lte-softmodem.c 79 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*******************************************************************************

  Eurecom OpenAirInterface
  Copyright(c) 1999 - 2011 Eurecom

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information
  Openair Admin: openair_admin@eurecom.fr
  Openair Tech : openair_tech@eurecom.fr
  Forums       : http://forums.eurecom.fsr/openairinterface
  Address      : Eurecom, 2229, route des crêtes, 06560 Valbonne Sophia Antipolis, France

*******************************************************************************/

/*! \file lte-softmodem.c
31 32 33 34 35 36 37 38 39
 * \brief main program to control HW and scheduling
 * \author R. Knopp, F. Kaltenberger
 * \date 2012
 * \version 0.1
 * \company Eurecom
 * \email: knopp@eurecom.fr,florian.kaltenberger@eurecom.fr
 * \note
 * \warning
 */
40
#define _GNU_SOURCE
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sched.h>
#include <signal.h>
#include <execinfo.h>
#include <getopt.h>

#include "rt_wrapper.h"
56 57
#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all

58
#ifdef USRP
59
static int hw_subframe;
60
#endif
61

62
#include "assertions.h"
63 64 65 66 67 68

#ifdef EMOS
#include <gps.h>
#endif

#include "PHY/types.h"
69

70
#include "PHY/defs.h"
71 72 73
#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all
#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all

74
#ifndef USRP
75
#include "openair0_lib.h"
76 77 78 79
#else
#include "../../ARCH/COMMON/common_lib.h"
#endif

80
#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all
81 82 83

#include "PHY/vars.h"
#include "MAC_INTERFACE/vars.h"
84
//#include "SCHED/defs.h"
85 86 87 88 89 90 91 92 93 94
#include "SCHED/vars.h"
#include "LAYER2/MAC/vars.h"

#include "../../SIMU/USER/init_lte.h"

#ifdef EMOS
#include "SCHED/phy_procedures_emos.h"
#endif

#ifdef OPENAIR2
95
#include "otg_tx.h"
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
#include "LAYER2/MAC/defs.h"
#include "LAYER2/MAC/vars.h"
#ifndef CELLULAR
#include "RRC/LITE/vars.h"
#endif
#include "PHY_INTERFACE/vars.h"
#endif

#ifdef SMBV
#include "PHY/TOOLS/smbv.h"
unsigned short config_frames[4] = {2,9,11,13};
#endif
#include "UTIL/LOG/log_extern.h"
#include "UTIL/OTG/otg.h"
#include "UTIL/OTG/otg_vars.h"
#include "UTIL/MATH/oml.h"
#include "UTIL/LOG/vcd_signal_dumper.h"
113
#include "enb_config.h"
114

115 116
#if defined(ENABLE_ITTI)
# include "intertask_interface_init.h"
117
# include "create_tasks.h"
118 119 120
# if defined(ENABLE_USE_MME)
#   include "s1ap_eNB.h"
# endif
121 122
#endif

123 124 125
#ifdef XFORMS
#include "PHY/TOOLS/lte_phy_scope.h"
#include "stats.h"
126 127 128 129 130
#endif

#define FRAME_PERIOD    100000000ULL
#define DAQ_PERIOD      66667ULL

131 132
#define DEBUG_THREADS 1

133 134 135 136 137 138 139
struct timing_info_t {
  //unsigned int frame, hw_slot, last_slot, next_slot;
  RTIME time_min, time_max, time_avg, time_last, time_now;
  //unsigned int mbox0, mbox1, mbox2, mbox_target;
  unsigned int n_samples;
} timing_info;

140 141
extern int16_t* sync_corr_ue0;
extern int16_t prach_ifft[4][1024*2];
142 143 144

int init_dlsch_threads(void);
void cleanup_dlsch_threads(void);
145
int32_t init_rx_pdsch_thread(void);
146
void cleanup_rx_pdsch_thread(void);
147 148


149 150
int32_t *rxdata;
int32_t *txdata;
151 152 153 154
void setup_ue_buffers(PHY_VARS_UE *phy_vars_ue, LTE_DL_FRAME_PARMS *frame_parms, int carrier);
void setup_eNB_buffers(PHY_VARS_eNB *phy_vars_eNB, LTE_DL_FRAME_PARMS *frame_parms, int carrier);

#ifdef XFORMS
155 156 157 158
// current status is that every UE has a DL scope for a SINGLE eNB (eNB_id=0)
// at eNB 0, an UL scope for every UE 
FD_lte_phy_scope_ue  *form_ue[NUMBER_OF_UE_MAX];
FD_lte_phy_scope_enb *form_enb[NUMBER_OF_UE_MAX];
159
FD_stats_form                  *form_stats=NULL;
160
char title[255];
161
unsigned char                   scope_enb_num_ue = 1;
162 163 164
#endif //XFORMS

#ifdef RTAI
165
static SEM                     *mutex;
166 167
//static CND *cond;

168 169
static int                      thread0;
static int                      thread1;
170 171 172
#ifdef USRP
static SEM *sync_sem; // to sync rx & tx streaming
#endif
173 174
//static int sync_thread;
#else
175 176 177 178
pthread_t                       thread0;
pthread_t                       thread1;
pthread_attr_t                  attr_dlsch_threads;
struct sched_param              sched_param_dlsch;
179 180 181 182
#ifdef USRP
pthread_cond_t sync_cond;
pthread_mutex_t sync_mutex;
#endif
183 184
#endif

185 186 187 188 189
pthread_attr_t                  attr_eNB_proc_tx[10];
pthread_attr_t                  attr_eNB_proc_rx[10];
struct sched_param              sched_param_eNB_proc_tx[10];
struct sched_param              sched_param_eNB_proc_rx[10];

190 191 192 193 194 195
#ifdef XFORMS
static pthread_t                thread2; //xforms
#endif
#ifdef EMOS
static pthread_t                thread3; //emos
#endif
196

197 198 199
openair0_device openair0;
openair0_timestamp timestamp;

200
/*
201 202 203
  static int instance_cnt=-1; //0 means worker is busy, -1 means its free
  int instance_cnt_ptr_kern,*instance_cnt_ptr_user;
  int pci_interface_ptr_kern;
204 205 206 207
*/
//extern unsigned int bigphys_top;
//extern unsigned int mem_base;

208
int                             card = 0;
209

210

211
#if defined(ENABLE_ITTI)
212 213
static volatile int             start_eNB = 0;
static volatile int             start_UE = 0;
214
#endif
215 216 217 218 219 220
volatile int                    oai_exit = 0;

//static int                      time_offset[4] = {-138,-138,-138,-138};
//static int                      time_offset[4] = {-145,-145,-145,-145};
static int                      time_offset[4] = {0,0,0,0};

221

222
static char                     UE_flag=0;
223
static uint8_t                       eNB_id=0,UE_id=0;
224

225
uint32_t                             carrier_freq[4] =           {1907600000,1907600000,1907600000,1907600000}; /* For UE! */
226
static uint32_t          downlink_frequency[4] =     {1907600000,1907600000,1907600000,1907600000};
227
static int32_t                      uplink_frequency_offset[4]= {-120000000,-120000000,-120000000,-120000000};
228 229
static char                    *conf_config_file_name = NULL;

230
#ifdef ITTI_ENABLED
231
static char                    *itti_dump_file = NULL;
232 233
#endif

234
double tx_gain = 20;
235
double rx_gain = 20;
236

237 238
double sample_rate=30.72e6;
double bw = 14e6;
239

240
#ifndef USRP
241 242 243 244
static unsigned int             rxg_max[4] =    {133,133,133,133};
static unsigned int             rxg_med[4] =    {127,127,127,127};
static unsigned int             rxg_byp[4] =    {120,120,120,120};
static int                      tx_max_power =  0;
245

246

247
#else
248
static unsigned int             rxg_max[4] =    {133,133,133,133};
249 250
//static unsigned int            rxg_med[4] =    {127,127,127,127};
//static unsigned int            rxg_byp[4] =    {120,120,120,120};
251
static int                      tx_max_power =  0;
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
char ref[128] = "internal";
char channels[128] = "0";

int samples_per_frame = 307200;
int samples_per_packets = 2048; // samples got every recv or send
int tx_forward_nsamps;

int sf_bounds_5[10] = {8, 15, 23, 30, 38, 45, 53, 60, 68, 75};
int sf_bounds_10[10] = {8, 15, 23, 30, 38, 45, 53, 60, 68, 75};
int sf_bounds_20[10] = {15, 30, 45, 60, 75, 90, 105, 120, 135, 150};
int *sf_bounds;
int max_cnt;
int tx_delay;

