Commit da50d68b authored by oai's avatar oai

more NB-IoT integration

parent b04f3b54
......@@ -314,7 +314,8 @@ file(GLOB rrc_h ${RRC_FULL_DIR}/*.h)
set(rrc_h ${rrc_h} ${RRC_FULL_DIR}/asn1_constants.h)
set_source_files_properties(${rrc_source} PROPERTIES COMPILE_FLAGS -w) # suppress warnings from generated code
add_library(RRC_LIB ${rrc_h} ${rrc_source}
${OPENAIR2_DIR}/RRC/LITE/MESSAGES/asn1_msg.c)
${OPENAIR2_DIR}/RRC/LITE/MESSAGES/asn1_msg.c
${OPENAIR2_DIR}/RRC/LITE/MESSAGES/asn1_msg_NB_IoT.c)
include_directories ("${RRC_FULL_DIR}")
# add the command to generate the source code
......@@ -1717,6 +1718,17 @@ if(NAS_UE)
endif()
# nbiot
add_definitions("-DNUMBER_OF_UE_MAX_NB_IoT=16")
set (NBIOT_SOURCES
${OPENAIR2_DIR}/ENB_APP/NB_IoT_config.c
)
add_library(NB_IoT MODULE ${NBIOT_SOURCES} )
# shared library loader
set (SHLIB_LOADER_SOURCES
${OPENAIR_DIR}/common/utils/load_module_shlib.c
)
# Make lfds as a own source code (even if it is a outside library)
# For better intergration with compilation flags & structure of cmake
......@@ -1789,6 +1801,7 @@ include_directories("${NFAPI_DIR}/nfapi/inc")
include_directories("${NFAPI_DIR}/sim_common/inc")
include_directories("${NFAPI_DIR}/pnf_sim/inc")
# System packages that are required
# We use either the cmake buildin, in ubuntu are in: /usr/share/cmake*/Modules/
# or cmake provide a generic interface to pkg-config that widely used
......@@ -1947,6 +1960,7 @@ add_executable(lte-softmodem
${OPENAIR_TARGETS}/RT/USER/lte-enb.c
${OPENAIR_TARGETS}/RT/USER/lte-ru.c
${OPENAIR_TARGETS}/RT/USER/lte-softmodem.c
${OPENAIR2_DIR}/ENB_APP/NB_IoT_interface.c
${OPENAIR1_DIR}/SIMULATION/TOOLS/taus.c
${OPENAIR_TARGETS}/SIMU/USER/init_lte.c
${OPENAIR_TARGETS}/COMMON/create_tasks.c
......@@ -1985,6 +1999,7 @@ add_executable(lte-softmodem-nos1
${OPENAIR_TARGETS}/RT/USER/lte-enb.c
${OPENAIR_TARGETS}/RT/USER/lte-ru.c
${OPENAIR_TARGETS}/RT/USER/lte-softmodem.c
${OPENAIR2_DIR}/ENB_APP/NB_IoT_interface.c
${OPENAIR1_DIR}/SIMULATION/TOOLS/taus.c
${OPENAIR_TARGETS}/SIMU/USER/init_lte.c
${OPENAIR_TARGETS}/COMMON/create_tasks.c
......
......@@ -5,6 +5,7 @@
RRC_Rel14=(
"SystemInformation-r8-IEs.h" 4df485c5ddf2540eca271876cdc512caa19b0890 "fix_asn1.data/RRC.rel14/SystemInformation-r8-IEs.h.diff"
"SystemInformation-NB-r13-IEs.h" 6d91332d5c39205819b06e5e36efe62ff8e5b33b "fix_asn1.data/RRC.rel14/SystemInformation-NB-r13-IEs.h.diff"
)
RRC_Rel10=(
......
