channel_sim.c 25.6 KB
Newer Older
1
/*******************************************************************************
2
    OpenAirInterface
3 4 5 6 7 8 9 10 11 12 13 14 15 16
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
17 18
    along with OpenAirInterface.The full GNU General Public License is
    included in this distribution in the file called "COPYING". If not,
19 20 21 22 23
    see <http://www.gnu.org/licenses/>.

   Contact Information
   OpenAirInterface Admin: openair_admin@eurecom.fr
   OpenAirInterface Tech : openair_tech@eurecom.fr
24
   OpenAirInterface Dev  : openair4g-devel@lists.eurecom.fr
25

ghaddab's avatar
ghaddab committed
26
   Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
27 28 29

 *******************************************************************************/

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
#include <string.h>
#include <math.h>
#include <unistd.h>
#include <stdint.h>
#include <stdio.h>
#include <time.h>

#include "SIMULATION/TOOLS/defs.h"
#include "SIMULATION/RF/defs.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#include "PHY/extern.h"
#include "MAC_INTERFACE/extern.h"

#ifdef OPENAIR2
#include "LAYER2/MAC/defs.h"
#include "LAYER2/MAC/extern.h"
#include "UTIL/LOG/log_if.h"
#include "UTIL/LOG/log_extern.h"
#include "RRC/LITE/extern.h"
#include "PHY_INTERFACE/extern.h"
#include "UTIL/OCG/OCG.h"
#include "UTIL/OPT/opt.h" // to test OPT
#endif

#include "UTIL/FIFO/types.h"

#ifdef IFFT_FPGA
#include "PHY/LTE_REFSIG/mod_table.h"
#endif

#include "SCHED/defs.h"
#include "SCHED/extern.h"

#ifdef XFORMS
#include "forms.h"
#include "phy_procedures_sim_form.h"
#endif

#include "oaisim.h"

#define RF
72
#define DEBUG_SIM
73 74 75 76

int number_rb_ul;
int first_rbUL ;

77
extern Signal_buffers_t *signal_buffers_g;
78 79 80 81 82 83



void do_DL_sig(double **r_re0,double **r_im0,
               double **r_re,double **r_im,
               double **s_re,double **s_im,
knopp's avatar
knopp committed
84
               channel_desc_t *eNB2UE[NUMBER_OF_eNB_MAX][NUMBER_OF_UE_MAX][MAX_NUM_CCs],
85 86
               node_desc_t *enb_data[NUMBER_OF_eNB_MAX],
               node_desc_t *ue_data[NUMBER_OF_UE_MAX],
87
               uint16_t next_slot,uint8_t abstraction_flag,LTE_DL_FRAME_PARMS *frame_parms,
knopp's avatar
knopp committed
88
               uint8_t UE_id,
89 90
               int CC_id)
{
91

92 93
  int32_t att_eNB_id=-1;
  int32_t **txdata,**rxdata;
94

95
  uint8_t eNB_id=0;
96 97
  double tx_pwr;
  double rx_pwr;
98 99 100
  int32_t rx_pwr2;
  uint32_t i,aa;
  uint32_t slot_offset,slot_offset_meas;
101 102

  double min_path_loss=-200;
103 104
  uint8_t hold_channel=0;
  //  uint8_t aatx,aarx;
knopp's avatar
knopp committed
105 106
  uint8_t nb_antennas_rx = eNB2UE[0][0][CC_id]->nb_rx; // number of rx antennas at UE
  uint8_t nb_antennas_tx = eNB2UE[0][0][CC_id]->nb_tx; // number of tx antennas at eNB
107

knopp's avatar
knopp committed
108 109
  LTE_DL_FRAME_PARMS *fp;
  //  int subframe_sched = ((next_slot>>1) == 0) ? 9 : ((next_slot>>1)-1);
knopp's avatar
knopp committed
110

111

112 113 114 115 116 117 118 119
  if (next_slot==0)
    hold_channel = 0;
  else
    hold_channel = 1;

  if (abstraction_flag != 0) {
    //for (UE_id=0;UE_id<NB_UE_INST;UE_id++) {

120
    if (!hold_channel) {
121
      // calculate the random channel from each eNB
122 123
      for (eNB_id=0; eNB_id<NB_eNB_INST; eNB_id++) {

knopp's avatar
knopp committed
124
        random_channel(eNB2UE[eNB_id][UE_id][CC_id],abstraction_flag);
125
        /*
126 127 128
        for (i=0;i<eNB2UE[eNB_id][UE_id]->nb_taps;i++)
        printf("eNB2UE[%d][%d]->a[0][%d] = (%f,%f)\n",eNB_id,UE_id,i,eNB2UE[eNB_id][UE_id]->a[0][i].x,eNB2UE[eNB_id][UE_id]->a[0][i].y);
        */
knopp's avatar
knopp committed
129
        freq_channel(eNB2UE[eNB_id][UE_id][CC_id], frame_parms->N_RB_DL,frame_parms->N_RB_DL*12+1);
130 131 132
      }

