\n",n_tx);
	    exit(-1);
	  }
	  break;
	case 'z':
	  n_rx=atoi(optarg);
	  if ((n_rx==0) || (n_rx>2)) {
	    msg("Unsupported number of rx antennas %d\n",n_rx);
	    exit(-1);
	  }
	  break;
	case 'N':
	  N0 = atoi(optarg);
	  break;
	case 'T':
	  pucch1_thres = atoi(optarg);
	  break;
	case 'R':
	  N_RB_DL = atoi(optarg);
	  break;
	case 'O':
	  osf = atoi(optarg);
	  break;
	case 'F':
	  break;
	default:
	case 'h':
	  printf("%s -h(elp) -a(wgn on) -p(extended_prefix) -N cell_id -f output_filename -F input_filename -g channel_model -n n_frames -t Delayspread -r Ricean_FactordB -s snr0 -S snr1 -x transmission_mode -y TXant -z RXant -N CellId\n",argv[0]);
	  printf("-h This message\n");
	  printf("-a Use AWGN channel and not multipath\n");
	  printf("-p Use extended prefix mode\n");
	  printf("-n Number of frames to simulate\n");
	  printf("-r Ricean factor (dB, 0 means Rayleigh, 100 is almost AWGN\n");
	  printf("-s Starting SNR, runs from SNR0 to SNR0 + 5 dB.  If n_frames is 1 then just SNR is simulated\n");
	  printf("-S Ending SNR, runs from SNR0 to SNR1\n");
	  printf("-t Delay spread for multipath channel\n");
	  printf("-g [A,B,C,D,E,F,G] Use 3GPP SCM (A,B,C,D) or 36-101 (E-EPA,F-EVA,G-ETU) models (ignores delay spread and Ricean factor)\n");
	  printf("-x Transmission mode (1,2,6 for the moment)\n");
	  printf("-y Number of TX antennas used in eNB\n");
	  printf("-z Number of RX antennas used in UE\n");
	  printf("-i Relative strength of first intefering eNB (in dB) - cell_id mod 3 = 1\n");
	  printf("-j Relative strength of second intefering eNB (in dB) - cell_id mod 3 = 2\n");
	  printf("-N Noise variance in dB\n");
	  printf("-R N_RB_DL\n");
	  printf("-O oversampling factor (1,2,4,8,16)\n");
	  printf("-f PUCCH format (0=1,1=1a,2=1b), formats 2/2a/2b not supported\n");
	  printf("-F Input filename (.txt format) for RX conformance testing\n");
	  exit (-1);
	  break;
	}
    }

  logInit();
  g_log->log_component[PHY].level = LOG_DEBUG;
  g_log->log_component[PHY].flag = LOG_HIGH;

  if (transmission_mode==2)
    n_tx=2;

  lte_param_init(n_tx,n_rx,transmission_mode,extended_prefix_flag,Nid_cell,N_RB_DL,osf);


  if (snr1set==0) {
    if (n_frames==1)
      snr1 = snr0+.1;
    else
      snr1 = snr0+5.0;
  }

  printf("SNR0 %f, SNR1 %f\n",snr0,snr1);

  frame_parms = &PHY_vars_eNB->lte_frame_parms;


#ifdef IFFT_FPGA
  txdata    = (int **)malloc16(2*sizeof(int*));
  txdata[0] = (int *)malloc16(FRAME_LENGTH_BYTES);
  txdata[1] = (int *)malloc16(FRAME_LENGTH_BYTES);

  bzero(txdata[0],FRAME_LENGTH_BYTES);
  bzero(txdata[1],FRAME_LENGTH_BYTES);

  txdataF2    = (int **)malloc16(2*sizeof(int*));
  txdataF2[0] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX);
  txdataF2[1] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX);

  bzero(txdataF2[0],FRAME_LENGTH_BYTES_NO_PREFIX);
  bzero(txdataF2[1],FRAME_LENGTH_BYTES_NO_PREFIX);
#else
  txdata = PHY_vars_eNB->lte_eNB_common_vars.txdata[eNB_id];
#endif
  
  s_re = malloc(2*sizeof(double*));
  s_im = malloc(2*sizeof(double*));
  r_re = malloc(2*sizeof(double*));
  r_im = malloc(2*sizeof(double*));
  nsymb = (frame_parms->Ncp == 0) ? 14 : 12;

  printf("FFT Size %d, Extended Prefix %d, Samples per subframe %d, Symbols per subframe %d\n",NUMBER_OF_OFDM_CARRIERS,
	 frame_parms->Ncp,frame_parms->samples_per_tti,nsymb);