48a49,70
> struct SystemInformation_NB_r13_IEs__sib_TypeAndInfo_r13__Member {
> SystemInformation_NB_r13_IEs__sib_TypeAndInfo_r13__Member_PR present;
> union SystemInformation_NB_r13_IEs__sib_TypeAndInfo_r13__Member_u {
> SystemInformationBlockType2_NB_r13_t sib2_r13;
> SystemInformationBlockType3_NB_r13_t sib3_r13;
> SystemInformationBlockType4_NB_r13_t sib4_r13;
> SystemInformationBlockType5_NB_r13_t sib5_r13;
> SystemInformationBlockType14_NB_r13_t sib14_r13;
> SystemInformationBlockType16_NB_r13_t sib16_r13;
> /*
> * This type is extensible,
> * possible extensions are below.
> */
> SystemInformationBlockType15_NB_r14_t sib15_v1430;
> SystemInformationBlockType20_NB_r14_t sib20_v1430;
> SystemInformationBlockType22_NB_r14_t sib22_v1430;
> } choice;
>
> /* Context for parsing across buffer boundaries */
> asn_struct_ctx_t _asn_ctx;
> };
>
52,72c74
< A_SEQUENCE_OF(struct SystemInformation_NB_r13_IEs__sib_TypeAndInfo_r13__Member {
< SystemInformation_NB_r13_IEs__sib_TypeAndInfo_r13__Member_PR present;
< union SystemInformation_NB_r13_IEs__sib_TypeAndInfo_r13__Member_u {
< SystemInformationBlockType2_NB_r13_t sib2_r13;
< SystemInformationBlockType3_NB_r13_t sib3_r13;
< SystemInformationBlockType4_NB_r13_t sib4_r13;
< SystemInformationBlockType5_NB_r13_t sib5_r13;
< SystemInformationBlockType14_NB_r13_t sib14_r13;
< SystemInformationBlockType16_NB_r13_t sib16_r13;
< /*
< * This type is extensible,
< * possible extensions are below.
< */
< SystemInformationBlockType15_NB_r14_t sib15_v1430;
< SystemInformationBlockType20_NB_r14_t sib20_v1430;
< SystemInformationBlockType22_NB_r14_t sib22_v1430;
< } choice;
<
< /* Context for parsing across buffer boundaries */
< asn_struct_ctx_t _asn_ctx;
< } ) list;
---
> A_SEQUENCE_OF(struct SystemInformation_NB_r13_IEs__sib_TypeAndInfo_r13__Member) list;
......@@ -48,6 +48,8 @@
#include "NwGtpv1uPrivate.h"
#include "gtpv1u_eNB_defs.h"
#include "PHY/defs_L1_NB_IoT.h"
#include "RRC/LITE/defs_NB_IoT.h"
typedef struct {
/// RAN context config file name
char *config_file_name;
......@@ -76,7 +78,7 @@ typedef struct {
/// eNB context variables
struct PHY_VARS_eNB_s ***eNB;
/// NB_IoT L1 context variables
//struct PHY_VARS_eNB_NB_IoT_s **L1_NB_IoT;
struct PHY_VARS_eNB_NB_IoT_s **L1_NB_IoT;
/// RRC context variables
struct eNB_RRC_INST_s **rrc;
/// NB_IoT RRC context variables
......@@ -84,7 +86,7 @@ typedef struct {
/// MAC context variables
struct eNB_MAC_INST_s **mac;
/// NB_IoT MAC context variables
//struct eNB_MAC_INST_NB_IoT_s **nb_iot_mac;
struct eNB_MAC_INST_NB_IoT_s **nb_iot_mac;
/// GTPu descriptor
gtpv1u_data_t *gtpv1u_data_g;
/// RU descriptors. These describe what each radio unit is supposed to do and contain the necessary functions for fronthaul interfaces
......
......@@ -21,7 +21,7 @@
#if !defined(NFAPI_PNF_H__)
#define NFAPI_PNF_H__
int oai_nfapi_rach_ind(nfapi_rach_indication_t *rach_ind);
void configure_nfapi_pnf(char *vnf_ip_addr, int vnf_p5_port, char *pnf_ip_addr, int pnf_p7_port, int vnf_p7_port);
#endif
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.0 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/* file: PHY/CODING/defs_NB_IoT.h
purpose: Top-level definitions, data types and function prototypes for openairinterface coding blocks for NB-IoT
author: matthieu.kanj@b-com.com, raymond.knopp@eurecom.fr, michele.paffetti@studio.unibo.it
date: 29.06.2017
*/
#ifndef OPENAIR1_PHY_CODING_DEFS_NB_IOT_H_
#define OPENAIR1_PHY_CODING_DEFS_NB_IOT_H_
#include <stdint.h> // for uint8/16/32_t
/* check if this ifndef is required for NB-IoT ?!