      // find out which eNB the UE is attached to
133
      for (eNB_id=0; eNB_id<NB_eNB_INST; eNB_id++) {
knopp's avatar
knopp committed
134
        if (find_ue(PHY_vars_UE_g[UE_id][CC_id]->lte_ue_pdcch_vars[0]->crnti,PHY_vars_eNB_g[eNB_id][CC_id])>=0) {
135 136
          // UE with UE_id is connected to eNb with eNB_id
          att_eNB_id=eNB_id;
137
          LOG_D(OCM,"A: UE attached to eNB (UE%d->eNB%d)\n",UE_id,eNB_id);
138 139 140 141 142
        }
      }

      // if UE is not attached yet, find assume its the eNB with the smallest pathloss
      if (att_eNB_id<0) {
143
        for (eNB_id=0; eNB_id<NB_eNB_INST; eNB_id++) {
knopp's avatar
knopp committed
144 145
          if (min_path_loss<eNB2UE[eNB_id][UE_id][CC_id]->path_loss_dB) {
            min_path_loss = eNB2UE[eNB_id][UE_id][CC_id]->path_loss_dB;
146
            att_eNB_id=eNB_id;
147
            LOG_D(OCM,"B: UE attached to eNB (UE%d->eNB%d)\n",UE_id,eNB_id);
148 149 150 151 152 153 154 155
          }
        }
      }

      if (att_eNB_id<0) {
        LOG_E(OCM,"Cannot find eNB for UE %d, return\n",UE_id);
        return; //exit(-1);
      }
156

157
#ifdef DEBUG_SIM
knopp's avatar
knopp committed
158 159 160 161
      rx_pwr = signal_energy_fp2(eNB2UE[att_eNB_id][UE_id][CC_id]->ch[0],
                                 eNB2UE[att_eNB_id][UE_id][CC_id]->channel_length)*eNB2UE[att_eNB_id][UE_id][CC_id]->channel_length;
      LOG_D(OCM,"Channel (CCid %d) eNB %d => UE %d : tx_power %d dBm, path_loss %f dB\n",
            CC_id,att_eNB_id,UE_id,
knopp's avatar
knopp committed
162
            frame_parms->pdsch_config_common.referenceSignalPower,
knopp's avatar
knopp committed
163
            eNB2UE[att_eNB_id][UE_id][CC_id]->path_loss_dB);
164
#endif
165 166 167

      //dlsch_abstraction(PHY_vars_UE_g[UE_id]->sinr_dB, rb_alloc, 8);
      // fill in perfect channel estimates
knopp's avatar
knopp committed
168 169
      channel_desc_t *desc1 = eNB2UE[att_eNB_id][UE_id][CC_id];
      int32_t **dl_channel_est = PHY_vars_UE_g[UE_id][CC_id]->lte_ue_common_vars.dl_ch_estimates[0];
170
      //      double scale = pow(10.0,(enb_data[att_eNB_id]->tx_power_dBm + eNB2UE[att_eNB_id][UE_id]->path_loss_dB + (double) PHY_vars_UE_g[UE_id]->rx_total_gain_dB)/20.0);
knopp's avatar
knopp committed
171
      double scale = pow(10.0,(frame_parms->pdsch_config_common.referenceSignalPower+eNB2UE[att_eNB_id][UE_id][CC_id]->path_loss_dB + (double) PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB)/20.0);
172 173
      //this factor is not really needed (it was actually wrong in the non abstraction mode)
      //scale = scale * sqrt(512.0/300.0); //TODO: make this variable for all BWs
174 175 176 177 178
      LOG_D(OCM,"scale =%lf (%d dB)\n",scale,(int) (20*log10(scale)));
      // freq_channel(desc1,frame_parms->N_RB_DL,nb_samples);
      //write_output("channel.m","ch",desc1->ch[0],desc1->channel_length,1,8);
      //write_output("channelF.m","chF",desc1->chF[0],nb_samples,1,8);
      int count,count1,a_rx,a_tx;
179 180 181 182 183 184 185 186 187 188 189 190