#endif
267
/*
268 269 270
  uint32_t rf_mode_max[4]     = {55759,55759,55759,55759};
  uint32_t rf_mode_med[4]     = {39375,39375,39375,39375};
  uint32_t rf_mode_byp[4]     = {22991,22991,22991,22991};
271
*/
272 273
//static uint32_t                      rf_mode[4] =        {MY_RF_MODE,0,0,0};
//static uint32_t                      rf_local[4] =       {8255000,8255000,8255000,8255000}; // UE zepto
274 275
//{8254617, 8254617, 8254617, 8254617}; //eNB khalifa
//{8255067,8254810,8257340,8257340}; // eNB PETRONAS
276

277 278 279 280 281
//static uint32_t                      rf_vcocal[4] =      {910,910,910,910};
//static uint32_t                      rf_vcocal_850[4] =  {2015, 2015, 2015, 2015};
//static uint32_t                      rf_rxdc[4] =        {32896,32896,32896,32896};
//static uint32_t                      rxgain[4] =         {20,20,20,20};
//static uint32_t                      txgain[4] =         {20,20,20,20};
282 283 284

static runmode_t                mode;
static int                      rx_input_level_dBm;
285
static int                      online_log_messages=0;
286
#ifdef XFORMS
287
extern int                      otg_enabled;
288
static char                     do_forms=0;
289
#else
290
int                             otg_enabled;
291
#endif
292
//int                             number_of_cards =   1;
293
#ifndef USRP
294 295
static int                      mbox_bounds[20] =   {8,16,24,30,38,46,54,60,68,76,84,90,98,106,114,120,128,136,144, 0}; ///boundaries of slots in terms ob mbox counter rounded up to even numbers
//static int                      mbox_bounds[20] =   {6,14,22,28,36,44,52,58,66,74,82,88,96,104,112,118,126,134,142, 148}; ///boundaries of slots in terms ob mbox counter rounded up to even numbers
296
#endif
297

298
static LTE_DL_FRAME_PARMS      *frame_parms;
299

300
int multi_thread=1;
301
int N_RB_DL=25;
302

303
unsigned int build_rflocal(int txi, int txq, int rxi, int rxq)
304
{
305
  return (txi + (txq<<6) + (rxi<<12) + (rxq<<18));
306 307 308
}
unsigned int build_rfdc(int dcoff_i_rxfe, int dcoff_q_rxfe)
{
309
  return (dcoff_i_rxfe + (dcoff_q_rxfe<<8));
310 311
}

312
#if !defined(ENABLE_ITTI)
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
void signal_handler(int sig)
{
  void *array[10];
  size_t size;

  if (sig==SIGSEGV) {
    // get void*'s for all entries on the stack
    size = backtrace(array, 10);
    
    // print out all the frames to stderr
    fprintf(stderr, "Error: signal %d:\n", sig);
    backtrace_symbols_fd(array, size, 2);
    exit(-1);
  }
  else {
328
    oai_exit = 1;
329 330
  }
}
331
#endif
332 333 334

void exit_fun(const char* s)
{
335
  if (s != NULL) {
gauthier's avatar
gauthier committed
336
    printf("%s %s() Exiting: %s\n",__FILE__, __FUNCTION__, s);
337 338 339 340 341
  }

  oai_exit = 1;

#if defined(ENABLE_ITTI)
342
  itti_terminate_tasks (TASK_UNKNOWN);
343
#endif
344 345 346 347 348 349

  //rt_sleep_ns(FRAME_PERIOD);

  //exit (-1);
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
static int latency_target_fd = -1;
static int32_t latency_target_value = 0;
/* Latency trick - taken from cyclictest.c 
* if the file /dev/cpu_dma_latency exists,
* open it and write a zero into it. This will tell
* the power management system not to transition to
* a high cstate (in fact, the system acts like idle=poll)
* When the fd to /dev/cpu_dma_latency is closed, the behavior
* goes back to the system default.
*
* Documentation/power/pm_qos_interface.txt
*/
static void set_latency_target(void)
{
  struct stat s;
  int ret;
  if (stat("/dev/cpu_dma_latency", &s) == 0) {
    latency_target_fd = open("/dev/cpu_dma_latency", O_RDWR);
    if (latency_target_fd == -1)
      return;
    ret = write(latency_target_fd, &latency_target_value, 4);
    if (ret == 0) {
      printf("# error setting cpu_dma_latency to %d!: %s\n", latency_target_value, strerror(errno));
      close(latency_target_fd);
      return;
    }
    printf("# /dev/cpu_dma_latency set to %dus\n", latency_target_value);
  }
}

380
#ifdef XFORMS
381
static void *scope_thread(void *arg) {
382
  char stats_buffer[16384];
383
# ifdef ENABLE_XFORMS_WRITE_STATS
384 385
  FILE *UE_stats, *eNB_stats;
  int len = 0;
386
# endif
387
  struct sched_param sched_param;
388

389 390
  sched_param.sched_priority = sched_get_priority_min(SCHED_FIFO)+1; 
  sched_setscheduler(0, SCHED_FIFO,&sched_param);
391

392
  printf("Scope thread has priority %d\n",sched_param.sched_priority);
393
    
394 395 396 397 398 399
  /*
    if (UE_flag==1) 
    UE_stats  = fopen("UE_stats.txt", "w");
    else 
    eNB_stats = fopen("eNB_stats.txt", "w");
  */
400
    
401 402
  while (!oai_exit) {
    if (UE_flag==1) {
403
# ifdef ENABLE_XFORMS_WRITE_STATS
404
      len =
405
# endif
406 407
	dump_ue_stats (PHY_vars_UE_g[0], stats_buffer, 0, mode,rx_input_level_dBm);
      fl_set_object_label(form_stats->stats_text, stats_buffer);
408
# ifdef ENABLE_XFORMS_WRITE_STATS
409 410
      rewind (UE_stats);
      fwrite (stats_buffer, 1, len, UE_stats);
411
# endif
412 413 414 415
      phy_scope_UE(form_ue[UE_id], 
		   PHY_vars_UE_g[UE_id],
		   eNB_id,
		   UE_id,7);
416
            
417
    } else {
418
# ifdef ENABLE_XFORMS_WRITE_STATS
419
      len =
420
# endif
421 422
	dump_eNB_stats (PHY_vars_eNB_g[0], stats_buffer, 0);
      fl_set_object_label(form_stats->stats_text, stats_buffer);
423
# ifdef ENABLE_XFORMS_WRITE_STATS
424 425
      rewind (eNB_stats);
      fwrite (stats_buffer, 1, len, eNB_stats);
426
# endif
427 428 429 430 431
      for(UE_id=0;UE_id<scope_enb_num_ue;UE_id++) {
	phy_scope_eNB(form_enb[UE_id], 
		      PHY_vars_eNB_g[eNB_id],
		      UE_id);
      }
432 433
              
    }
434 435 436
    //printf("doing forms\n");
    usleep(100000); // 100 ms
  }
437
    
438
# ifdef ENABLE_XFORMS_WRITE_STATS
439 440
  fclose (UE_stats);
  fclose (eNB_stats);
441
# endif
442
    
443
  pthread_exit((void*)arg);
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
}
#endif

#ifdef EMOS
#define NO_ESTIMATES_DISK 100 //No. of estimates that are aquired before dumped to disk

void *emos_thread (void *arg)
{
  char c;
  char *fifo2file_buffer, *fifo2file_ptr;

  int fifo, counter=0, bytes;

  FILE  *dumpfile_id;
  char  dumpfile_name[1024];
  time_t starttime_tmp;
  struct tm starttime;
  
  int channel_buffer_size;
  
  time_t timer;
  struct tm *now;

  struct gps_data_t *gps_data = NULL;
  struct gps_fix_t dummy_gps_data;
469 470 471 472 473 474 475

  struct sched_param sched_param;
  
  sched_param.sched_priority = sched_get_priority_max(SCHED_FIFO)-1; 
  sched_setscheduler(0, SCHED_FIFO,&sched_param);
  
  printf("EMOS thread has priority %d\n",sched_param.sched_priority);
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
 
  timer = time(NULL);
  now = localtime(&timer);

  memset(&dummy_gps_data,1,sizeof(struct gps_fix_t));
  
  gps_data = gps_open("127.0.0.1","2947");
  if (gps_data == NULL) 
    {
      printf("[EMOS] Could not open GPS\n");
      //exit(-1);
    }
#if GPSD_API_MAJOR_VERSION>=4
  else if (gps_stream(gps_data, WATCH_ENABLE,NULL) != 0)
#else
  else if (gps_query(gps_data, "w+x") != 0)
#endif
    {
      //sprintf(tmptxt,"Error sending command to GPS, gps_data = %x", gps_data);
      printf("[EMOS] Error sending command to GPS\n");
      //exit(-1);
    }
498 499
  else 
    printf("[EMOS] Opened GPS, gps_data=%p\n");
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
  
  if (UE_flag==0)
    channel_buffer_size = sizeof(fifo_dump_emos_eNB);
  else
    channel_buffer_size = sizeof(fifo_dump_emos_UE);