  
  msg("[SIM] Using SCM/101\n");
  UE2eNB = new_channel_desc_scm(PHY_vars_eNB->lte_frame_parms.nb_antennas_tx,
				PHY_vars_UE->lte_frame_parms.nb_antennas_rx,
				channel_model,
				BW,
				0.0,
				0,
				0);
  

  if (UE2eNB==NULL) {
    msg("Problem generating channel model. Exiting.\n");
    exit(-1);
  }

  for (i=0;i<2;i++) {

    s_re[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero(s_re[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    s_im[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero(s_im[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));

    r_re[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero(r_re[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    r_im[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero(r_im[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
  }
 
  init_ncs_cell(&PHY_vars_eNB->lte_frame_parms,PHY_vars_eNB->ncs_cell);

  init_ncs_cell(&PHY_vars_UE->lte_frame_parms,PHY_vars_UE->ncs_cell);
 
  PHY_vars_eNB->lte_frame_parms.pucch_config_common.deltaPUCCH_Shift = 1;
  PHY_vars_eNB->lte_frame_parms.pucch_config_common.nRB_CQI          = 0;
  PHY_vars_eNB->lte_frame_parms.pucch_config_common.nCS_AN           = 0;
  PHY_vars_UE->lte_frame_parms.pucch_config_common.deltaPUCCH_Shift = 1;
  PHY_vars_UE->lte_frame_parms.pucch_config_common.nRB_CQI          = 0;
  PHY_vars_UE->lte_frame_parms.pucch_config_common.nCS_AN           = 0;

  pucch_payload = 1;

  generate_pucch(PHY_vars_UE->lte_ue_common_vars.txdataF,
		 frame_parms,
		 PHY_vars_UE->ncs_cell,
		 pucch_format,
		 &pucch_config_dedicated,
		 n1_pucch,
		 n2_pucch,
		 0, //shortened_format,
		 &pucch_payload, 
		 AMP, //amp,
		 subframe); //subframe
#ifdef IFFT_FPGA_UE  
  tx_lev=0;
  
  for (aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
    
    if (frame_parms->Ncp == 1) 
      PHY_ofdm_mod(txdataF2[aa],        // input
		   txdata[aa],         // output
		   frame_parms->log2_symbol_size,                // log2_fft_size
		   2*nsymb,                 // number of symbols
		   frame_parms->nb_prefix_samples,               // number of prefix samples
		   frame_parms->twiddle_ifft,  // IFFT twiddle factors
		   frame_parms->rev,           // bit-reversal permutation
		   CYCLIC_PREFIX);
    else 
      normal_prefix_mod(txdataF2[aa],txdata[aa],2*nsymb,frame_parms);
  }
  tx_lev += signal_energy(&txdata[aa][OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES],
			  OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
    
#else

    write_output("txsigF0.m","txsF0", &PHY_vars_UE->lte_ue_common_vars.txdataF[0][2*subframe*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES_NO_PREFIX],OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES_NO_PREFIX*nsymb,1,1);

    tx_lev = 0;
    
    
    
    for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
      if (frame_parms->Ncp == 1) 
	PHY_ofdm_mod(&PHY_vars_UE->lte_ue_common_vars.txdataF[aa][2*subframe*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES_NO_PREFIX],        // input,
		     &txdata[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe],         // output
		     frame_parms->log2_symbol_size,                // log2_fft_size
		     nsymb,                 // number of symbols
		     frame_parms->nb_prefix_samples,               // number of prefix samples
		     frame_parms->twiddle_ifft,  // IFFT twiddle factors
		     frame_parms->rev,           // bit-reversal permutation
		     CYCLIC_PREFIX);
      else {
	normal_prefix_mod(&PHY_vars_UE->lte_ue_common_vars.txdataF[eNB_id][subframe*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES_NO_PREFIX],
			  &txdata[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe],
			  nsymb,
			  frame_parms);
	//apply_7_5_kHz(PHY_vars_UE,PHY_vars_UE->lte_ue_common_vars.txdata[aa],subframe<<1);
	//apply_7_5_kHz(PHY_vars_UE,PHY_vars_UE->lte_ue_common_vars.txdata[aa],1+(subframe<<1));
        apply_7_5_kHz(PHY_vars_UE,&txdata[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe],0);
	apply_7_5_kHz(PHY_vars_UE,&txdata[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe],1);