      for(a_tx=0; a_tx<nb_antennas_tx; a_tx++) {
        for (a_rx=0; a_rx<nb_antennas_rx; a_rx++) {
          //for (count=0;count<frame_parms->symbols_per_tti/2;count++)
          for (count=0; count<1; count++) {
            for (count1=0; count1<frame_parms->N_RB_DL*12; count1++) {
              ((int16_t *) dl_channel_est[(a_tx<<1)+a_rx])[2*count1+(count*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(desc1->chF[a_rx+(a_tx*nb_antennas_rx)][count1].x*scale);
              ((int16_t *) dl_channel_est[(a_tx<<1)+a_rx])[2*count1+1+(count*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(desc1->chF[a_rx+(a_tx*nb_antennas_rx)][count1].y*scale) ;
            }
          }
        }
      }
191

192
      /*
193
      if(PHY_vars_UE_g[UE_id]->transmission_mode[att_eNB_id]>=5)
194 195 196 197 198 199 200 201
      {
      lte_ue_measurements(PHY_vars_UE_g[UE_id],
            ((next_slot-1)>>1)*frame_parms->samples_per_tti,
            1,
            abstraction_flag);

      PHY_vars_eNB_g[att_eNB_id]->dlsch_eNB[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE_g[UE_id]->PHY_measurements,0);
      //  printf("pmi_alloc in channel sim: %d",PHY_vars_eNB_g[att_eNB_id]->dlsch_eNB[0][0]->pmi_alloc);
202
        }
203 204
      */

205
      // calculate the SNR for the attached eNB (this assumes eNB always uses PMI stored in eNB_UE_stats; to be improved)
206 207
      init_snr(eNB2UE[att_eNB_id][UE_id][CC_id], enb_data[att_eNB_id], ue_data[UE_id], PHY_vars_UE_g[UE_id][CC_id]->sinr_dB, &PHY_vars_UE_g[UE_id][CC_id]->N0,
               PHY_vars_UE_g[UE_id][CC_id]->transmission_mode[att_eNB_id], PHY_vars_eNB_g[att_eNB_id][CC_id]->eNB_UE_stats[UE_id].DL_pmi_single,PHY_vars_eNB_g[att_eNB_id][CC_id]->mu_mimo_mode[UE_id].dl_pow_off);
208 209 210 211

      // calculate sinr here
      for (eNB_id = 0; eNB_id < NB_eNB_INST; eNB_id++) {
        if (att_eNB_id != eNB_id) {
knopp's avatar
knopp committed
212
          calculate_sinr(eNB2UE[eNB_id][UE_id][CC_id], enb_data[eNB_id], ue_data[UE_id], PHY_vars_UE_g[UE_id][CC_id]->sinr_dB);
213 214
        }
      }
215
    } // hold channel
216
  }
217

218
  else { //abstraction_flag
219
    /*
220 221
       Call do_OFDM_mod from phy_procedures_eNB_TX function
    */
knopp's avatar
knopp committed
222

223 224


225
    //for (UE_id=0;UE_id<NB_UE_INST;UE_id++) {
226 227 228 229 230 231 232 233 234 235 236 237 238 239
    // Compute RX signal for UE = UE_id
    /*
    for (i=0;i<(frame_parms->samples_per_tti>>1);i++) {
    for (aa=0;aa<nb_antennas_rx;aa++) {
    r_re[aa][i]=0.0;
    r_im[aa][i]=0.0;
    }
    }
    */
    //      printf("r_re[0] %p\n",r_re[0]);
    for (aa=0; aa<nb_antennas_rx; aa++) {
      memset((void*)r_re[aa],0,(frame_parms->samples_per_tti>>1)*sizeof(double));
      memset((void*)r_im[aa],0,(frame_parms->samples_per_tti>>1)*sizeof(double));
    }
knopp's avatar
knopp committed
240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    /*
    for (i=0;i<16;i++)
    printf("%f, %X\n",r_re[aa][i],(unsigned long long)r_re[aa][i]);
    */
    for (eNB_id=0; eNB_id<NB_eNB_INST; eNB_id++) {
      //  if (((double)PHY_vars_UE_g[UE_id]->tx_power_dBm +
      //       eNB2UE[eNB_id][UE_id]->path_loss_dB) <= -107.0)
      //    break;