//#ifndef NO_OPENAIR1
//#include "PHY/defs_NB_IoT.h"
//#else
//#include "PHY/TOOLS/time_meas.h"
//#endif
*/
#define CRC24_A_NB_IoT 0
#define CRC24_B_NB_IoT 1
#define CRC16_NB_IoT 2
#define CRC8_NB_IoT 3
//#define MAX_TURBO_ITERATIONS_MBSFN 8 // no MBSFN
#define MAX_TURBO_ITERATIONS_NB_IoT 4
#define LTE_NULL_NB_IoT 2 // defined also in PHY/LTE_TRANSPORT/defs_NB_IoT.h
/** \fn uint32_t sub_block_interleaving_cc(uint32_t D, uint8_t *d,uint8_t *w)
\brief This is the subblock interleaving algorithm for convolutionally coded blocks from 36-212 (Release 13.4, 2017).
This function takes the d-sequence and generates the w-sequence. The nu-sequence from 36-212 is implicit.
\param D Number of input bits
\param d Pointer to input (d-sequence, convolutional code output)
\param w Pointer to output (w-sequence, interleaver output)
\returns Interleaving matrix cardinality (\f$K_{\pi}\f$ from 36-212)
*/
uint32_t sub_block_interleaving_cc_NB_IoT(uint32_t D, uint8_t *d,uint8_t *w);
/**
\brief This is the NB-IoT rate matching algorithm for Convolutionally-coded channels (e.g. BCH,DCI,UCI). It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RCC R^CC_subblock from subblock interleaver (number of rows in interleaving matrix) for up to 8 segments
\param E Number of coded channel bits
\param w This is a pointer to the w-sequence (second interleaver output)
\param e This is a pointer to the e-sequence (rate matching output, channel input/output bits)
\returns \f$E\f$, the number of coded bits per segment */
uint32_t lte_rate_matching_cc_NB_IoT(uint32_t RCC, // RRC = 2
uint16_t E, // E = 1600
uint8_t *w, // length
uint8_t *e); // length 1600
/** \fn void ccodelte_encode(int32_t numbits,uint8_t add_crc, uint8_t *inPtr,uint8_t *outPtr,uint16_t rnti)
\brief This function implements the LTE convolutional code of rate 1/3
with a constraint length of 7 bits. The inputs are bit packed in octets
(from MSB to LSB). Trellis tail-biting is included here.
@param numbits Number of bits to encode
@param add_crc crc to be appended (8 bits) if add_crc = 1
@param inPtr Pointer to input buffer
@param outPtr Pointer to output buffer
@param rnti RNTI for CRC scrambling
*/
void ccode_encode_NB_IoT (int32_t numbits,
uint8_t add_crc,
uint8_t *inPtr,
uint8_t *outPtr,
uint16_t rnti);
/*!\fn void ccodelte_init(void)
\brief This function initializes the generator polynomials for an LTE convolutional code.*/
void ccodelte_init_NB_IoT(void);
/*!\fn void crcTableInit(void)
\brief This function initializes the different crc tables.*/
void crcTableInit_NB_IoT (void);
/*!\fn uint32_t crc24a(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 24-bit crc ('a' variant for overall transport block)
based on 3GPP UMTS/LTE specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits
*/
uint32_t crc24a_NB_IoT (uint8_t *inPtr, int32_t bitlen);
/*!\fn uint32_t crc24b(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 24-bit crc ('b' variant for transport-block segments)
based on 3GPP UMTS/LTE specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits
*/
uint32_t crc24b_NB_IoT (uint8_t *inPtr, int32_t bitlen);
/*!\fn uint32_t crc16(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 16-bit crc based on 3GPP UMTS specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits*/
uint32_t crc16_NB_IoT (uint8_t *inPtr, int32_t bitlen);
/*!\fn uint32_t crc8(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 8-bit crc based on 3GPP UMTS specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits*/
uint32_t crc8_NB_IoT (uint8_t *inPtr, int32_t bitlen);
uint32_t crcbit_NB_IoT (uint8_t * ,
int32_t,
uint32_t);
/*!\fn void phy_viterbi_lte_sse2(int8_t *y, uint8_t *decoded_bytes, uint16_t n)
\brief This routine performs a SIMD optmized Viterbi decoder for the LTE 64-state tail-biting convolutional code.