      }
      
      tx_lev += signal_energy(&txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti],
			      OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
    }
#endif
    
    
    write_output("txsig0.m","txs0", txdata[0], FRAME_LENGTH_COMPLEX_SAMPLES,1,1);
    //write_output("txsig1.m","txs1", txdata[1],FRAME_LENGTH_COMPLEX_SAMPLES,1,1);

    // multipath channel
  
  for (i=0;i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES;i++) {
    for (aa=0;aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx;aa++) {
	s_re[aa][i] = ((double)(((short *)&txdata[aa][subframe*frame_parms->samples_per_tti]))[(i<<1)]);
	s_im[aa][i] = ((double)(((short *)&txdata[aa][subframe*frame_parms->samples_per_tti]))[(i<<1)+1]);
    }
  }



  for (SNR=snr0;SNR<snr1;SNR+=.2) {

    printf("n_frames %d SNR %f\n",n_frames,SNR);

    n_errors = 0;
    pucch_tx = 0;
    pucch1_missed=0;
    pucch1_false=0;

    stat_no_sig = 0;
    stat_sig = 0;

    for (trial=0; trial<n_frames; trial++) {
      


      multipath_channel(UE2eNB,s_re,s_im,r_re,r_im,
			2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,0);
	       
      sigma2_dB = N0;//10*log10((double)tx_lev) - SNR;
      tx_gain = sqrt(pow(10.0,.1*(N0+SNR))/(double)tx_lev);
      if (n_frames==1)
	printf("sigma2_dB %f (SNR %f dB) tx_lev_dB %f,tx_gain %f (%f dB)\n",sigma2_dB,SNR,10*log10((double)tx_lev),tx_gain,20*log10(tx_gain));
      //AWGN
      sigma2 = pow(10,sigma2_dB/10);
      //	printf("Sigma2 %f (sigma2_dB %f)\n",sigma2,sigma2_dB);
            
      if (n_frames==1) {
	printf("rx_level data symbol %f, tx_lev %f\n",
	       10*log10(signal_energy_fp(r_re,r_im,1,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,0)),
	       10*log10(tx_lev));
      }

      if (pucch_format != pucch_format1) {
	pucch_tx++;
	sig=1;
      }
      else {
	if (trial<(n_frames>>1)) {
	  //	  printf("no sig =>");
	  sig= 0;
	}
	else {
	  sig=1;
	  //	  printf("sig =>");
	  pucch_tx++;
	}
      }

      //      sig = 1;
      for (n_trials=0;n_trials<ntrials;n_trials++) {
	//printf("n_trial %d\n",n_trials);
	// fill measurement symbol (19) with noise
	for (i=0;i<OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES;i++) {
	  for (aa=0;aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_rx;aa++) {

	    ((short*) &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][aa][(frame_parms->samples_per_tti<<1) -frame_parms->ofdm_symbol_size])[2*i] = (short) ((sqrt(sigma2/2)*gaussdouble(0.0,1.0)));
	    ((short*) &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][aa][(frame_parms->samples_per_tti<<1) -frame_parms->ofdm_symbol_size])[2*i+1] = (short) ((sqrt(sigma2/2)*gaussdouble(0.0,1.0)));
	  }
	}
	lte_eNB_I0_measurements(PHY_vars_eNB,
				0,
				1);
	for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
	  for (aa=0;aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_rx;aa++) {
	    if (n_trials==0) {
	      //		r_re[aa][i] += (pow(10.0,.05*interf1)*r_re1[aa][i] + pow(10.0,.05*interf2)*r_re2[aa][i]);
	      //		r_im[aa][i] += (pow(10.0,.05*interf1)*r_im1[aa][i] + pow(10.0,.05*interf2)*r_im2[aa][i]);
	    }


	    if (sig==1) {
	      ((short*) &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][aa][subframe*frame_parms->samples_per_tti])[2*i] = (short) (((tx_gain*r_re[aa][i]) +sqrt(sigma2/2)*gaussdouble(0.0,1.0)));
	      ((short*) &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][aa][subframe*frame_parms->samples_per_tti])[2*i+1] = (short) (((tx_gain*r_im[aa][i]) + (iqim*r_re[aa][i]*tx_gain) + sqrt(sigma2/2)*gaussdouble(0.0,1.0)));
	    }
	    else {
	      ((short*) &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][aa][subframe*frame_parms->samples_per_tti])[2*i] = (short) ((sqrt(sigma2/2)*gaussdouble(0.0,1.0)));
	      ((short*) &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][aa][subframe*frame_parms->samples_per_tti])[2*i+1] = (short) ((sqrt(sigma2/2)*gaussdouble(0.0,1.0)));