      txdata = PHY_vars_eNB_g[eNB_id][CC_id]->lte_eNB_common_vars.txdata[0];
      slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
      slot_offset_meas = ((next_slot&1)==0) ? slot_offset : (slot_offset-(frame_parms->samples_per_tti>>1));
      tx_pwr = dac_fixed_gain(s_re,
                              s_im,
                              txdata,
                              slot_offset,
                              nb_antennas_tx,
                              frame_parms->samples_per_tti>>1,
                              slot_offset_meas,
                              frame_parms->ofdm_symbol_size,
                              14,
                              //        enb_data[eNB_id]->tx_power_dBm);
                              frame_parms->pdsch_config_common.referenceSignalPower, // dBm/RE
                              frame_parms->N_RB_DL*12);
265 266

#ifdef DEBUG_SIM
267 268 269 270 271 272 273 274 275 276 277 278 279 280
      LOG_D(OCM,"[SIM][DL] eNB %d (CCid %d): tx_pwr %.1f dBm/RE (target %d dBm/RE), for slot %d (subframe %d)\n",
            eNB_id,CC_id,
            10*log10(tx_pwr),
            frame_parms->pdsch_config_common.referenceSignalPower,
            next_slot,
            next_slot>>1);
#endif
      //eNB2UE[eNB_id][UE_id]->path_loss_dB = 0;
      multipath_channel(eNB2UE[eNB_id][UE_id][CC_id],s_re,s_im,r_re0,r_im0,
                        frame_parms->samples_per_tti>>1,hold_channel);
#ifdef DEBUG_SIM
      rx_pwr = signal_energy_fp2(eNB2UE[eNB_id][UE_id][CC_id]->ch[0],
                                 eNB2UE[eNB_id][UE_id][CC_id]->channel_length)*eNB2UE[eNB_id][UE_id][CC_id]->channel_length;
      LOG_D(OCM,"[SIM][DL] Channel eNB %d => UE %d (CCid %d): Channel gain %f dB (%f)\n",eNB_id,UE_id,CC_id,10*log10(rx_pwr),rx_pwr);
281
#endif
282 283 284 285 286 287 288


#ifdef DEBUG_SIM

      for (i=0; i<eNB2UE[eNB_id][UE_id][CC_id]->channel_length; i++)
        LOG_D(OCM,"channel(%d,%d)[%d] : (%f,%f)\n",eNB_id,UE_id,i,eNB2UE[eNB_id][UE_id][CC_id]->ch[0][i].x,eNB2UE[eNB_id][UE_id][CC_id]->ch[0][i].y);

289 290
#endif

291 292 293 294 295
      LOG_D(OCM,"[SIM][DL] Channel eNB %d => UE %d (CCid %d): tx_power %.1f dBm/RE, path_loss %1.f dB\n",
            eNB_id,UE_id,CC_id,
            (double)frame_parms->pdsch_config_common.referenceSignalPower,
            //         enb_data[eNB_id]->tx_power_dBm,
            eNB2UE[eNB_id][UE_id][CC_id]->path_loss_dB);
296 297

#ifdef DEBUG_SIM
298 299 300 301 302 303 304 305
      rx_pwr = signal_energy_fp(r_re0,r_im0,nb_antennas_rx,
                                frame_parms->ofdm_symbol_size,
                                slot_offset_meas)/(12.0*frame_parms->N_RB_DL);
      LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr %f dBm/RE (%f dBm RSSI)for slot %d (subframe %d)\n",UE_id,
            10*log10(rx_pwr),
            10*log10(rx_pwr*(double)frame_parms->N_RB_DL*12),next_slot,next_slot>>1);
      LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr (noise) -132 dBm/RE (N0fs = %.1f dBm, N0B = %.1f dBm) for slot %d (subframe %d)\n",
            UE_id,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
306 307
            10*log10(eNB2UE[eNB_id][UE_id][CC_id]->sampling_rate*1e6)-174,
            10*log10(eNB2UE[eNB_id][UE_id][CC_id]->sampling_rate*1e6*12*frame_parms->N_RB_DL/(double)frame_parms->ofdm_symbol_size)-174,
308
            next_slot,next_slot>>1);
309 310
#endif

311 312 313 314 315
      if (eNB2UE[eNB_id][UE_id][CC_id]->first_run == 1)
        eNB2UE[eNB_id][UE_id][CC_id]->first_run = 0;