@param y Pointer to soft input (coded on 8-bits but should be limited to 4-bit precision to avoid overflow)
@param decoded_bytes Pointer to decoded output
@param n Length of input/trellis depth in bits*/
//void phy_viterbi_lte_sse2(int8_t *y,uint8_t *decoded_bytes,uint16_t n);
void phy_viterbi_lte_sse2_NB_IoT(int8_t *y,uint8_t *decoded_bytes,uint16_t n);
/** \fn void sub_block_deinterleaving_cc(uint32_t D, int8_t *d,int8_t *w)
\brief This is the subblock deinterleaving algorithm for convolutionally-coded data from 36-212 (Release 8, 8.6 2009-03), pages 15-16.
This function takes the w-sequence and generates the d-sequence. The nu-sequence from 36-212 is implicit.
\param D Number of input bits
\param d Pointer to output (d-sequence, turbo code output)
\param w Pointer to input (w-sequence, interleaver output)
*/
void sub_block_deinterleaving_cc_NB_IoT(uint32_t D,int8_t *d,int8_t *w);
/*
\brief This is the LTE rate matching algorithm for Convolutionally-coded channels (e.g. BCH,DCI,UCI). It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RCC R^CC_subblock from subblock interleaver (number of rows in interleaving matrix)
\param E This the number of coded bits allocated for channel
\param w This is a pointer to the soft w-sequence (second interleaver output) with soft-combined outputs from successive HARQ rounds
\param dummy_w This is the first row of the interleaver matrix for identifying/discarding the "LTE-NULL" positions
\param soft_input This is a pointer to the soft channel output
\returns \f$E\f$, the number of coded bits per segment
*/
void lte_rate_matching_cc_rx_NB_IoT(uint32_t RCC,
uint16_t E,
int8_t *w,
uint8_t *dummy_w,
int8_t *soft_input);
/** \fn generate_dummy_w_cc(uint32_t D, uint8_t *w)
\brief This function generates a dummy interleaved sequence (first row) for receiver (convolutionally-coded data), in order to identify the NULL positions used to make the matrix complete.
\param D Number of systematic bits plus 4 (plus 4 for termination)
\param w This is the dummy sequence (first row), it will contain zeros and at most 31 "LTE_NULL" values
\returns Interleaving matrix cardinality (\f$K_{\pi}\f$ from 36-212)
*/
uint32_t generate_dummy_w_cc_NB_IoT(uint32_t D, uint8_t *w);
/** \fn lte_segmentation(uint8_t *input_buffer,
uint8_t **output_buffers,
uint32_t B,
uint32_t *C,
uint32_t *Cplus,
uint32_t *Cminus,
uint32_t *Kplus,
uint32_t *Kminus,
uint32_t *F)
\brief This function implements the LTE transport block segmentation algorithm from 36-212, V8.6 2009-03.
@param input_buffer
@param output_buffers
@param B
@param C
@param Cplus
@param Cminus
@param Kplus
@param Kminus
@param F
*/
int32_t lte_segmentation_NB_IoT(uint8_t *input_buffer,
uint8_t **output_buffers,
uint32_t B,
uint32_t *C,
uint32_t *Cplus,
uint32_t *Cminus,
uint32_t *Kplus,
uint32_t *Kminus,
uint32_t *F);
/** \fn void sub_block_deinterleaving_turbo(uint32_t D, int16_t *d,int16_t *w)
\brief This is the subblock deinterleaving algorithm from 36-212 (Release 8, 8.6 2009-03), pages 15-16.
This function takes the w-sequence and generates the d-sequence. The nu-sequence from 36-212 is implicit.