	    }
	  }
	}

	remove_7_5_kHz(PHY_vars_eNB,subframe<<1);
	remove_7_5_kHz(PHY_vars_eNB,1+(subframe<<1));

	for (l=0;l<PHY_vars_eNB->lte_frame_parms.symbols_per_tti/2;l++) {
	  
	  slot_fep_ul(&PHY_vars_eNB->lte_frame_parms,
		      &PHY_vars_eNB->lte_eNB_common_vars,
		      l,
		      subframe*2,// slot
		      0, 
		      0
		      );
	  slot_fep_ul(&PHY_vars_eNB->lte_frame_parms,
		      &PHY_vars_eNB->lte_eNB_common_vars,
		      l,
		      1+(subframe*2),//slot
		      0, 
		      0
		      );


	  }
	
	
	//      if (sig == 1)
	//	  printf("*");
612
	PHY_vars_eNB->PHY_measurements_eNB[0].n0_power_tot_dB = N0;//(int8_t)(sigma2_dB-10*log10(PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size/(12*NB_RB)));      
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
	stat = rx_pucch(PHY_vars_eNB,
			pucch_format,
			0,
			n1_pucch,
			n2_pucch,
			0, //shortened_format,
			&pucch_payload_rx, //payload,
			subframe,
			pucch1_thres);
	if (trial < (n_frames>>1)) {
	  stat_no_sig += (2*(double)stat/n_frames);
	  //	  printf("stat (no_sig) %f\n",stat_no_sig);
	}
	else {
	  stat_sig += (2*(double)stat/n_frames);
	  //	  printf("stat (sig) %f\n",stat_sig);
	}
	if (pucch_format==pucch_format1) {
	  pucch1_missed = ((pucch_payload_rx == 0) && (sig==1)) ? (pucch1_missed+1) : pucch1_missed;
	  pucch1_false  = ((pucch_payload_rx == 1) && (sig==0)) ? (pucch1_false+1) : pucch1_false;
	  /*	
		if ((pucch_payload_rx == 0) && (sig==1)) {
		printf("EXIT\n");
		exit(-1);
		}*/
	}
	else {
	  pucch1_false = (pucch_payload_rx != pucch_payload) ? (pucch1_false+1) : pucch1_false;
	}
	//      printf("sig %d\n",sig);
      } // NSR
    }
    if (pucch_format==pucch_format1)
      printf("pucch_trials %d : pucch1_false %d,pucch1_missed %d, N0 %d dB, stat_no_sig %f dB, stat_sig %f dB\n",pucch_tx,pucch1_false,pucch1_missed,PHY_vars_eNB->PHY_measurements_eNB[0].n0_power_tot_dB,10*log10(stat_no_sig),10*log10(stat_sig));
    else if (pucch_format==pucch_format1a)
      printf("pucch_trials %d : pucch1a_errors %d\n",pucch_tx,pucch1_false);
    else if (pucch_format==pucch_format1b)
      printf("pucch_trials %d : pucch1b_errors %d\n",pucch_tx,pucch1_false);

  }
  if (n_frames==1) {
    //write_output("txsig0.m","txs0", &txdata[0][subframe*frame_parms->samples_per_tti],frame_parms->samples_per_tti,1,1);
    write_output("txsig0pucch.m", "txs0", &txdata[0][0], FRAME_LENGTH_COMPLEX_SAMPLES,1,1);
    write_output("rxsig0.m","rxs0", &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][subframe*frame_parms->samples_per_tti],frame_parms->samples_per_tti,1,1);
    write_output("rxsigF0.m","rxsF0", &PHY_vars_eNB->lte_eNB_common_vars.rxdataF[0][0][0],512*nsymb*2,2,1);
  }


#ifdef IFFT_FPGA
  free(txdataF2[0]);
  free(txdataF2[1]);
  free(txdataF2);
  free(txdata[0]);
  free(txdata[1]);
  free(txdata);
#endif 

  for (i=0;i<2;i++) {
    free(s_re[i]);
    free(s_im[i]);
    free(r_re[i]);
    free(r_im[i]);
  }
  free(s_re);
  free(s_im);
  free(r_re);
  free(r_im);
  
  lte_sync_time_free();

  return(n_errors);

}
   


/*  
  for (i=1;i<4;i++)
    memcpy((void *)&PHY_vars->tx_vars[0].TX_DMA_BUFFER[i*12*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES_NO_PREFIX*2],
	   (void *)&PHY_vars->tx_vars[0].TX_DMA_BUFFER[0],
	   12*OFDM_SYMBOL_SIZE_SAMPLES_NO_PREFIX*2);
*/