      // RF model
316
#ifdef DEBUG_SIM
317 318
      LOG_D(OCM,"[SIM][DL] UE %d (CCid %d): rx_gain %d dB (-ADC %f) for slot %d (subframe %d)\n",UE_id,CC_id,PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB,
            PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB-66.227,next_slot,next_slot>>1);
319
#endif
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
      /*
      rf_rx(r_re0,
      r_im0,
      NULL,
      NULL,
      0,
      nb_antennas_rx,
      frame_parms->samples_per_tti>>1,
      1e3/eNB2UE[eNB_id][UE_id]->BW,  // sampling time (ns)
      0.0,               // freq offset (Hz) (-20kHz..20kHz)
      0.0,               // drift (Hz) NOT YET IMPLEMENTED
      ue_data[UE_id]->rx_noise_level,                // noise_figure NOT YET IMPLEMENTED
      (double)PHY_vars_UE_g[UE_id]->rx_total_gain_dB - 66.227,   // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)
      200.0,               // IP3_dBm (dBm)
      &eNB2UE[eNB_id][UE_id]->ip,               // initial phase
      30.0e3,            // pn_cutoff (kHz)
      -500.0,            // pn_amp (dBc) default: 50
      0.0,               // IQ imbalance (dB),
      0.0);              // IQ phase imbalance (rad)
      */

      rf_rx_simple(r_re0,
                   r_im0,
                   nb_antennas_rx,
                   frame_parms->samples_per_tti>>1,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
345
                   1e3/eNB2UE[eNB_id][UE_id][CC_id]->sampling_rate,  // sampling time (ns)
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
                   (double)PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB - 66.227);   // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)

#ifdef DEBUG_SIM
      rx_pwr = signal_energy_fp(r_re0,r_im0,
                                nb_antennas_rx,
                                frame_parms->ofdm_symbol_size,
                                slot_offset_meas)/(12.0*frame_parms->N_RB_DL);
      LOG_D(OCM,"[SIM][DL] UE %d : ADC in (eNB %d) %f dBm/RE for slot %d (subframe %d)\n",
            UE_id,eNB_id,
            10*log10(rx_pwr),next_slot,next_slot>>1);
#endif

      for (i=0; i<(frame_parms->samples_per_tti>>1); i++) {
        for (aa=0; aa<nb_antennas_rx; aa++) {
          r_re[aa][i]+=r_re0[aa][i];
          r_im[aa][i]+=r_im0[aa][i];
362
        }
363
      }
364

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    }

#ifdef DEBUG_SIM
    rx_pwr = signal_energy_fp(r_re,r_im,nb_antennas_rx,frame_parms->ofdm_symbol_size,slot_offset_meas)/(12.0*frame_parms->N_RB_DL);
    LOG_D(OCM,"[SIM][DL] UE %d : ADC in %f dBm for slot %d (subframe %d)\n",UE_id,10*log10(rx_pwr),next_slot,next_slot>>1);
#endif

    rxdata = PHY_vars_UE_g[UE_id][CC_id]->lte_ue_common_vars.rxdata;
    slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);

    adc(r_re,
        r_im,
        0,
        slot_offset,
        rxdata,
        nb_antennas_rx,
        frame_parms->samples_per_tti>>1,
        12);
383

384
#ifdef DEBUG_SIM
385 386
    rx_pwr2 = signal_energy(rxdata[0]+slot_offset,frame_parms->ofdm_symbol_size)/(12.0*frame_parms->N_RB_DL);
    LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr (ADC out) %f dB/RE (%d) for slot %d (subframe %d), writing to %p\n",UE_id, 10*log10((double)rx_pwr2),rx_pwr2,next_slot,next_slot>>1,rxdata);
387
#else
388 389 390
    UNUSED_VARIABLE(rx_pwr2);
    UNUSED_VARIABLE(tx_pwr);
    UNUSED_VARIABLE(rx_pwr);
391 392 393 394 395 396 397
#endif
    //}// UE_index loop
  }

}


398 399 400
void do_UL_sig(double **r_re0,double **r_im0,double **r_re,double **r_im,double **s_re,double **s_im,channel_desc_t *UE2eNB[NUMBER_OF_UE_MAX][NUMBER_OF_eNB_MAX][MAX_NUM_CCs],
               node_desc_t *enb_data[NUMBER_OF_eNB_MAX],node_desc_t *ue_data[NUMBER_OF_UE_MAX],uint16_t next_slot,uint8_t abstraction_flag,LTE_DL_FRAME_PARMS *frame_parms, uint32_t frame,uint8_t CC_id)
{
401