\param D Number of systematic bits plus 4 (plus 4 for termination)
\param d Pointer to output (d-sequence, turbo code output)
\param w Pointer to input (w-sequence, interleaver output)
*/
//*****************void sub_block_deinterleaving_turbo(uint32_t D, int16_t *d,int16_t *w);
/**
\brief This is the LTE rate matching algorithm for Turbo-coded channels (e.g. DLSCH,ULSCH). It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RTC R^TC_subblock from subblock interleaver (number of rows in interleaving matrix)
\param G This the number of coded transport bits allocated in sub-frame
\param w This is a pointer to the soft w-sequence (second interleaver output) with soft-combined outputs from successive HARQ rounds
\param dummy_w This is the first row of the interleaver matrix for identifying/discarding the "LTE-NULL" positions
\param soft_input This is a pointer to the soft channel output
\param C Number of segments (codewords) in the sub-frame
\param Nsoft Total number of soft bits (from UE capabilities in 36-306)
\param Mdlharq Number of HARQ rounds
\param Kmimo MIMO capability for this DLSCH (0 = no MIMO)
\param rvidx round index (0-3)
\param clear 1 means clear soft buffer (start of HARQ round)
\param Qm modulation order (2,4,6)
\param Nl number of layers (1,2)
\param r segment number
\param E_out the number of coded bits per segment
\returns 0 on success, -1 on failure
*/
// int lte_rate_matching_turbo_rx(uint32_t RTC,
// uint32_t G,
// int16_t *w,
// uint8_t *dummy_w,
// int16_t *soft_input,
// uint8_t C,
// uint32_t Nsoft,
// uint8_t Mdlharq,
// uint8_t Kmimo,
// uint8_t rvidx,
// uint8_t clear,
// uint8_t Qm,
// uint8_t Nl,
// uint8_t r,
// uint32_t *E_out);
// uint32_t lte_rate_matching_turbo_rx_abs(uint32_t RTC,
// uint32_t G,
// double *w,
// uint8_t *dummy_w,
// double *soft_input,
// uint8_t C,
// uint32_t Nsoft,
// uint8_t Mdlharq,
// uint8_t Kmimo,
// uint8_t rvidx,
// uint8_t clear,
// uint8_t Qm,
// uint8_t Nl,
// uint8_t r,
// uint32_t *E_out);
void ccode_encode_npdsch_NB_IoT (int32_t numbits,
uint8_t *inPtr,
uint8_t *outPtr,
uint32_t crc);
#endif /* OPENAIR1_PHY_CODING_DEFS_NB_IOT_H_ */
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.0 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
#ifndef __INIT_DEFS_NB_IOT__H__
#define __INIT_DEFS_NB_IOT__H__
//#include "PHY/defs_NB_IoT.h"
#include "openair2/PHY_INTERFACE/IF_Module_NB_IoT.h"
#include "nfapi_interface.h"
//#include "SystemInformationBlockType2.h"
//#include "RadioResourceConfigCommonSIB.h"
//#include "RadioResourceConfigDedicated.h"
//#include "TDD-Config.h"
//#include "MBSFN-SubframeConfigList.h"
//#include "MobilityControlInfo.h"
//#if defined(Rel10) || defined(Rel14)
//#include "SCellToAddMod-r10.h"
//#endif
/*brief Configure LTE_DL_FRAME_PARMS with components derived after initial synchronization (MIB-NB decoding + primary/secondary synch).*/
void phy_config_mib_eNB_NB_IoT(int Mod_id,
int eutra_band,
int Nid_cell,
int Ncp,