  // allocate memory for NO_FRAMES_DISK channes estimations
  fifo2file_buffer = malloc(NO_ESTIMATES_DISK*channel_buffer_size);
  fifo2file_ptr = fifo2file_buffer;

  if (fifo2file_buffer == NULL)
    {
      printf("[EMOS] Cound not allocate memory for fifo2file_buffer\n");
      exit(EXIT_FAILURE);
    }

  if ((fifo = open(CHANSOUNDER_FIFO_DEV, O_RDONLY)) < 0)
    {
      fprintf(stderr, "[EMOS] Error opening the fifo\n");
      exit(EXIT_FAILURE);
    }


  time(&starttime_tmp);
  localtime_r(&starttime_tmp,&starttime);
  snprintf(dumpfile_name,1024,"/tmp/%s_data_%d%02d%02d_%02d%02d%02d.EMOS",
	   (UE_flag==0) ? "eNB" : "UE",
	   1900+starttime.tm_year, starttime.tm_mon+1, starttime.tm_mday, starttime.tm_hour, starttime.tm_min, starttime.tm_sec);

  dumpfile_id = fopen(dumpfile_name,"w");
  if (dumpfile_id == NULL)
    {
      fprintf(stderr, "[EMOS] Error opening dumpfile %s\n",dumpfile_name);
      exit(EXIT_FAILURE);
    }


  printf("[EMOS] starting dump, channel_buffer_size=%d ...\n",channel_buffer_size);
  while (!oai_exit)
    {
      bytes = rtf_read_timed(fifo, fifo2file_ptr, channel_buffer_size,100);
      if (bytes==0)
	continue;

      /*
545
	if (UE_flag==0)
546
	printf("eNB: count %d, frame %d, read: %d bytes from the fifo\n",counter, ((fifo_dump_emos_eNB*)fifo2file_ptr)->frame_tx,bytes);
547
	else
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
	printf("UE: count %d, frame %d, read: %d bytes from the fifo\n",counter, ((fifo_dump_emos_UE*)fifo2file_ptr)->frame_rx,bytes);
      */

      fifo2file_ptr += channel_buffer_size;
      counter ++;

      if (counter == NO_ESTIMATES_DISK)
        {
          //reset stuff
          fifo2file_ptr = fifo2file_buffer;
          counter = 0;

          //flush buffer to disk
	  if (UE_flag==0)
	    printf("[EMOS] eNB: count %d, frame %d, flushing buffer to disk\n",
		   counter, ((fifo_dump_emos_eNB*)fifo2file_ptr)->frame_tx);
	  else
	    printf("[EMOS] UE: count %d, frame %d, flushing buffer to disk\n",
		   counter, ((fifo_dump_emos_UE*)fifo2file_ptr)->frame_rx);


          if (fwrite(fifo2file_buffer, sizeof(char), NO_ESTIMATES_DISK*channel_buffer_size, dumpfile_id) != NO_ESTIMATES_DISK*channel_buffer_size)
            {
              fprintf(stderr, "[EMOS] Error writing to dumpfile\n");
              exit(EXIT_FAILURE);
            }
	  if (gps_data)
	    {
	      if (gps_poll(gps_data) != 0) {
		printf("[EMOS] problem polling data from gps\n");
	      }
	      else {
		printf("[EMOS] lat %g, lon %g\n",gps_data->fix.latitude,gps_data->fix.longitude);
	      }
	      if (fwrite(&(gps_data->fix), sizeof(char), sizeof(struct gps_fix_t), dumpfile_id) != sizeof(struct gps_fix_t))
		{
		  printf("[EMOS] Error writing to dumpfile, stopping recording\n");
		  exit(EXIT_FAILURE);
		}
	    }
	  else
	    {
	      printf("[EMOS] WARNING: No GPS data available, storing dummy packet\n");
	      if (fwrite(&(dummy_gps_data), sizeof(char), sizeof(struct gps_fix_t), dumpfile_id) != sizeof(struct gps_fix_t))
		{
		  printf("[EMOS] Error writing to dumpfile, stopping recording\n");
		  exit(EXIT_FAILURE);
		}
	    } 
        }
    }
  
  free(fifo2file_buffer);
  fclose(dumpfile_id);
  close(fifo);
  
  pthread_exit((void*) arg);

}
#endif

609
#if defined(ENABLE_ITTI)
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
static void wait_system_ready (char *message, volatile int *start_flag)
{
  /* Wait for eNB application initialization to be complete (eNB registration to MME) */
  {
    static char *indicator[] = {".    ", "..   ", "...  ", ".... ", ".....",
                                " ....", "  ...", "   ..", "    .", "     "};
    int i = 0;

    while ((!oai_exit) && (*start_flag == 0)) {
      LOG_N(EMU, message, indicator[i]);
      i = (i + 1) % (sizeof(indicator) / sizeof(indicator[0]));
      usleep(200000);
    }
    LOG_D(EMU,"\n");
  }
}
#endif

628
#if defined(ENABLE_ITTI)
629
void *l2l1_task(void *arg)
630
{
631 632 633 634 635
  MessageDef *message_p = NULL;
  int         result;

  itti_set_task_real_time(TASK_L2L1);
  itti_mark_task_ready(TASK_L2L1);
636

637 638
  if (UE_flag == 0) {
    /* Wait for the initialize message */
639
    do {
640 641 642 643
      if (message_p != NULL) {
	result = itti_free (ITTI_MSG_ORIGIN_ID(message_p), message_p);
	AssertFatal (result == EXIT_SUCCESS, "Failed to free memory (%d)!\n", result);
      }
644 645 646
      itti_receive_msg (TASK_L2L1, &message_p);

      switch (ITTI_MSG_ID(message_p)) {
647 648 649 650 651 652 653 654 655 656 657 658 659 660
      case INITIALIZE_MESSAGE:
	/* Start eNB thread */
	LOG_D(EMU, "L2L1 TASK received %s\n", ITTI_MSG_NAME(message_p));
	start_eNB = 1;
	break;

      case TERMINATE_MESSAGE:
	oai_exit=1;
	itti_exit_task ();
	break;

      default:
	LOG_E(EMU, "Received unexpected message %s\n", ITTI_MSG_NAME(message_p));
	break;
661
      }
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
    } while (ITTI_MSG_ID(message_p) != INITIALIZE_MESSAGE);
    result = itti_free (ITTI_MSG_ORIGIN_ID(message_p), message_p);
    AssertFatal (result == EXIT_SUCCESS, "Failed to free memory (%d)!\n", result);
  }

  do {
    // Wait for a message
    itti_receive_msg (TASK_L2L1, &message_p);

    switch (ITTI_MSG_ID(message_p)) {
    case TERMINATE_MESSAGE:
      oai_exit=1;
      itti_exit_task ();
      break;

    case ACTIVATE_MESSAGE:
      start_UE = 1;
      break;

    case DEACTIVATE_MESSAGE:
      start_UE = 0;
      break;
684

685 686 687 688 689 690 691 692 693 694 695 696
    case MESSAGE_TEST:
      LOG_I(EMU, "Received %s\n", ITTI_MSG_NAME(message_p));
      break;

    default:
      LOG_E(EMU, "Received unexpected message %s\n", ITTI_MSG_NAME(message_p));
      break;
    }

    result = itti_free (ITTI_MSG_ORIGIN_ID(message_p), message_p);
    AssertFatal (result == EXIT_SUCCESS, "Failed to free memory (%d)!\n", result);
  } while(1);
697