402
  int32_t **txdata,**rxdata;
403
#ifdef PHY_ABSTRACTION_UL
404
  int32_t att_eNB_id=-1;
405
#endif
406
  uint8_t eNB_id=0,UE_id=0;
407

knopp's avatar
knopp committed
408 409
  uint8_t nb_antennas_rx = UE2eNB[0][0][CC_id]->nb_rx; // number of rx antennas at eNB
  uint8_t nb_antennas_tx = UE2eNB[0][0][CC_id]->nb_tx; // number of tx antennas at UE
410 411

  double tx_pwr, rx_pwr;
412 413 414
  int32_t rx_pwr2;
  uint32_t i,aa;
  uint32_t slot_offset,slot_offset_meas;
415

416
  uint8_t hold_channel=0;
417 418 419

#ifdef PHY_ABSTRACTION_UL
  double min_path_loss=-200;
420 421
  uint16_t ul_nb_rb=0 ;
  uint16_t ul_fr_rb=0;
422 423
  int ulnbrb2 ;
  int ulfrrb2 ;
424
  uint8_t harq_pid;
425
  int subframe = (next_slot>>1);
426
#endif
427

428
  /*
429
  if (next_slot==4)
430
    hold_channel = 0;
431 432 433 434 435
  else
    hold_channel = 1;
  */

  if (abstraction_flag!=0)  {
436
#ifdef PHY_ABSTRACTION_UL
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461

    for (eNB_id=0; eNB_id<NB_eNB_INST; eNB_id++) {
      for (UE_id=0; UE_id<NB_UE_INST; UE_id++) {
        if (!hold_channel) {
          random_channel(UE2eNB[UE_id][eNB_id][CC_id],abstraction_flag);
          freq_channel(UE2eNB[UE_id][eNB_id][CC_id], frame_parms->N_RB_UL,frame_parms->N_RB_UL*12+1);

          // REceived power at the eNB
          rx_pwr = signal_energy_fp2(UE2eNB[UE_id][eNB_id][CC_id]->ch[0],
                                     UE2eNB[UE_id][eNB_id][CC_id]->channel_length)*UE2eNB[UE_id][att_eNB_id][CC_id]->channel_length; // calculate the rx power at the eNB
        }

        //  write_output("SINRch.m","SINRch",PHY_vars_eNB_g[att_eNB_id]->sinr_dB_eNB,frame_parms->N_RB_UL*12+1,1,1);
        if(subframe>1 && subframe <5) {
          harq_pid = subframe2harq_pid(frame_parms,frame,subframe);
          ul_nb_rb = PHY_vars_eNB_g[att_eNB_id][CC_id]->ulsch_eNB[(uint8_t)UE_id]->harq_processes[harq_pid]->nb_rb;
          ul_fr_rb = PHY_vars_eNB_g[att_eNB_id][CC_id]->ulsch_eNB[(uint8_t)UE_id]->harq_processes[harq_pid]->first_rb;
        }

        if(ul_nb_rb>1 && (ul_fr_rb < 25 && ul_fr_rb > -1)) {
          number_rb_ul = ul_nb_rb;
          first_rbUL = ul_fr_rb;
          init_snr_up(UE2eNB[UE_id][att_eNB_id][CC_id],enb_data[att_eNB_id], ue_data[UE_id],PHY_vars_eNB_g[att_eNB_id][CC_id]->sinr_dB,&PHY_vars_UE_g[att_eNB_id][CC_id]->N0,ul_nb_rb,ul_fr_rb);

        }
462 463
      } //UE_id
    } //eNB_id
464

465
#else
466 467 468 469 470 471 472 473 474
    /* the following functions are not needed */
    /*
    if (abstraction_flag!=0) {
        for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
          for (UE_id=0;UE_id<NB_UE_INST;UE_id++) {
      random_channel(UE2eNB[UE_id][eNB_id]);
      freq_channel(UE2eNB[UE_id][eNB_id], frame_parms->N_RB_UL,2);
          }
        }
475
      }
476
    */
477
#endif
478
  } else { //without abstraction
479 480 481 482 483 484 485

    /*
    for (UE_id=0;UE_id<NB_UE_INST;UE_id++) {
      do_OFDM_mod(PHY_vars_UE_g[UE_id]->lte_ue_common_vars.txdataF,PHY_vars_UE_g[UE_id]->lte_ue_common_vars.txdata,next_slot,&PHY_vars_UE_g[UE_id]->lte_frame_parms);
    }
    */