int Ncp_UL,
int p_eNB,
uint16_t EARFCN,
uint16_t prb_index, // NB_IoT_RB_ID,
uint16_t operating_mode,
uint16_t control_region_size,
uint16_t eutra_NumCRS_ports);
/*NB_phy_config_sib1_eNB is not needed since NB-IoT use only FDD mode*/
/*brief Configure LTE_DL_FRAME_PARMS with components of SIB2-NB (at eNB).*/
//void NB_phy_config_sib2_eNB(module_id_t Mod_id,
// int CC_id,
// RadioResourceConfigCommonSIB_NB_r13_t *radioResourceConfigCommon
// );
void phy_config_sib2_eNB_NB_IoT(uint8_t Mod_id,
nfapi_nb_iot_config_t *config,
nfapi_rf_config_t *rf_config,
nfapi_uplink_reference_signal_config_t* ul_nrs_config,
extra_phyConfig_t* extra_phy_parms);
void phy_config_dedicated_eNB_NB_IoT(module_id_t Mod_id,
rnti_t rnti,
extra_phyConfig_t* extra_phy_parms);
// void phy_init_lte_top_NB_IoT(NB_IoT_DL_FRAME_PARMS *frame_parms);
void phy_init_nb_iot_eNB(PHY_VARS_eNB_NB_IoT *phyvar);
int l1_north_init_NB_IoT(void);
#endif
/*******************************************************************************
*******************************************************************************/
/*! \file PHY/LTE_REFSIG/defs_NB_IoT.c
* \function called by lte_dl_cell_spec_NB_IoT.c , TS 36-211, V13.4.0 2017-02
* \author M. KANJ
* \date 2017
* \version 0.0
* \company bcom
* \email: matthieu.kanj@b-com.com
* \note
* \warning
*/
/* Definitions for NB_IoT Reference signals */
#ifndef __LTE_REFSIG_DEFS_NB_IOT__H__
#define __LTE_REFSIG_DEFS_NB_IOT__H__
#include "PHY/defs_L1_NB_IoT.h"
/** @ingroup _PHY_REF_SIG
* @{
*/
/*!\brief This function generates the LTE Gold sequence (36-211, Sec 7.2), specifically for DL reference signals.
@param frame_parms LTE DL Frame parameters
@param lte_gold_table pointer to table where sequences are stored
@param Nid_cell Cell Id for NB_IoT (to compute sequences for local and adjacent cells) */
void lte_gold_NB_IoT(NB_IoT_DL_FRAME_PARMS *frame_parms,
uint32_t lte_gold_table_NB_IoT[20][2][14],
uint16_t Nid_cell);
/*! \brief This function generates the Narrowband reference signal (NRS) sequence (36-211, Sec 6.10.1.1)
@param phy_vars_eNB Pointer to eNB variables
@param output Output vector for OFDM symbol (Frequency Domain)
@param amp Q15 amplitude
@param Ns Slot number (0..19)
@param l symbol (0,1) - Note 1 means 3!
@param p antenna index
@param RB_IoT_ID the ID of the RB dedicated for NB_IoT
*/
int lte_dl_cell_spec_NB_IoT(PHY_VARS_eNB_NB_IoT *phy_vars_eNB,
int32_t *output,
short amp,
unsigned char Ns,
unsigned char l,
unsigned char p,
unsigned short RB_IoT_ID);
unsigned int lte_gold_generic_NB_IoT(unsigned int *x1,
unsigned int *x2,
unsigned char reset);
void generate_ul_ref_sigs_rx_NB_IoT(void);
void free_ul_ref_sigs_NB_IoT(void);
#endif
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.0 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*! \file PHY/LTE_TRANSPORT/dci.h
* \brief typedefs for LTE DCI structures from 36-212, V8.6 2009-03. Limited to 5 MHz formats for the moment.Current LTE compliance V8.6 2009-03.