698
  return NULL;
699 700 701
}
#endif

702 703 704 705

void do_OFDM_mod(int subframe,PHY_VARS_eNB *phy_vars_eNB) {

  unsigned int aa,slot_offset, slot_offset_F;
706
#ifndef USRP
707
  int dummy_tx_b[7680*4] __attribute__((aligned(16)));
708
#endif
709
  int i, tx_offset;
710
  int slot_sizeF = (phy_vars_eNB->lte_frame_parms.ofdm_symbol_size)*
711
    ((phy_vars_eNB->lte_frame_parms.Ncp==1) ? 6 : 7);
712 713 714

  slot_offset_F = (subframe<<1)*slot_sizeF;
    
715 716 717 718
  slot_offset = (subframe<<1)*
    (phy_vars_eNB->lte_frame_parms.samples_per_tti>>1);
  if ((subframe_select(&phy_vars_eNB->lte_frame_parms,subframe)==SF_DL)||
      ((subframe_select(&phy_vars_eNB->lte_frame_parms,subframe)==SF_S))) {
719
    //	  LOG_D(HW,"Frame %d: Generating slot %d\n",frame,next_slot);
720 721

#ifdef EXMIMO      
722 723 724 725 726 727 728 729 730 731
    for (aa=0; aa<phy_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
      if (phy_vars_eNB->lte_frame_parms.Ncp == EXTENDED){ 
	PHY_ofdm_mod(&phy_vars_eNB->lte_eNB_common_vars.txdataF[0][aa][slot_offset_F],
		     dummy_tx_b,
		     phy_vars_eNB->lte_frame_parms.log2_symbol_size,
		     6,
		     phy_vars_eNB->lte_frame_parms.nb_prefix_samples,
		     phy_vars_eNB->lte_frame_parms.twiddle_ifft,
		     phy_vars_eNB->lte_frame_parms.rev,
		     CYCLIC_PREFIX);
732 733 734 735 736 737 738 739
	PHY_ofdm_mod(&phy_vars_eNB->lte_eNB_common_vars.txdataF[0][aa][slot_offset_F+slot_sizeF],
		     dummy_tx_b+(phy_vars_eNB->lte_frame_parms.samples_per_tti>>1),
		     phy_vars_eNB->lte_frame_parms.log2_symbol_size,
		     6,
		     phy_vars_eNB->lte_frame_parms.nb_prefix_samples,
		     phy_vars_eNB->lte_frame_parms.twiddle_ifft,
		     phy_vars_eNB->lte_frame_parms.rev,
		     CYCLIC_PREFIX);
740 741 742 743 744 745
      }
      else {
	normal_prefix_mod(&phy_vars_eNB->lte_eNB_common_vars.txdataF[0][aa][slot_offset_F],
			  dummy_tx_b,
			  7,
			  &(phy_vars_eNB->lte_frame_parms));
746 747 748 749
	normal_prefix_mod(&phy_vars_eNB->lte_eNB_common_vars.txdataF[0][aa][slot_offset_F+slot_sizeF],
			  dummy_tx_b+(phy_vars_eNB->lte_frame_parms.samples_per_tti>>1),
			  7,
			  &(phy_vars_eNB->lte_frame_parms));
750
      }
751 752

      for (i=0; i<phy_vars_eNB->lte_frame_parms.samples_per_tti; i++) {
753 754 755 756 757 758 759 760 761 762 763
	tx_offset = (int)slot_offset+time_offset[aa]+i;
	if (tx_offset<0)
	  tx_offset += LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->lte_frame_parms.samples_per_tti;
	if (tx_offset>=(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->lte_frame_parms.samples_per_tti))
	  tx_offset -= LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->lte_frame_parms.samples_per_tti;
	((short*)&phy_vars_eNB->lte_eNB_common_vars.txdata[0][aa][tx_offset])[0]=
	  ((short*)dummy_tx_b)[2*i]<<4;
	((short*)&phy_vars_eNB->lte_eNB_common_vars.txdata[0][aa][tx_offset])[1]=
	  ((short*)dummy_tx_b)[2*i+1]<<4;
      }
    }
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
  
#else

    for (aa=0; aa<phy_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
      if (phy_vars_eNB->lte_frame_parms.Ncp == EXTENDED){ 
	PHY_ofdm_mod(&phy_vars_eNB->lte_eNB_common_vars.txdataF[0][aa][slot_offset_F],
		     &PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdata[0][aa][slot_offset],
		     phy_vars_eNB->lte_frame_parms.log2_symbol_size,
		     6,
		     phy_vars_eNB->lte_frame_parms.nb_prefix_samples,
		     phy_vars_eNB->lte_frame_parms.twiddle_ifft,
		     phy_vars_eNB->lte_frame_parms.rev,
		     CYCLIC_PREFIX);
	PHY_ofdm_mod(&phy_vars_eNB->lte_eNB_common_vars.txdataF[0][aa][slot_offset_F+slot_sizeF],
		     &PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdata[0][aa][slot_offset+(phy_vars_eNB->lte_frame_parms.samples_per_tti>>1)],
		     phy_vars_eNB->lte_frame_parms.log2_symbol_size,
		     6,
		     phy_vars_eNB->lte_frame_parms.nb_prefix_samples,
		     phy_vars_eNB->lte_frame_parms.twiddle_ifft,
		     phy_vars_eNB->lte_frame_parms.rev,
		     CYCLIC_PREFIX);
      }
      else {
	normal_prefix_mod(&phy_vars_eNB->lte_eNB_common_vars.txdataF[0][aa][slot_offset_F],
			  &PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdata[aa][slot_offset],
			  7,
			  &(phy_vars_eNB->lte_frame_parms));
	normal_prefix_mod(&phy_vars_eNB->lte_eNB_common_vars.txdataF[0][aa][slot_offset_F+slot_sizeF],
			  &PHY_vars_eNB_g[0]->lte_eNB_common_vars.txdata[0][aa][slot_offset+(phy_vars_eNB->lte_frame_parms.samples_per_tti>>1)],
			  7,
			  &(phy_vars_eNB->lte_frame_parms));
      }

    }
#endif //EXMIMO
799 800 801 802 803 804
  }
}


int eNB_thread_tx_status[10];
static void * eNB_thread_tx(void *param) {
805 806 807

  //unsigned long cpuid;
  eNB_proc_t *proc = (eNB_proc_t*)param;
808 809
  int subframe_tx;
  //  RTIME time_in,time_out;
810 811 812 813
#ifdef RTAI
  RT_TASK *task;
  char task_name[8];
#endif
814 815

 
816

817 818 819 820 821
#if defined(ENABLE_ITTI)
  /* Wait for eNB application initialization to be complete (eNB registration to MME) */
  wait_system_ready ("Waiting for eNB application to be ready %s\r", &start_eNB);
#endif

822
#ifdef RTAI
823
  sprintf(task_name,"eNB_proc_TX %d",proc->subframe);
824 825 826
  task = rt_task_init_schmod(nam2num(task_name), 0, 0, 0, SCHED_FIFO, 0xF);

  if (task==NULL) {
827
    LOG_E(PHY,"[SCHED][eNB] Problem starting eNB_proc_TX thread_index %d (%s)!!!!\n",proc->subframe,task_name);
828 829 830
    return 0;
  }
  else {
831
    LOG_I(PHY,"[SCHED][eNB] eNB TX thread %d started with id %p on CPU %d\n",
832
	  proc->subframe,
833
	  task,rtai_cpuid());
834
  }
835 836 837
#else
  LOG_I(PHY,"[SCHED][eNB] eNB TX thread %d started on CPU %d\n",
	proc->subframe,sched_getcpu());
838 839 840 841 842 843 844 845 846 847 848 849
#endif

  mlockall(MCL_CURRENT | MCL_FUTURE);

  //rt_set_runnable_on_cpuid(task,1);
  //cpuid = rtai_cpuid();

#ifdef HARD_RT
  rt_make_hard_real_time();
#endif


850
  subframe_tx = (proc->subframe+1)%10;
851
  
852
  while (!oai_exit){
853
    
854
    vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_TX0+(2*proc->subframe),0);
855 856
    
    
857 858 859
    //    LOG_I(PHY,"Locking mutex for eNB proc %d (IC %d,mutex %p)\n",proc->subframe,proc->instance_cnt,&proc->mutex);
    if (pthread_mutex_lock(&proc->mutex_tx) != 0) {
      LOG_E(PHY,"[SCHED][eNB] error locking mutex for eNB TX proc %d\n",proc->subframe);
860 861
    }
    else {
862
      
863 864
      while (proc->instance_cnt_tx < 0) {
	//	LOG_I(PHY,"Waiting and unlocking mutex for eNB proc %d (IC %d,lock %d)\n",proc->subframe,proc->instance_cnt,pthread_mutex_trylock(&proc->mutex));
865
	