486
    for (eNB_id=0; eNB_id<NB_eNB_INST; eNB_id++) {
487
      // Clear RX signal for eNB = eNB_id
488 489
      for (i=0; i<(frame_parms->samples_per_tti>>1); i++) {
        for (aa=0; aa<nb_antennas_rx; aa++) {
490 491 492 493
          r_re[aa][i]=0.0;
          r_im[aa][i]=0.0;
        }
      }
494

495
      // Compute RX signal for eNB = eNB_id
496
      for (UE_id=0; UE_id<NB_UE_INST; UE_id++) {
497

knopp's avatar
knopp committed
498
        txdata = PHY_vars_UE_g[UE_id][CC_id]->lte_ue_common_vars.txdata;
499 500
        slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
        slot_offset_meas = ((next_slot&1)==0) ? slot_offset : (slot_offset-(frame_parms->samples_per_tti>>1));
501

knopp's avatar
knopp committed
502 503
        if (((double)PHY_vars_UE_g[UE_id][CC_id]->tx_power_dBm +
             UE2eNB[UE_id][eNB_id][CC_id]->path_loss_dB) <= -125.0) {
504 505

          // don't simulate a UE that is too weak
506
        } else {
507 508 509 510 511 512 513 514 515 516

          tx_pwr = dac_fixed_gain(s_re,
                                  s_im,
                                  txdata,
                                  slot_offset,
                                  nb_antennas_tx,
                                  frame_parms->samples_per_tti>>1,
                                  slot_offset_meas,
                                  frame_parms->ofdm_symbol_size,
                                  14,
knopp's avatar
knopp committed
517
                                  (double)PHY_vars_UE_g[UE_id][CC_id]->tx_power_dBm-10*log10((double)PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE),
518
                                  PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE);  // This make the previous argument the total power
519
          //ue_data[UE_id]->tx_power_dBm);
520 521 522 523 524 525 526 527 528 529 530 531 532
          //#ifdef DEBUG_SIM
          LOG_D(OCM,"[SIM][UL] UE %d tx_pwr %f dBm (target %d dBm, num_RE %d) for slot %d (subframe %d, slot_offset %d, slot_offset_meas %d)\n",
                UE_id,
                10*log10(tx_pwr),
                PHY_vars_UE_g[UE_id][CC_id]->tx_power_dBm,
                PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE,
                next_slot,next_slot>>1,slot_offset,slot_offset_meas);
          //#endif

          multipath_channel(UE2eNB[UE_id][eNB_id][CC_id],s_re,s_im,r_re0,r_im0,
                            frame_parms->samples_per_tti>>1,hold_channel);

          //#ifdef DEBUG_SIM
knopp's avatar
knopp committed
533 534
          rx_pwr = signal_energy_fp2(UE2eNB[UE_id][eNB_id][CC_id]->ch[0],
                                     UE2eNB[UE_id][eNB_id][CC_id]->channel_length)*UE2eNB[UE_id][eNB_id][CC_id]->channel_length;
knopp's avatar
knopp committed
535
          LOG_D(OCM,"[SIM][UL] slot %d Channel UE %d => eNB %d : %f dB (hold %d,length %d, PL %f)\n",next_slot,UE_id,eNB_id,10*log10(rx_pwr),
536 537 538
                hold_channel,UE2eNB[UE_id][eNB_id][CC_id]->channel_length,
                UE2eNB[UE_id][eNB_id][CC_id]->path_loss_dB);
          //#endif
539

540 541 542 543 544
          //#ifdef DEBUG_SIM
          rx_pwr = signal_energy_fp(r_re0,r_im0,nb_antennas_rx,frame_parms->samples_per_tti>>1,0);
          LOG_D(OCM,"[SIM][UL] eNB %d : rx_pwr %f dBm (%f) for slot %d (subframe %d), sptti %d\n",
                eNB_id,10*log10(rx_pwr),rx_pwr,next_slot,next_slot>>1,frame_parms->samples_per_tti);
          //#endif
545 546


knopp's avatar
knopp committed
547 548
          if (UE2eNB[UE_id][eNB_id][CC_id]->first_run == 1)
            UE2eNB[UE_id][eNB_id][CC_id]->first_run = 0;
549 550 551