* \author R. Knopp
* \date 2011
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr
* \note
* \warning
*/
#ifndef __DCI_NB_IOT_H__
#define __DCI_NB_IOT_H__
//#ifndef USER_MODE
//#include "PHY/types.h"
//#else
#include <stdint.h>
//#endif
typedef enum
{
DCIFormatN0 = 0,
DCIFormatN1,
DCIFormatN1_RA,//is for initial RA procedure (semi-static information) so maybe is not needed
DCIFormatN1_RAR,
DCIFormatN2,
DCIFormatN2_Ind,
DCIFormatN2_Pag,
}DCI_format_NB_IoT_t;
/// DCI Format Type 0 (180 kHz, 23 bits)
struct DCIFormatN0{
/// type = 0 => DCI Format N0, type = 1 => DCI Format N1, 1 bits
uint8_t type;
/// Subcarrier indication, 6 bits
uint8_t scind;
/// Resourse Assignment (RU Assignment), 3 bits
uint8_t ResAssign;
/// Modulation and Coding Scheme, 4 bits
uint8_t mcs;
/// New Data Indicator, 1 bits
uint8_t ndi;
/// Scheduling Delay, 2 bits
uint8_t Scheddly;
/// Repetition Number, 3 bits
uint8_t RepNum;
/// Redundancy version for HARQ (only use 0 and 2), 1 bits
uint8_t rv;
/// DCI subframe repetition Number, 2 bits
uint8_t DCIRep;
};
typedef struct DCIFormatN0 DCIFormatN0_t;
/// DCI Format Type N1 for User data
struct DCIFormatN1{
/// type = 0 => DCI Format N0, type = 1 => DCI Format N1,1bits
uint8_t type;
//NPDCCH order indicator (set to 0), 1 bits
uint8_t orderIndicator;
// Scheduling Delay,3 bits
uint8_t Scheddly;
// Resourse Assignment (RU Assignment),3 bits
uint8_t ResAssign;
// Modulation and Coding Scheme,4 bits
uint8_t mcs;
// Repetition Number,4 bits
uint8_t RepNum;
// New Data Indicator,1 bits
uint8_t ndi;
// HARQ-ACK resource,4 bits
uint8_t HARQackRes;
// DCI subframe repetition Number,2 bits
uint8_t DCIRep;
};
typedef struct DCIFormatN1 DCIFormatN1_t;
/// DCI Format Type N1 for initial RA
struct DCIFormatN1_RA{
/// type = 0 => DCI Format N0, type = 1 => DCI Format N1, 1 bits
uint8_t type;
//NPDCCH order indicator (set to 0),1 bits
uint8_t orderIndicator;
// Start number of NPRACH repetiiton, 2 bits
uint8_t Scheddly;
// Subcarrier indication of NPRACH, 6 bits
uint8_t scind;
// All the remainging bits, 13 bits
uint8_t remaingingBits;
};
typedef struct DCIFormatN1_RA DCIFormatN1_RA_t;
/// DCI Format Type N1 for User data
struct DCIFormatN1_RAR{
/// type = 0 => DCI Format N0, type = 1 => DCI Format N1,1bits
uint8_t type;
//NPDCCH order indicator (set to 0), 1 bits
uint8_t orderIndicator;
// Scheduling Delay,3 bits
uint8_t Scheddly;
// Resourse Assignment (RU Assignment),3 bits
uint8_t ResAssign;
// Modulation and Coding Scheme,4 bits
uint8_t mcs;
// Repetition Number,4 bits
uint8_t RepNum;
// New Data Indicator,1 bits,reserved in the RAR
uint8_t ndi;
// HARQ-ACK resource,4 bits,reserved in the RAR
uint8_t HARQackRes;
// DCI subframe repetition Number,2 bits
uint8_t DCIRep;
};
typedef struct DCIFormatN1_RAR DCIFormatN1_RAR_t;
// DCI Format Type N2 for direct indication, 15 bits
struct DCIFormatN2_Ind{
//Flag for paging(1)/direct indication(0), set to 0,1 bits
uint8_t type;
//Direct indication information, 8 bits
uint8_t directIndInf;
// Reserved information bits, 6 bits
uint8_t resInfoBits;
};
typedef struct DCIFormatN2_Ind DCIFormatN2_Ind_t;
// DCI Format Type N2 for Paging, 15 bits
struct DCIFormatN2_Pag{
//Flag for paging(1)/direct indication(0), set to 1,1 bits
uint8_t type;
// Resourse Assignment (RU Assignment), 3 bits
uint8_t ResAssign;
// Modulation and Coding Scheme, 4 bits
uint8_t mcs;
// Repetition Number, 4 bits
uint8_t RepNum;
// Reserved 3 bits
uint8_t DCIRep;
};
typedef struct DCIFormatN2_Pag DCIFormatN2_Pag_t;
typedef union DCI_CONTENT {
//
DCIFormatN0_t DCIN0;
//
DCIFormatN1_t DCIN1;
//
DCIFormatN1_RA_t DCIN1_RA;