866
	pthread_cond_wait(&proc->cond_tx,&proc->mutex_tx);
867
      }
868 869 870
      //      LOG_I(PHY,"Waking up and unlocking mutex for eNB proc %d\n",proc->subframe);
      if (pthread_mutex_unlock(&proc->mutex_tx) != 0) {	
	LOG_E(PHY,"[SCHED][eNB] error unlocking mutex for eNB TX proc %d\n",proc->subframe);
871 872
      }
    }
873 874 875
    vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_TX0+(2*proc->subframe),1);    
    vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_ENB, proc->frame_tx);
    vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_SLOT_NUMBER_ENB, proc->subframe*2);
876
    
877 878
    if (oai_exit) break;
    
879
    if ((((PHY_vars_eNB_g[0]->lte_frame_parms.frame_type == TDD)&&(subframe_select(&PHY_vars_eNB_g[0]->lte_frame_parms,subframe_tx)==SF_DL))||
880
	 (PHY_vars_eNB_g[0]->lte_frame_parms.frame_type == FDD))) {
881
      phy_procedures_eNB_TX(subframe_tx,PHY_vars_eNB_g[0],0,no_relay,NULL);
882
    }
883 884
    if ((subframe_select(&PHY_vars_eNB_g[0]->lte_frame_parms,subframe_tx)==SF_S)) {
      phy_procedures_eNB_TX(subframe_tx,PHY_vars_eNB_g[0],0,no_relay,NULL);
885
    }
886
    do_OFDM_mod(subframe_tx,PHY_vars_eNB_g[0]);  
887
    
888 889
    if (pthread_mutex_lock(&proc->mutex_tx) != 0) {
      printf("[openair][SCHED][eNB] error locking mutex for eNB TX proc %d\n",proc->subframe);
890
    }
891 892
    else {
      proc->instance_cnt_tx--;
893
      
894 895 896 897
      if (pthread_mutex_unlock(&proc->mutex_tx) != 0) {	
	printf("[openair][SCHED][eNB] error unlocking mutex for eNB TX proc %d\n",proc->subframe);
      }
    }
898
    
899 900 901
    proc->frame_tx++;
    if (proc->frame_tx==1024)
      proc->frame_tx=0;
902
  }    
903 904 905 906
  vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_TX0+(2*proc->subframe),0);        
#ifdef HARD_RT
  rt_make_soft_real_time();
#endif
907
  
908 909 910 911 912 913 914 915 916 917
#ifdef DEBUG_THREADS
  printf("Exiting eNB thread TX %d\n",proc->subframe);
#endif
  // clean task
#ifdef RTAI
  rt_task_delete(task);
#else
  eNB_thread_tx_status[proc->subframe]=0;
  pthread_exit(&eNB_thread_tx_status[proc->subframe]);
#endif
918
  
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
#ifdef DEBUG_THREADS
  printf("Exiting eNB TX thread %d\n",proc->subframe);
#endif
}

int eNB_thread_rx_status[10];
static void * eNB_thread_rx(void *param) {

  //unsigned long cpuid;
  eNB_proc_t *proc = (eNB_proc_t*)param;
  int i;
  int subframe_rx;
  //  RTIME time_in,time_out;
#ifdef RTAI
  RT_TASK *task;
  char task_name[8];
#endif

#if defined(ENABLE_ITTI)
  /* Wait for eNB application initialization to be complete (eNB registration to MME) */
  wait_system_ready ("Waiting for eNB application to be ready %s\r", &start_eNB);
#endif

#ifdef RTAI
  sprintf(task_name,"eNB_proc_RX %d",proc->subframe);
  task = rt_task_init_schmod(nam2num(task_name), 0, 0, 0, SCHED_FIFO, 0xF);

  if (task==NULL) {
    LOG_E(PHY,"[SCHED][eNB] Problem starting eNB_proc_RX thread_index %d (%s)!!!!\n",proc->subframe,task_name);
    return 0;
  }
  else {
    LOG_I(PHY,"[SCHED][eNB] eNB RX thread %d started with id %p on CPU %d\n",
	  proc->subframe,
	  task,rtai_cpuid());
  }
#else
  LOG_I(PHY,"[SCHED][eNB] eNB RX thread %d started on CPU %d\n",
	proc->subframe,sched_getcpu());
#endif

  mlockall(MCL_CURRENT | MCL_FUTURE);

  //rt_set_runnable_on_cpuid(task,1);
  //cpuid = rtai_cpuid();

#ifdef HARD_RT
  rt_make_hard_real_time();
#endif


  subframe_rx = (proc->subframe+9)%10;

  while (!oai_exit){

    vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RX0+(2*proc->subframe),0);


    //    LOG_I(PHY,"Locking mutex for eNB proc %d (IC %d,mutex %p)\n",proc->subframe,proc->instance_cnt,&proc->mutex);
    if (pthread_mutex_lock(&proc->mutex_rx) != 0) {
      LOG_E(PHY,"[SCHED][eNB] error locking mutex for eNB RX proc %d\n",proc->subframe);
    }
    else {
        
      while (proc->instance_cnt_rx < 0) {
	//	LOG_I(PHY,"Waiting and unlocking mutex for eNB proc %d (IC %d,lock %d)\n",proc->subframe,proc->instance_cnt,pthread_mutex_trylock(&proc->mutex));

	pthread_cond_wait(&proc->cond_rx,&proc->mutex_rx);
987
      }
988 989 990
      //      LOG_I(PHY,"Waking up and unlocking mutex for eNB proc %d\n",proc->subframe);
      if (pthread_mutex_unlock(&proc->mutex_rx) != 0) {	
	LOG_E(PHY,"[SCHED][eNB] error unlocking mutex for eNB RX proc %d\n",proc->subframe);
991 992
      }
    }
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
    vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RX0+(2*proc->subframe),1);    

    if (oai_exit) break;
    
    if ((((PHY_vars_eNB_g[0]->lte_frame_parms.frame_type == TDD )&&(subframe_select(&PHY_vars_eNB_g[0]->lte_frame_parms,subframe_rx)==SF_UL)) ||
	 (PHY_vars_eNB_g[0]->lte_frame_parms.frame_type == FDD))){
      phy_procedures_eNB_RX(subframe_rx,PHY_vars_eNB_g[0],0,no_relay);
    }
    if ((subframe_select(&PHY_vars_eNB_g[0]->lte_frame_parms,subframe_rx)==SF_S)){
      phy_procedures_eNB_S_RX(subframe_rx,PHY_vars_eNB_g[0],0,no_relay);
    }
      
    if (pthread_mutex_lock(&proc->mutex_rx) != 0) {
      printf("[openair][SCHED][eNB] error locking mutex for eNB RX proc %d\n",proc->subframe);
1007 1008
    }
    else {
1009
      proc->instance_cnt_rx--;
1010
      
1011 1012
      if (pthread_mutex_unlock(&proc->mutex_rx) != 0) {	
	printf("[openair][SCHED][eNB] error unlocking mutex for eNB RX proc %d\n",proc->subframe);
1013 1014
      }
    }
1015 1016 1017 1018

    proc->frame_rx++;
    if (proc->frame_rx==1024)
      proc->frame_rx=0;
1019
    
1020 1021
  }
  vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RX0+(2*proc->subframe),0);        
1022
#ifdef HARD_RT
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
  rt_make_soft_real_time();
#endif

#ifdef DEBUG_THREADS
  printf("Exiting eNB thread RX %d\n",proc->subframe);
#endif
  // clean task
#ifdef RTAI
  rt_task_delete(task);
#else
  eNB_thread_rx_status[proc->subframe]=0;
  pthread_exit(&eNB_thread_rx_status[proc->subframe]);
1035 1036
#endif

1037 1038 1039
#ifdef DEBUG_THREADS
  printf("Exiting eNB RX thread %d\n",proc->subframe);
#endif
1040 1041 1042 1043 1044 1045 1046 1047
}



void init_eNB_proc() {

  int i;