552 553
          for (aa=0; aa<nb_antennas_rx; aa++) {
            for (i=0; i<(frame_parms->samples_per_tti>>1); i++) {
554 555 556 557 558 559
              r_re[aa][i]+=r_re0[aa][i];
              r_im[aa][i]+=r_im0[aa][i];
            }
          }
        }
      } //UE_id
560

561 562
      // RF model
      /*
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
      rf_rx(r_re0,
      r_im0,
      NULL,
      NULL,
      0,
      frame_parms->nb_antennas_rx,
      frame_parms->samples_per_tti>>1,
      1e3/UE2eNB[UE_id][eNB_id]->BW,  // sampling time (ns)
      0.0,               // freq offset (Hz) (-20kHz..20kHz)
      0.0,               // drift (Hz) NOT YET IMPLEMENTED
      enb_data[eNB_id]->rx_noise_level,                // noise_figure NOT YET IMPLEMENTED
      (double)PHY_vars_eNB_g[eNB_id]->rx_total_gain_eNB_dB - 66.227,   // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)
      200.0,               // IP3_dBm (dBm)
      &UE2eNB[UE_id][eNB_id]->ip,               // initial phase
      30.0e3,            // pn_cutoff (kHz)
      -500.0,            // pn_amp (dBc) default: 50
      0.0,               // IQ imbalance (dB),
      0.0);              // IQ phase imbalance (rad)
      */

583 584 585 586
      rf_rx_simple(r_re,
                   r_im,
                   nb_antennas_rx,
                   frame_parms->samples_per_tti>>1,
Florian Kaltenberger's avatar
Florian Kaltenberger committed
587
                   1e3/UE2eNB[0][eNB_id][CC_id]->sampling_rate,  // sampling time (ns)
knopp's avatar
knopp committed
588
                   (double)PHY_vars_eNB_g[eNB_id][CC_id]->rx_total_gain_eNB_dB - 66.227);   // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)
589

590
#ifdef DEBUG_SIM
591
      rx_pwr = signal_energy_fp(r_re,r_im,nb_antennas_rx,frame_parms->samples_per_tti>>1,0)*(double)frame_parms->ofdm_symbol_size/(12.0*frame_parms->N_RB_DL);
592
      LOG_D(OCM,"[SIM][UL] rx_pwr (ADC in) %f dB for slot %d (subframe %d)\n",10*log10(rx_pwr),next_slot,next_slot>>1);
593
#endif
594

knopp's avatar
knopp committed
595
      rxdata = PHY_vars_eNB_g[eNB_id][CC_id]->lte_eNB_common_vars.rxdata[0];
596
      slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
597

598 599 600 601 602 603 604 605
      adc(r_re,
          r_im,
          0,
          slot_offset,
          rxdata,
          nb_antennas_rx,
          frame_parms->samples_per_tti>>1,
          12);
606 607

#ifdef DEBUG_SIM
608
      rx_pwr2 = signal_energy(rxdata[0]+slot_offset,frame_parms->samples_per_tti>>1)*(double)frame_parms->ofdm_symbol_size/(12.0*frame_parms->N_RB_DL);
609
      LOG_D(OCM,"[SIM][UL] eNB %d rx_pwr (ADC out) %f dB (%d) for slot %d (subframe %d)\n",eNB_id,10*log10((double)rx_pwr2),rx_pwr2,next_slot,next_slot>>1);
610 611 612 613 614
#else
      UNUSED_VARIABLE(tx_pwr);
      UNUSED_VARIABLE(rx_pwr);
      UNUSED_VARIABLE(rx_pwr2);
#endif
615

616 617 618 619 620 621
    } // eNB_id
  } // abstraction_flag==0

}


622 623
void init_channel_vars(LTE_DL_FRAME_PARMS *frame_parms, double ***s_re,double ***s_im,double ***r_re,double ***r_im,double ***r_re0,double ***r_im0)
{
624 625 626 627 628 629 630 631 632 633 634

  int i;

  *s_re = malloc(2*sizeof(double*));
  *s_im = malloc(2*sizeof(double*));
  *r_re = malloc(2*sizeof(double*));
  *r_im = malloc(2*sizeof(double*));
  *r_re0 = malloc(2*sizeof(double*));
  *r_im0 = malloc(2*sizeof(double*));


635
  for (i=0; i<2; i++) {
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

    (*s_re)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*s_re)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*s_im)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*s_im)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*r_re)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*r_re)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*r_im)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*r_im)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*r_re0)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*r_re0)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    (*r_im0)[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
    bzero((*r_im0)[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
  }
}