1048 1049


1050
  for (i=0;i<10;i++) {
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
    pthread_attr_init (&attr_eNB_proc_tx[i]);
    pthread_attr_setstacksize(&attr_eNB_proc_tx[i],OPENAIR_THREAD_STACK_SIZE);
    //attr_dlsch_threads.priority = 1;
    sched_param_eNB_proc_tx[i].sched_priority = sched_get_priority_max(SCHED_FIFO)-1; //OPENAIR_THREAD_PRIORITY;
    pthread_attr_setschedparam  (&attr_eNB_proc_tx[i], &sched_param_eNB_proc_tx);
    pthread_attr_setschedpolicy (&attr_eNB_proc_tx[i], SCHED_FIFO);

    pthread_attr_init (&attr_eNB_proc_rx[i]);
    pthread_attr_setstacksize(&attr_eNB_proc_rx[i],OPENAIR_THREAD_STACK_SIZE);
    //attr_dlsch_threads.priority = 1;
    sched_param_eNB_proc_rx[i].sched_priority = sched_get_priority_max(SCHED_FIFO)-1; //OPENAIR_THREAD_PRIORITY;
    pthread_attr_setschedparam  (&attr_eNB_proc_rx[i], &sched_param_eNB_proc_rx);
    pthread_attr_setschedpolicy (&attr_eNB_proc_rx[i], SCHED_FIFO);

    PHY_vars_eNB_g[0]->proc[i].instance_cnt_tx=-1;
    PHY_vars_eNB_g[0]->proc[i].instance_cnt_rx=-1;
1067
    PHY_vars_eNB_g[0]->proc[i].subframe=i;
1068 1069 1070 1071 1072 1073
    pthread_mutex_init(&PHY_vars_eNB_g[0]->proc[i].mutex_tx,NULL);
    pthread_mutex_init(&PHY_vars_eNB_g[0]->proc[i].mutex_rx,NULL);
    pthread_cond_init(&PHY_vars_eNB_g[0]->proc[i].cond_tx,NULL);
    pthread_cond_init(&PHY_vars_eNB_g[0]->proc[i].cond_rx,NULL);
    pthread_create(&PHY_vars_eNB_g[0]->proc[i].pthread_tx,NULL,eNB_thread_tx,(void*)&PHY_vars_eNB_g[0]->proc[i]);
    pthread_create(&PHY_vars_eNB_g[0]->proc[i].pthread_rx,NULL,eNB_thread_rx,(void*)&PHY_vars_eNB_g[0]->proc[i]);
1074 1075 1076 1077 1078 1079
  }
}

void kill_eNB_proc() {

  int i;
1080
  int *status_tx,*status_rx;
1081 1082

  for (i=0;i<10;i++) {
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105

#ifdef DEBUG_THREADS
    printf("Killing TX thread %d\n",i);
#endif
    PHY_vars_eNB_g[0]->proc[i].instance_cnt_tx=0; 
    pthread_cond_signal(&PHY_vars_eNB_g[0]->proc[i].cond_tx);
#ifdef DEBUG_THREADS
    printf("Joining eNB TX thread %d...",i);
#endif
    pthread_join(PHY_vars_eNB_g[0]->proc[i].pthread_tx,(void**)status_tx);
#ifdef DEBUG_THREADS
    if (status_tx) printf("status %d...",*status_tx);
#endif
#ifdef DEBUG_THREADS
    printf("Killing RX thread %d\n",i);
#endif
    PHY_vars_eNB_g[0]->proc[i].instance_cnt_rx=0; 
    pthread_cond_signal(&PHY_vars_eNB_g[0]->proc[i].cond_rx);
#ifdef DEBUG_THREADS
    printf("Joining eNB RX thread %d...",i);
#endif
    pthread_join(PHY_vars_eNB_g[0]->proc[i].pthread_rx,(void**)status_rx);
#ifdef DEBUG_THREADS 
1106
    if (status_rx) printf("status %d...",*status_rx);
1107 1108 1109 1110 1111
#endif
    pthread_mutex_destroy(&PHY_vars_eNB_g[0]->proc[i].mutex_tx);
    pthread_mutex_destroy(&PHY_vars_eNB_g[0]->proc[i].mutex_rx);
    pthread_cond_destroy(&PHY_vars_eNB_g[0]->proc[i].cond_tx);
    pthread_cond_destroy(&PHY_vars_eNB_g[0]->proc[i].cond_rx);
1112 1113 1114 1115
  }
}


1116 1117


1118 1119
  
/* This is the main eNB thread. */
1120 1121
int eNB_thread_status;

1122

1123 1124 1125 1126 1127
static void *eNB_thread(void *arg)
{
#ifdef RTAI
  RT_TASK *task;
#endif
1128
  unsigned char slot=0;//,last_slot, next_slot;
1129
  int frame=0;
1130

1131
  RTIME time_in, time_diff;
1132

1133
  int sf;
1134
#ifndef USRP
1135
  volatile unsigned int *DAQ_MBOX = openair0_daq_cnt();
1136 1137
  int mbox_target=0,mbox_current=0;
  int hw_slot,delay_cnt;
1138 1139 1140 1141
  int diff;
  int i;
  int ret;

1142 1143 1144
#else
  int rx_cnt = 0;
  int tx_cnt = tx_delay;
1145 1146
  //  int tx_offset;

1147
  hw_subframe = 0;
1148
#endif
1149 1150
#if defined(ENABLE_ITTI)
  /* Wait for eNB application initialization to be complete (eNB registration to MME) */
1151
  wait_system_ready ("Waiting for eNB application to be ready %s\r", &start_eNB);
1152 1153
#endif

1154
#ifdef RTAI
1155
  task = rt_task_init_schmod(nam2num("TASK0"), 0, 0, 0, SCHED_FIFO, 0xF);
1156 1157 1158 1159
#endif

  if (!oai_exit) {
#ifdef RTAI
1160 1161 1162 1163
    LOG_D(HW,"[SCHED][eNB] Started eNB thread (id %p) on CPU %d\n",task,rtai_cpuid());
#else
    LOG_I(HW,"[SCHED][eNB] Started eNB thread on CPU %d\n",
	  sched_getcpu());
1164 1165 1166
#endif

#ifdef HARD_RT
1167
    rt_make_hard_real_time();
1168 1169
#endif

1170
    mlockall(MCL_CURRENT | MCL_FUTURE);
1171

1172 1173 1174 1175
    timing_info.time_min = 100000000ULL;
    timing_info.time_max = 0;
    timing_info.time_avg = 0;
    timing_info.n_samples = 0;
1176

1177
    while (!oai_exit) {
1178 1179

#ifndef USRP
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
      hw_slot = (((((volatile unsigned int *)DAQ_MBOX)[0]+1)%150)<<1)/15;
      //        LOG_D(HW,"eNB frame %d, time %llu: slot %d, hw_slot %d (mbox %d)\n",frame,rt_get_time_ns(),slot,hw_slot,((unsigned int *)DAQ_MBOX)[0]);
      //this is the mbox counter where we should be
      //mbox_target = ((((slot+1)%20)*15+1)>>1)%150;
      mbox_target = mbox_bounds[slot];
      //this is the mbox counter where we are
      mbox_current = ((volatile unsigned int *)DAQ_MBOX)[0];
      //this is the time we need to sleep in order to synchronize with the hw (in multiples of DAQ_PERIOD)
      if ((mbox_current>=135) && (mbox_target<15)) //handle the frame wrap-arround
	diff = 150-mbox_current+mbox_target;
      else if ((mbox_current<15) && (mbox_target>=135))
	diff = -150+mbox_target-mbox_current;
      else
	diff = mbox_target - mbox_current;
      
      if (((slot%2==0) && (diff < (-14))) || ((slot%2==1) && (diff < (-7)))) {
	// at the eNB, even slots have double as much time since most of the processing is done here and almost nothing in odd slots
	LOG_D(HW,"eNB Frame %d, time %llu: missed slot, proceeding with next one (slot %d, hw_slot %d, diff %d)\n",frame, rt_get_time_ns(), slot, hw_slot, diff);
	slot++;
	if (frame > 0) {
	  exit_fun("[HW][eNB] missed slot");
	}
	if (slot==20){
	  slot=0;
	  frame++;
	}
	continue;
      }
      if (diff>8)
	LOG_D(HW,"eNB Frame %d, time %llu: skipped slot, waiting for hw to catch up (slot %d, hw_slot %d, mbox_current %d, mbox_target %d, diff %d)\n",frame, rt_get_time_ns(), slot, hw_slot, mbox_current, mbox_target, diff);
      
1211
      vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DAQ_MBOX, *DAQ_MBOX);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
      vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DIFF, diff);
      
      delay_cnt = 0;
      while ((diff>0) && (!oai_exit)) {
	time_in = rt_get_time_ns();
	//LOG_D(HW,"eNB Frame %d delaycnt %d : hw_slot %d (%d), slot %d, (slot+1)*15=%d, diff %d, time %llu\n",frame,delay_cnt,hw_slot,((unsigned int *)DAQ_MBOX)[0],slot,(((slot+1)*15)>>1),diff,time_in);
	//LOG_D(HW,"eNB Frame %d, time %llu: sleeping for %llu (slot %d, hw_slot %d, diff %d, mbox %d, delay_cnt %d)\n", frame, time_in, diff*DAQ_PERIOD,slot,hw_slot,diff,((volatile unsigned int *)DAQ_MBOX)[0],delay_cnt);
	vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_RT_SLEEP,1);
	ret = rt_sleep_ns(diff*DAQ_PERIOD);
	vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_RT_SLEEP,0);
1222
	vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DAQ_MBOX, *DAQ_MBOX);
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	if (ret)
	  LOG_D(HW,"eNB Frame %d, time %llu: rt_sleep_ns returned %d\n",frame, time_in);
	hw_slot = (((((volatile unsigned int *)DAQ_MBOX)[0]+1)%150)<<1)/15;
	//LOG_D(HW,"eNB Frame %d : hw_slot %d, time %llu\n",frame,hw_slot,rt_get_time_ns());
	delay_cnt++;
	if (delay_cnt == 10) {
	  LOG_D(HW,"eNB Frame %d: HW stopped ... \n",frame);
	  exit_fun("[HW][eNB] HW stopped");
	}
	mbox_current = ((volatile unsigned int *)DAQ_MBOX)[0];
	if ((mbox_current>=135) && (mbox_target<15)) //handle the frame wrap-arround
1234
	  diff = 150-mbox_current+mbox_target;
1235
	else if ((mbox_current<15) && (mbox_target>=135))
1236
	  diff = -150+mbox_target-mbox_current;
1237
	else
1238
	  diff = mbox_target - mbox_current;
1239
      }
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

#else  // USRP
      while (rx_cnt < sf_bounds[hw_subframe]) {
	openair0.trx_read_func(&openair0, &timestamp, &rxdata[rx_cnt*samples_per_packets], samples_per_packets);

	openair0.trx_write_func(&openair0, (timestamp+samples_per_packets*tx_delay-tx_forward_nsamps), &txdata[tx_cnt*samples_per_packets], samples_per_packets, 1);

	rx_cnt++;
	tx_cnt++;
      }

#ifndef RTAI
      //pthread_mutex_lock(&tti_mutex);
#endif
      hw_subframe++;
      slot+=2;
      if(hw_subframe==10)
        hw_subframe = 0;

#endif // USRP
     
1261
      if (oai_exit) break;
1262

1263
      if (frame>5)  {
1264

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	timing_info.time_last = timing_info.time_now;
	timing_info.time_now = rt_get_time_ns();
	
	if (timing_info.n_samples>0) {
	  time_diff = timing_info.time_now - timing_info.time_last;
	  if (time_diff < timing_info.time_min)
	    timing_info.time_min = time_diff;
	  if (time_diff > timing_info.time_max)
	    timing_info.time_max = time_diff;
	  timing_info.time_avg += time_diff;
	}
	
	timing_info.n_samples++;
	/*
	  if ((timing_info.n_samples%2000)==0) {
	  LOG_D(HW,"frame %d (%d), slot %d, hw_slot %d: diff=%llu, min=%llu, max=%llu, avg=%llu (n_samples %d)\n",
	  frame, PHY_vars_eNB_g[0]->frame, slot, hw_slot,time_diff,
	  timing_info.time_min,timing_info.time_max,timing_info.time_avg/timing_info.n_samples,timing_info.n_samples);
	  timing_info.n_samples = 0;
	  timing_info.time_avg = 0;
	  }
	*/
	//}
	
	if (multi_thread == 0) {
1290 1291
	  if ((slot&1) == 0) {
	    LOG_I(PHY,"[eNB] Single thread slot %d\n",slot);
1292 1293
	    phy_procedures_eNB_lte ((2+(slot>>1))%10, PHY_vars_eNB_g[0], 0, no_relay,NULL);
	    do_OFDM_mod((2+(slot>>1))%10,PHY_vars_eNB_g[0]);
1294
	  }
1295 1296 1297 1298 1299 1300 1301 1302
	}
	else { // multi-thread > 0
	  if ((slot&1) == 0) {
	    sf = ((slot>>1)+1)%10;
	    //		    LOG_I(PHY,"[eNB] Multithread slot %d (IC %d)\n",slot,PHY_vars_eNB_g[0]->proc[sf].instance_cnt);
	    
	    if (pthread_mutex_lock(&PHY_vars_eNB_g[0]->proc[sf].mutex_tx) != 0) {
	      LOG_E(PHY,"[eNB] ERROR pthread_mutex_lock for eNB TX thread %d (IC %d)\n",sf,PHY_vars_eNB_g[0]->proc[sf].instance_cnt_tx);   
1303
	    }
1304 1305 1306 1307 1308 1309 1310
	    else {
	      //		      LOG_I(PHY,"[eNB] Waking up eNB process %d (IC %d)\n",sf,PHY_vars_eNB_g[0]->proc[sf].instance_cnt); 
	      PHY_vars_eNB_g[0]->proc[sf].instance_cnt_tx++;
	      pthread_mutex_unlock(&PHY_vars_eNB_g[0]->proc[sf].mutex_tx);
	      if (PHY_vars_eNB_g[0]->proc[sf].instance_cnt_tx == 0) {
		if (pthread_cond_signal(&PHY_vars_eNB_g[0]->proc[sf].cond_tx) != 0) {
		  LOG_E(PHY,"[eNB] ERROR pthread_cond_signal for eNB TX thread %d\n",sf);
1311
		}
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	      }
	      else {
		LOG_W(PHY,"[eNB] Frame %d, eNB TX thread %d busy!!\n",PHY_vars_eNB_g[0]->proc[sf].frame_tx,sf);
	      }
	    }
	    
	    if (pthread_mutex_lock(&PHY_vars_eNB_g[0]->proc[sf].mutex_rx) != 0) {
	      LOG_E(PHY,"[eNB] ERROR pthread_mutex_lock for eNB RX thread %d (IC %d)\n",sf,PHY_vars_eNB_g[0]->proc[sf].instance_cnt_rx);   
	    }
	    else {
	      //		      LOG_I(PHY,"[eNB] Waking up eNB process %d (IC %d)\n",sf,PHY_vars_eNB_g[0]->proc[sf].instance_cnt); 
	      PHY_vars_eNB_g[0]->proc[sf].instance_cnt_rx++;
	      pthread_mutex_unlock(&PHY_vars_eNB_g[0]->proc[sf].mutex_rx);
	      if (PHY_vars_eNB_g[0]->proc[sf].instance_cnt_rx == 0) {
		if (pthread_cond_signal(&PHY_vars_eNB_g[0]->proc[sf].cond_rx) != 0) {
		  LOG_E(PHY,"[eNB] ERROR pthread_cond_signal for eNB RX thread %d\n",sf);
1328 1329
		}
	      }
1330 1331 1332
	      else {
		LOG_W(PHY,"[eNB] Frame %d, eNB RX thread %d busy!!\n",PHY_vars_eNB_g[0]->proc[sf].frame_rx,sf);
	      }
1333
	    }
1334 1335 1336 1337
	    
	  }
	}
      }
1338
#ifndef USRP
1339
      slot++;
1340 1341 1342 1343 1344 1345
#else
      if(rx_cnt == max_cnt) {
	rx_cnt = 0;
      } 
#endif     

1346 1347 1348 1349
      if (slot==20) {
	slot=0;
	frame++;
      }
1350
#if defined(ENABLE_ITTI)
1351
      itti_update_lte_time(frame, slot);
1352
#endif
1353 1354 1355 1356 1357 1358
    }
  }
#ifdef DEBUG_THREADS
  printf("eNB_thread: finished, ran %d times.\n",frame);
#endif
  
1359
#ifdef HARD_RT
1360
  rt_make_soft_real_time();
1361 1362
#endif

1363 1364 1365 1366 1367

#ifdef DEBUG_THREADS
  printf("Exiting eNB_thread ...");
#endif
  // clean task
1368
#ifdef RTAI
1369 1370 1371 1372
  rt_task_delete(task);
#else
  eNB_thread_status = 0;
  pthread_exit(&eNB_thread_status);
1373
#endif
1374 1375 1376 1377 1378
#ifdef DEBUG_THREADS
  printf("eNB_thread deleted. returning\n");
#endif
  return 0;
}
1379

1380 1381


1382
#ifndef USRP
1383 1384
/* This is the main UE thread. Initially it is doing a periodic get_frame. One synchronized it gets woken up by the kernel driver using the RTAI message mechanism (rt_send and rt_receive). */
static void *UE_thread(void *arg) {
1385
#ifdef RTAI
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
  RT_TASK *task;
#endif
  // RTIME in, out, diff;
  int slot=0,frame=0,hw_slot,last_slot, next_slot;
  // unsigned int aa;
  static int is_synchronized = 0;
  int delay_cnt;
  RTIME time_in;
  int hw_slot_offset=0,rx_offset_mbox=0,mbox_target=0,mbox_current=0;
  int diff2;
  int i, ret;
  volatile unsigned int *DAQ_MBOX = openair0_daq_cnt();
#ifndef USRP
  exmimo_config_t *p_exmimo_config = openair0_exmimo_pci[card].exmimo_config_ptr;;
#endif

1402

1403
#if defined(ENABLE_ITTI) && defined(ENABLE_USE_MME)
1404 1405
  /* Wait for NAS UE to start cell selection */
  wait_system_ready ("Waiting for UE to be activated by UserProcess %s\r", &start_UE);
1406 1407
#endif

1408
#ifdef RTAI
1409 1410
  task = rt_task_init_schmod(nam2num("TASK0"), 0, 0, 0, SCHED_FIFO, 0xF);
  LOG_D(HW,"Started UE thread (id %p)\n",task);
1411 1412 1413
#endif

#ifdef HARD_RT
1414
  rt_make_hard_real_time();
1415 1416
#endif

1417
  mlockall(MCL_CURRENT | MCL_FUTURE);
1418

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
  openair_daq_vars.freq_offset = 0; //-7500;
  /*
    if (mode == rx_calib_ue) {
    openair_daq_vars.freq_offset = -7500;
    for (i=0; i<4; i++) {
    p_exmimo_config->rf.rf_freq_rx[i] = p_exmimo_config->rf.rf_freq_rx[i]+openair_daq_vars.freq_offset;
    p_exmimo_config->rf.rf_freq_tx[i] = p_exmimo_config->rf.rf_freq_rx[i]+openair_daq_vars.freq_offset;
    }
    openair0_dump_config(card);
    }
  */
  while (!oai_exit)  {
    hw_slot = (((((volatile unsigned int *)DAQ_MBOX)[0]+1)%150)<<1)/15; //the slot the hw is about to store
1432
      
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
    if (is_synchronized) {
      //this is the mbox counter that indicates the start of the frame
      rx_offset_mbox = (PHY_vars_UE_g[0]->rx_offset * 150) / (10*PHY_vars_UE_g[0]->lte_frame_parms.samples_per_tti);
      //this is the mbox counter where we should be
      mbox_target = (((((slot+1)%20)*15+1)>>1) + rx_offset_mbox + 1)%150;
      // round up to the next multiple of two (mbox counter from express MIMO gives only even numbers)
      mbox_target = ((mbox_target+1)-((mbox_target-1)%2))%150;
      //this is the mbox counter where we are
      mbox_current = ((volatile unsigned int *)DAQ_MBOX)[0];
      //this is the time we need to sleep in order to synchronize with the hw (in multiples of DAQ_PERIOD)
      if ((mbox_current>=120) && (mbox_target<30)) //handle the frame wrap-arround
	diff2 = 150-mbox_current+mbox_target;
      else if ((mbox_current<30) && (mbox_target>=120))
	diff2 = -150+mbox_target-mbox_current;
      else
	diff2 = mbox_target - mbox_current;
1449
	
1450 1451 1452 1453 1454 1455 1456 1457
      if (diff2 <(-7)) {
	LOG_D(HW,"UE Frame %d: missed slot, proceeding with next one (slot %d, hw_slot %d, diff %d)\n",frame, slot, hw_slot, diff2);
	if (frame>0)
	  exit_fun("[HW][UE] missed slot");
	slot++;
	if (slot==20) {
	  slot=0;
	  frame++;
1458
	}
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	continue;
      }
      if (diff2>8)
	LOG_D(HW,"UE Frame %d: skipped slot, waiting for hw to catch up (slot %d, hw_slot %d, mbox_current %d, mbox_target %d, diff %d)\n",frame, slot, hw_slot, mbox_current, mbox_target, diff2);
	
      /*
	if (frame%100==0)
	LOG_D(HW,"frame %d (%d), slot %d, hw_slot %d, rx_offset_mbox %d, mbox_target %d, mbox_current %d, diff %d\n",frame, PHY_vars_UE_g[0]->frame, slot,hw_slot,rx_offset_mbox,mbox_target,mbox_current,diff2);
      */
	
      vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DAQ_MBOX, *DAQ_MBOX);
      vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DIFF, diff2);
	
      delay_cnt = 0;
      while ((diff2>0) && (!oai_exit) && (is_synchronized) )  {
	time_in = rt_get_time_ns();
	//LOG_D(HW,"eNB Frame %d delaycnt %d : hw_slot %d (%d), slot %d (%d), diff %d, time %llu\n",frame,delay_cnt,hw_slot,((volatile unsigned int *)DAQ_MBOX)[0],slot,mbox_target,diff2,time_in);
	vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DAQ_MBOX, *DAQ_MBOX);
	vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_RT_SLEEP,1);
	ret = rt_sleep_ns(diff2*DAQ_PERIOD);
	vcd_signal_dumper_dump_function_by_name(VCD_SIGNAL_DUMPER_FUNCTIONS_RT_SLEEP,0);
	vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DAQ_MBOX, *DAQ_MBOX);
	if (ret)
	  LOG_D(HW,"eNB Frame %d, time %llu: rt_sleep_ns returned %d\n",frame, time_in);
1483
	  
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	hw_slot = (((((volatile unsigned int *)DAQ_MBOX)[0]+1)%150)<<1)/15;
	//LOG_D(HW,"eNB Frame %d : hw_slot %d, time %llu\n",frame,hw_slot,rt_get_time_ns());
	delay_cnt++;
	if (delay_cnt == 30)  {
	  LOG_D(HW,"UE frame %d: HW stopped ... \n",frame);
	  exit_fun("[HW][UE] HW stopped");
	}
	mbox_current = ((volatile unsigned int *)DAQ_MBOX)[0];
	if ((mbox_current>=135) && (mbox_target<15)) //handle the frame wrap-arround
	  diff2 = 150-mbox_current+mbox_target;
	else if ((mbox_current<15) && (mbox_target>=135))
	  diff2 = -150+mbox_target-mbox_current;
	else
	  diff2 = mbox_target - mbox_current;
	  
	vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DAQ_MBOX, *DAQ_MBOX);
	vcd_signal_dumper_dump_variable_by_name(VCD_SIGNAL_DUMPER_VARIABLES_DIFF, diff2);
      }
	
    }
      
    last_slot = (slot)%LTE_SLOTS_PER_FRAME;
    if (last_slot <0)
      last_slot+=LTE_SLOTS_PER_FRAME;
    next_slot = (slot+3)%LTE_SLOTS_PER_FRAME;
      
    if (is_synchronized)  {
      phy_procedures_UE_lte (last_slot, next_slot, PHY_vars_UE_g[0], 0, 0,mode,0,NULL);
	
    }
    else {  // we are not yet synchronized
      hw_slot_offset = 0;
	
      slot = 0;
      openair0_get_frame(card);
      //          LOG_D(HW,"after get_frame\n");
      //          rt_sleep_ns(FRAME_PERIOD);
      //          LOG_D(HW,"after sleep\n");
	
      if (initial_sync(PHY_vars_UE_g[0],mode)==0) {
1524
	/*
1525 1526 1527 1528 1529
	  lte_adjust_synch(&PHY_vars_UE_g[0]->lte_frame_parms,
	  PHY_vars_UE_g[0],
	  0,
	  1,
	  16384);
1530
	*/
1531 1532 1533 1534 1535 1536 1537 1538
	//for better visualization afterwards
	/*
	  for (aa=0; aa<PHY_vars_UE_g[0]->lte_frame_parms.nb_antennas_rx; aa++)
	  memset(PHY_vars_UE_g[0]->lte_ue_common_vars.rxdata[aa],0,
	  PHY_vars_UE_g[0]->lte_frame_parms.samples_per_tti*LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*sizeof(int));
	*/
	if (mode == rx_calib_ue) {
	  exit_fun("[HW][UE] UE in RX calibration mode");
1539
	}